64K x 4 Static RAM

Features

- High speed
$-12 \mathrm{~ns}$
- Output enable ($\overline{\mathrm{OE}}$) feature (7C195 and 7C196)
- CMOS for optimum speed/power
- Low active power
- 880 mW
- Low standby power
$-220 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C194, CY7C195, and CY7C196 are high-performance CMOS static RAMs organized as 65,536 by 4 bits. Easy memory expansion is provided by active LOW Chip En-
able(s) ($\overline{\mathrm{CE}}$ on the CY7C194 and CY7C195, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) and three-state drivers. They have an automatic power-down feature, reducing the power consumption by 75% when deselected.
Writing to the device is accomplished when the Chip Enable(s) ($\overline{C E}$ on the CY7C194 and CY7C195, $\overline{C E}_{1}, \overline{C E}_{2}$ on the CY7C196) and Write Enable (WE) inputs are both LOW. Data on the four input pins ($1 / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location, specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the Chip Enable(s) ($\overline{\mathrm{CE}}$ on the CY7C194 and CY7C195, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) LOW, while Write Enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
A die coat is used to ensure alpha immunity.

Selection Guide

$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline & \begin{array}{c}\text { 7C194-12 } \\ \text { 7C195-12 } \\ \text { 7C196-12 }\end{array} & \begin{array}{c}\text { 7C194-15 } \\ \text { 7C195-15 } \\ \text { 7C196-15 }\end{array} & \begin{array}{c}\text { 7C194-20 } \\ \text { 7C195-20 } \\ \text { 7C196-20 }\end{array} & \begin{array}{c}\text { 7C194-25 } \\ \text { 7C195-25 } \\ \text { 7C196-25 }\end{array} & \begin{array}{c}\text { 7C194-35 } \\ \text { 7C195-35 } \\ \text { 7C196-35 }\end{array} & \text { 7C194-45 } \\ \text { 7C196-45 }\end{array}\right]$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied. \qquad
\qquad
Supply Voltage to Ground Potential \qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$.
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

$$
\begin{aligned}
& \text { Output Current into Outputs (LOW) } 20 \mathrm{~mA} \\
& \text { Static Discharge Voltage ... >2001V } \\
& \text { (per MIL-STD-883, Method 3015) } \\
& \text { Latch-Up Current.. }>200 \mathrm{~mA}
\end{aligned}
$$

Operating Range

Range	Ambient Temperature ${ }^{[2]}$	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & \text { 7C194-12 } \\ & \text { 7C195-12 } \\ & \text { 7C196-12 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C194-15 } \\ & \text { 7C195-15 } \\ & \text { 7C196-15 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{array}{r} \\ V_{C C} \\ +0.3 V \end{array}$	V
$\mathrm{V}_{\text {IL }}{ }^{[1]}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
1 IX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-5	+5	-5	+5	$\mu \mathrm{A}$
l OS	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		155		145	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\text { CE }}$ Power-Down Current -TTL Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, f=f_{\mathrm{MAX}} \end{aligned}$		30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current -CMOS Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		10		10	mA

Notes:

1. Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns .
2. T_{A} is the "Instant On" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Electrical Characteristics Over the Operating Range(continued)

Parameter	Description	Test Conditions	$\begin{aligned} & \text { 7C194-20 } \\ & \text { 7C195-20 } \\ & \text { 7C196-20 } \end{aligned}$		$\begin{aligned} & \text { 7C194-25, 35, } 45 \\ & \text { 7C195-25, 35 } \\ & \text { 7C196-25, 35, } 45 \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-5	+5	-5	+5	$\mu \mathrm{A}$
loS	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-300		-300	mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		135		115	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current -TTL Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, f=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$		30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current -CMOS Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		15		15	mA

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms ${ }^{[6]}$

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } \sim \text { 1.73V }
$$

Notes:

5. Tested initially and after any design or process changes that may affect these parameters.
6. $\mathrm{t}_{\mathrm{r}}=\leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}}=\leq 5 \mathrm{~ns}$ for the -20 and slower speeds.

Switching Characteristics Over the Operating Range ${ }^{[7]}$

Parameter	Description	$\begin{aligned} & \text { 7C194-12 } \\ & \text { 7C195-12 } \\ & \text { 7C196-12 } \end{aligned}$		$\begin{aligned} & \text { 7C194-15 } \\ & \text { 7C195-15 } \\ & \text { 7C196-15 } \end{aligned}$		$\begin{aligned} & \text { 7C194-20 } \\ & \text { 7C195-20 } \\ & \text { 7C196-20 } \end{aligned}$		$\begin{aligned} & \text { 7C194-25 } \\ & \text { 7C195-25 } \\ & \text { 7C196-25 } \end{aligned}$		$\begin{aligned} & \text { 7C194-35 } \\ & \text { 7C195-35 } \\ & \text { 7C196-35 } \end{aligned}$		$\begin{aligned} & \text { 7C194-45 } \\ & \text { 7C196-45 } \end{aligned}$		Unit
		Min.	Max.											

Notes:

7. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{L Z C E}$ and $t_{H Z N E}$ is less than $t_{L Z W E}$ for any given device.
10. The internal write time of the memory is defined by the overlap of $\mathrm{CE}_{1} \mathrm{LOW}, \mathrm{CE} E_{2}$ LOW, and WE LOW. All signals must be LOW to initiate a write and any signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

C194-8
Read Cycle No. $2{ }^{[11,13]}$

C194-6
Write Cycle No. 1 (CE Controlled) ${ }^{[10, ~ 14, ~ 15] ~}$

C194-7

Notes:

11. $\overline{W E}$ is HIGH for read cycle.
12. Device is continuously selected: $\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$ (7C196), and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ (7C195 and 7C196).
13. Address valid prior to or coincident with CE_{1} and CE_{2} transition LOW.
14. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ (7 C 195 and 7 C 196).
15. If any $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 (WE Controlled, OE HIGH During Write for 7C195and 7C196only) ${ }^{[10,14,15]}$

Write Cycle No. 3 ($\overline{\text { WE Controlled, } \overline{\mathrm{OE}} \text { LOW) }{ }^{[15, ~ 16]}}$

Note:
16. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $t_{\text {HZWE }}$ and t_{SD}.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUTLOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

7C194 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	Data I/O	Mode	Power
H	X	High Z	Deselect/Power-Down	Standby (ISB)
L	H	Data Out	Read	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Data In	Write	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$

7C195 Truth Table

CE_{1}	WE	OE	Data I/O	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	Data Out	Read	Active (I_{CC})
L	L	X	Data In	Write	Active ($\mathrm{I}_{\text {CC }}$)
L	H	H	High Z	Deselect	Active (I_{CC})

7C196 Truth Table

$\overline{\mathrm{CE}}_{1}$	$\overline{\mathrm{CE}}_{2}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	Data 1/O	Mode	Power
H	X	X	X	High Z	Deselect/Power-Down	Standby ($\mathrm{ISB}^{\text {(}}$)
X	H	X	X			
L	L	H	L	Data Out	Read	Active (lcc)
L	L	L	X	Data In	Write	Active ($\mathrm{ICC}^{\text {) }}$
L	L	H	H	High Z	Deselect	Active (Icc)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C194-12PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-12VC	V13	24-Lead Molded SOJ	
	CY7C194-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-15VC	V13	24-Lead Molded SOJ	
20	CY7C194-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-20VC	V13	24-Lead Molded SOJ	
25	CY7C194-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-25VC	V13	24-Lead Molded SOJ	
35	CY7C194-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-35VC	V13	24-Lead Molded SOJ	
45	CY7C194-45PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-45VC	V13	24-Lead Molded SOJ	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C195-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-12VC	V21	28-Lead Molded SOJ	
15	CY7C195-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-15VC	V21	28-Lead Molded SOJ	
20	CY7C195-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-20VC	V21	28-Lead Molded SOJ	
25	CY7C195-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-25VC	V21	28-Lead Molded SOJ	
35	CY7C195-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-35VC	V21	28-Lead Molded SOJ	
45	CY7C195-45PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-45VC	V21	28-Lead Molded SOJ	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C196-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-12VC	V21	28-Lead Molded SOJ	
	CY7C196-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-15VC	V21	28-Lead Molded SOJ	
20	CY7C196-20PC	P21	28 -Lead (300-Mil) Molded DIP	Commercial
	CY7C196-20VC	V21	28-Lead Molded SOJ	
25	CY7C196-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-25VC	V21	28-Lead Molded SOJ	
35	CY7C196-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-35VC	V21	28-Lead Molded SOJ	

[^0]
Package Diagrams

24-Lead (300-Mil) Molded DIP P13/P13A
dimensions in inches min.

	P 13	P 13 A
NDTE A	$\frac{1.170}{1.200}$	$\frac{1.230}{1.260}$
NUTE B	$\frac{0.030}{0.050}$	0.060
	0.080	

28-Lead (300-Mil) Molded DIP P21

CY7C195
CY7C196

Package Diagrams (continued)

28-Lead (300-Mil) Molded SOJ V21
DIMENSIDNS IN INCHES $\frac{\text { MIN. }}{\text { MAX. }}$

[^0]: Document \#: 38-00081-K

