SF201 THRU SF209

Features

－Superfast recovery times

DO－15

－Low forward voltage，high current capability
－Hermetically sealed
－Low leakage
－High surge capability
－Plastic package has Underwriters Laboratories
Flammability classification 94V－0 utilizing
Flame retardant epoxy molding compound

Mechanical Data

Case：Molded plastic，DO－15
－Terminals：Axial leads，solderable to
MIL－STD－202，method 208
－Polarity：Color band denotes cathode end
－Mounting Position：Any
－Weight： 0.014 ounce， 0.39 gram

DIMENSIONS					
DIM	inches		mm		Note
	Min．	Max．	Min．	Max．	
A	0.228	0.299	5.8	7.6	
B	0.102	0.142	2.6	3.6	中
C	0.028	0.034	0.71	0.86	中
D	1.000	-	25.40	-	

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified．
Resistive or inductive load， 60 Hz ．

	Symbols	$\begin{gathered} \text { SF } \\ 201 \end{gathered}$	$\begin{aligned} & \text { SF } \\ & 202 \end{aligned}$	$\begin{aligned} & \text { SF } \\ & 203 \end{aligned}$	$\begin{aligned} & \text { SF } \\ & 204 \end{aligned}$	$\begin{aligned} & \text { SF } \\ & 205 \end{aligned}$	$\begin{gathered} \text { SF } \\ 206 \end{gathered}$	$\begin{aligned} & \text { SF } \\ & 207 \end{aligned}$	$\begin{aligned} & \text { SF } \\ & 208 \end{aligned}$	$\begin{aligned} & \text { SF } \\ & 209 \end{aligned}$	Units
Maximum repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	50	100	150	200	300	400	600	800	1000	Volts
Maximum RMS voltage	$V_{\text {RMS }}$	35	70	105	140	210	280	420	560	700	Volts
Maximum DC blocking voltage	$V_{D C}$	50	100	150	200	300	400	600	800	1000	Volts
Maximum average forward current $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	$I_{\text {（AV）}}$	2.0									Amps
Peak forward surge current， I_{FM}（surge）： 8.3 mS single half sine－wave superimposed on rated load（MIL－STD－750D 4066 method）	$I_{\text {FSM }}$	50.0									Amps
Maximum instantaneous forward voltage at 2．0A DC	V_{F}	0.95				1.25		1.40			Volts
Maximum DC reverse current $\quad T_{A}=25^{\circ} \mathrm{C}$ at rated DC blocking voltage $\quad T_{A}^{\mathrm{A}}=125^{\circ} \mathrm{C}$	I_{R}	$\begin{gathered} 5.0 \\ 400.0 \end{gathered}$									$\mu \mathrm{A}$
Maximum reverse recovery time（Note 1）	Tr	35.0									nS
Typical junction capacitance（Note 2）	C	63.0									$\rho \mathrm{F}$
Typical thermal resistance（Note 3）	$\mathrm{R}_{\text {EiJA }}$	40.0									${ }^{\circ} \mathrm{C} / \mathrm{w}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-55 to +150									${ }^{\circ} \mathrm{C}$

Notes：
（1）Reverse recovery test conditions：$I_{F}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{I}_{\pi}=0.25 \mathrm{~A}$
（2）Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC
（3）Thermal resistance from junction to ambient and from junction to lead length $0.375^{\prime \prime}$（ 9.5 mm ）P．C．B．mounted

RATINGS AND CHARACTERISTIC CURVES

Fig. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

Fig. 3-TYPICAL REVERSE CHARACTERISTICS

Fig. 2-MAXIMUM AVERAGE FORWARD CURRENT RATING

Fig. 4 - TYPICAL JUNCTION CAPACITANCE

Fig. 5 - MAXIMUM NON-REPETITIVE SURGE CURRENT

Fig. 6-TYPICAL JUNCTION CAPACITANCE

