FEATURES

- Independent registers for A and B buses
- Multiple V_{CC} and $G N D$ pins minimize switching noise
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Multiplexed real-time and stored data
- Outputs sink 64 mA and source 32 mA

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay nAx to nBx	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.2	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{cc}	4	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}} ; 3$-State	7	pF
I CCz	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
52 -pin plastic Quad Flat Pack	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MB2646BB	1418 B

PIN CONFIGURATION

LOGIC SYMBOL

Dual octal bus transceiver/registers (3-State)

DESCRIPTION (continued)
The select (nSAB, nSBA) pins determine whether data is stored or transferred through the device in real-time. The nDIR determines which bus will receive data when the nOE is
active Low. In the isolation mode ($\mathrm{nOE}=$ High), data from Bus A may be stored in the B register and/or data from Bus B may be stored in the A register. When an output
function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B may be driven at a time.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
48, 45, 19, 22	1 CPAB , 1CPBA, 2СРАВ, 2CPBA	Clock input A to B/Clock input B to A
49, 44, 18, 23	1SAB, 1SBA, 2SAB, 2SBA	Select input A to B / Select input B to A
47, 20	1DIR, 2DIR	Direction control inputs
$\begin{gathered} 50,51,1,2,3,5,6,7, \\ 8,9,10,11,12,13,15,16 \end{gathered}$	$\begin{aligned} & 1 \mathrm{~A} 0-1 \mathrm{~A} 7, \\ & 2 \mathrm{AO}-2 \mathrm{~A} 7 \end{aligned}$	Data inputs/outputs (A side)
$\begin{aligned} & 42,41,39,38,37,36,35,34, \\ & 33,32,31,29,28,27,25,24 \end{aligned}$	$\begin{aligned} & 1 \mathrm{BO}-1 \mathrm{B7}, \\ & 2 \mathrm{BO} 0-2 \mathrm{B7} \end{aligned}$	Data inputs/outputs (B side)
46, 21	10E, 2OE	Output enable inputs
4, 17, 30, 43	GND	Ground (0V)
14, 26, 40, 52	V_{CC}	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

The following examples demonstrate the four fundamental bus-management functions that can be performed with the MB2646.
(

Dual octal bus transceiver/registers (3-State)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE
nOE	nDIR	nCPAB	nCPBA	nSAB	nSBA	nAx	nBx	
X	X	\uparrow	X	X	X	Input	Unspecified output*	Store A, B unspecified
X	X	X	\uparrow	X	X	Unspecified output*	Input	Store B, A unspecified
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{gathered} \uparrow \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{gathered} \uparrow \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & X \end{aligned}$	Input	Input	Store A and B data Isolation, hold storage
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & L \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{gathered} \hline X \\ \mathrm{H} \text { or L } \end{gathered}$	$\begin{aligned} & \hline X \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real time B data to A bus Stored B data to A bus
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \text { X } \\ \mathrm{H} \text { or L } \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	Input	Output	Real time A data to B bus Stored A data to B bus

[^0]ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage	-0.5 to +7.0	V	
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or High state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Low state	128	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	4.5	5.5	V
V_{1}	Input voltage	0	V_{CC}	V
V_{IH}	High-level input voltage	2.0		V
V_{IL}	Low-level Input voltage		0.8	V
$\mathrm{IOH}^{\text {l }}$	High-level output current		-32	mA
loL	Low-level output current		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	0	10	ns/V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

Dual octal bus transceiver/registers (3-State)

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
V_{IK}	Input clamp vo	ge		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	2.9		2.5		V
			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	3.0	3.4		3.0		V	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.0	2.4		2.0		V	
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		0.42	0.55		0.55	V	
$\mathrm{V}_{\text {RST }}$	Power-up output voltage NO TAG		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		0.13	0.55		0.55	V	
1	Input leakage current	Control pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$	
		Data pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{l}}=$ GND or 5.5 V		± 5	± 100		± 100	$\mu \mathrm{A}$	
IOFF	Power-off leakage current		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$		± 5.0	± 100		± 100	$\mu \mathrm{A}$	
IPU/PD	Power-up/down 3-State output current ${ }^{4}$		$\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}$ $\mathrm{V} \mathrm{OE}=\text { Don't care }$		± 5.0	± 50		± 50	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{H}}+\mathrm{I}_{\text {OZH }}$	3-State output High current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		5.0	50		50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	3-State output Low current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		-5.0	-50		-50	$\mu \mathrm{A}$	
$I_{\text {CEX }}$	Output High leakage current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		5.0	50		50	$\mu \mathrm{A}$	
Io	Output current ${ }^{1}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-80	-180	-50	-180	mA	
ICCH	Quiescent supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		120	250		250	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {CCL }}$			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		37	60		60	mA	
ICCz			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs 3-State; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		120	250		250	$\mu \mathrm{A}$	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at $V_{\text {CC }}$ or GND		0.5	1.5		1.5	mA	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any $V_{C C}$ between $O \mathrm{~V}$ and 2.1 V , with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

Dual octal bus transceiver/registers (3-State)

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	130	190		130		MHz
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay nCPAB to $n B x$ or nCPBA to nAx	1	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay $n S A B$ to $n B x$ or nSBA to $n A x$	2, 3	$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.9 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.6 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpzZ } \end{aligned}$	Output enable time nOE to $n A x$ or $n B x$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tpHz}^{\text {tpLZ }} \\ & \mathrm{t}^{2} \end{aligned}$	Output disable time nOE to $n A x$ or $n B x$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.7 \end{aligned}$	ns
$\begin{aligned} & \overline{\text { tpzH }} \\ & \text { tpZL } \end{aligned}$	Output enable time nDIR to $n A x$ or nBx	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.9 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output disable time nDIR to nAx or nBx	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			MIN	TYP	MIN	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time nAx to nCPAB, nBx to nCPBA	4	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $n A x$ to $n C P A B$, nBx to nCPBA	4	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -0.7 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low nCPAB or nCPBA	1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	ns

Dual octal bus transceiver/registers (3-State)

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 2. Propagation Delay, nSAB to nBx or nSBA to $n A x, n A x$ to $n B x$ or nBx to $n A x$

Waveform 4. Data Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Dual octal bus transceiver/registers (3-State)

Dual octal bus transceiver/registers (3-State)

$t_{\text {PLH }}$ vs Temperature ($\mathrm{T}_{\mathrm{amb}}$) $C_{L}=50 p F, 1$ Output Switching nSAB to $\mathbf{n B x}$ or nSBA to nAx

$t_{\text {PHL }}$ vs Temperature ($\mathrm{T}_{\mathrm{amb}}$) $C_{L}=50 p F, 1$ Output Switching nSAB to nBx or nSBA to nAx

Adjustment of $t_{\text {PLH }}$ for
Load Capacitance and \# of Outputs Switching

Adjustment of $t_{\text {PHL }}$ for
Load Capacitance and \# of Outputs Switching
nSAB to nBx or nSBA to nAx

Dual octal bus transceiver/registers (3-State)

[^0]: $\mathrm{H}=$ High voltage leve
 $\mathrm{L}=$ Low voltage level
 X = Don't care
 $\uparrow=$ Low-to-High clock transition
 The data output function may be enabled or disabled by various signals at the nOE input. Data input functions are always enabled, i.e. data at the bus pins will be stored on every Low-to-High transition of the clock.

