THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

SP8610 1000MHz÷4 SP8611 1300/1500MHz÷4

The SP8610 and SP8611 are asynchronous ECL divide by four circuits with ECL compatible outputs which can also be used to drive 100 Ω lines. They feature input sensitivities of 600mV p-p (800mV p-p above 1300MHz).

FEATURES

- ECL Compatible Outputs
- AC-Coupled Inputs (Internal Bias)

QUICK REFERENCE DATA

- Supply Voltage: -5.2V
- Power Consumption: 380mW
- Max. Input Frequency: 1500MHz (SP8611B)
- Temperature Range:

A Grade: -55°C to +110°C (+125°C with suitable heat sink) B Grade: 0°C to +70°C

Fig. 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION

SP8610 A DG SP8610 B DG SP8610 AA DG SP8610 NA 1C SP8611 A DG SP8611 B DG SP8611 AA DG SP8611 NA 1C

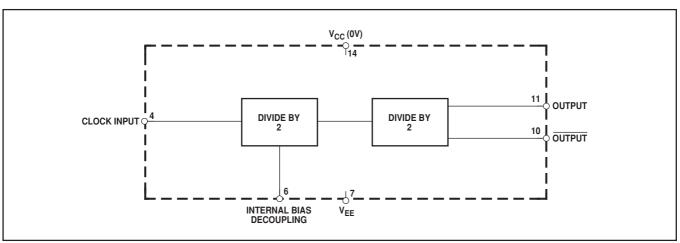


Fig. 2 Functional diagram

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, the Electrical Characteristics are guaranteed over specified supply, frequency and temperature range Supply voltage, V_{CC} = 0V, V_{EE} = $-5\cdot2V$ \pm 0·25V Temperature, T_{AMB} = $-55^{\circ}C$ to $+125^{\circ}C$ (A Grade) (Note 1), 0°C to $+70^{\circ}C$ (B Grade)

Characteristic	Symbol	Value			_		Notes
		Min.	Max.	Units	Туре	Conditions	Notes
Maximum frequency (sinewave input)	f _{MAX}	1.0		GHz	SP8605A,B	Input = 400-1200mV p-p	6
		1.3		GHz	SP8606A	Input = 800-1200mV p-p	6
		1.5		GHz	SP8606B	Input = 400-1200mV p-p	6
Minimum frequency (sinewave input)	f _{MIN}		150	MHz	All	Input = 600-1200mV p-p	4
Current consumption	I _{EE}		100	mA	All	$V_{EE} = -5.45V$, outputs	5
Output low voltage	V _{OL}	-1.92	-1.62	V	All	unloaded $V_{EE} = -5.2V$, $R_L = 430\Omega$ (25°C)	
Output high voltage	V _{OH}	-0.93	−0.75	V	All	$V_{EE} = -5.2V, R_L = 430\Omega$ (25°C)	
Minimum output swing	V _{OUT}	500		mV	All	$V_{EE} = -5.2V, R_L = 430\Omega$	5

NOTES

- The A Grade devices must be used with a heat sink to maintain chip temperature below +150°C when operating in a T_{AMB} of +125°C.
- The temperature coefficients of $V_{OH} = +1.2 mV/^{\circ}C$, and $V_{OL} = +0.24 mV/^{\circ}C$ but these are not tested.
- The test configuration for dynamic testing is shown in Fig.5. Tested at 25°C and +125°C only (+70°C for B grade).
- Tested at 25°C only 5.
- Tested at +125°C only (+70°C for B grade).

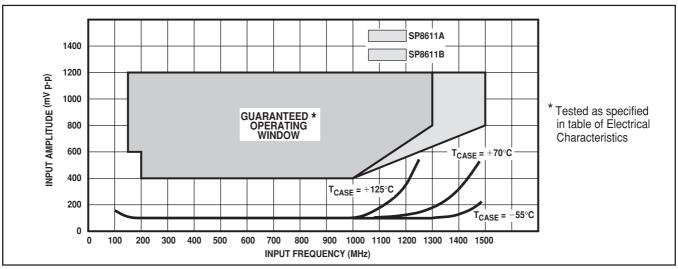


Fig. 3 Typical input characteristic of SP8611

THERMAL CHARACTERISTICS

 θ_{JC} approximately 30°C/W θ_{JA} approximately 110°C/W

OPERATING NOTES

- 1. The clock input (pin 4) should be capacitively coupled to the signal source. The input signal path is completed by connecting a capacitor from the internal bias decoupling, pin 6, to ground.
- 2. In the absence of a signal the device will self-oscillate. If this is undesirable, it may be prevented by connecting a $10k\Omega$ resistor from the unused input to V_{FF} i.e. from pin 4 to pin 7. This will reduce the input sensitivity by approximately 100mV.
- 3. The circuit will operate at very low input frequencies but slew rate must be better than 200V/µs.
- 4. The input impedance of the SP8610/11 is a function of frequency, see Fig. 4.
- 5. The emitter follower outputs require external load resistors. These should not be less than 330 Ω and a value of 430 Ω is recommended. Interfacing to ECLIII/10K is shown in Fig. 7.
- 6. These devices may be used with split suopply lines and ground referenced input; a suitable configuration is shown in Fig. 6.
- 7. All components should be suitable for the frequency in use.

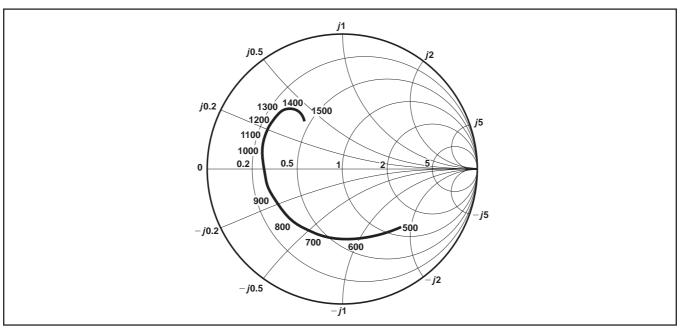


Fig. 4 Typical input impedance. Test conditions: supply voltage = -5.2V, ambient temperature = 25° C, frequencies in MHz, Impedances normalised to 50Ω

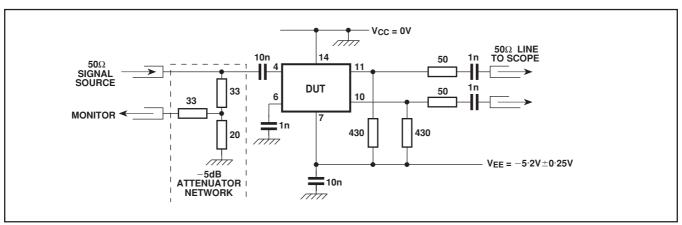


Fig. 5 Toggle frequency test circuit

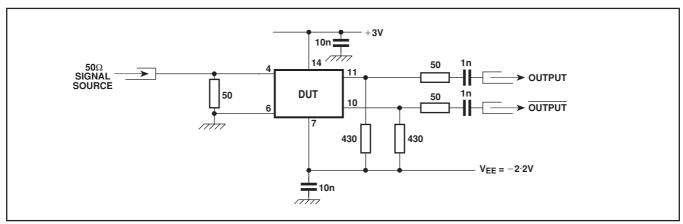


Fig. 6 Circuit for using the input signal about ground potential

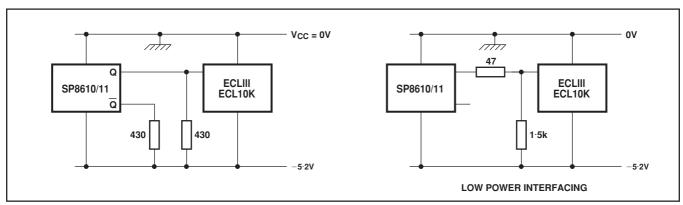


Fig. 7 Interfacing SP8610/11 to ECL10K and ECLIII

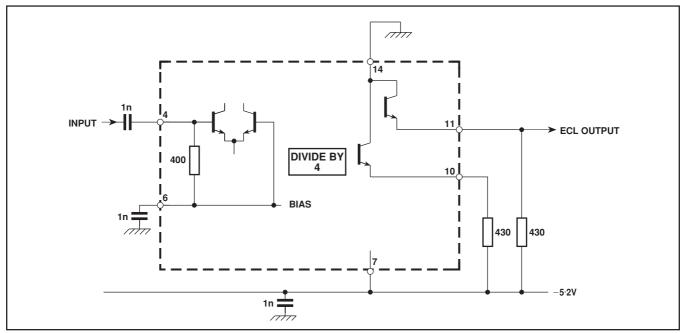
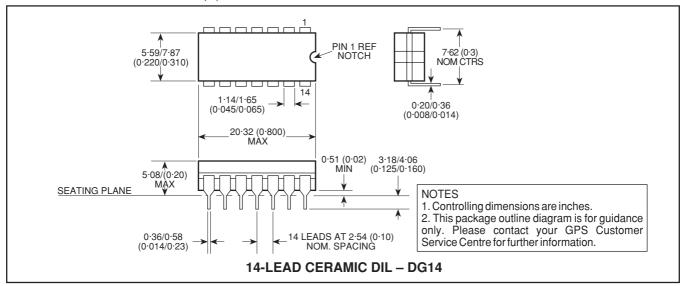



Fig. 8 Typical application showing interfacing

NOTES

PACKAGE DETAILS

Dimensions are shown thus: mm (in).

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom. Tel: (0793) 518000

Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, CA95067-0017 United States of America. Tel (408) 438 2900 Fax: (408) 438 5576 CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Fax: (1) 64 46 06 07
- **GERMANY** Munich Tel: (089) 3609 06-0 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (3) 5276-5501 Fax: (3) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 7023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (0793) 518510 Fax: (0793) 518582

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1994 Publication No. DS3661 Issue No. 1.2 March 1994

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee expresso rimplied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I^2C components conveys a licence under the Philips I^2C Patent rights to use these components in an I^2C System, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE