AN6080FHN

Modulator IC for CDMA system cellular telephone

Overview

The AN6080FHN is a modulator IC for a cellular telephone, integrating a quadrature modulator for transmitting of CDMA system for the domestic market and a gain control amplifier on a single chip.

Features

- Current consumption: 26 mA typ.
- Wide output power control range: -8 dBm to -90 dBm
- Good linearity of output power and control voltage
- Small temperature dependency: ±3 dB

Applications

• Cellular telephone (CDMA system)

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Signal output (–)	9	I input
2	Power supply (output)	10	GND (base band)
3	Power supply (GCA)	11	Local signal input
4	Gain adjustment	12	Sleep mode changeover
5	$\overline{\mathbf{Q}}$ input	13	N.C.
6	Q input	14	GND (GCA)
7	Power supply (base band)	15	GND (output)
8	Ī input	16	Signal output (+)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	4.2	V
Supply current	I _{CC}	40	mA
Power dissipation *2	P _D	100	mW
Operating ambient temperature *1	T _{opr}	-30 to +85	°C
Storage temperature *1	T _{stg}	-55 to +125	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*2: P_D is the value at $T_a = 85^{\circ}C$ without a heatsink. Use this device within the range of allowable power dissipation referring to " \blacksquare Technical Data • $P_D - T_a$ curves of QFN016-P-0304".

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	2.55 to 4.00	V

■ Electrical Characteristics at T_a = 25°C

Unless otherwise specified, $V_{CC} = 2.8 \text{ V}$, $V_{SLP} = 2.8 \text{ V}$, SW1 = a (refer to " \blacksquare Application Circuit Examples"), $V_{LO} = -7.5 \text{ dBm}$: f = 333.7 MHz, V_I , V_Q , V_QX (DC operating point voltage for each input) = 1.5 V, input signal is 700 kHz sine wave, amplitude 900 mV[p-p] (single phase), phase I: 0°, IX: 180°, Q: 90° and QX: 270°.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Current consumption	I _{TOT}	No input	17	26	33	mA
Current consumption (sleep)	I _{SLP}	No input, SW1 = b Refer to "■ Application Circuit Examples"	_	0	10	μA
Output level 1	P _{O(1)}	V _{GC} = 1.85 V IQ input is OQPSK (based on IS-95)	-13	-11		dBm
Output level 2	P _{O(2)}	V _{GC} = 1.3 V IQ input is OQPSK (based on IS-95)	-47	-42	-37	dBm
Output level 3	P _{O(3)}	V _{GC} = 0.5 V IQ input is OQPSK (based on IS-95)		-90	-83	dBm

Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

Unless otherwise specified, $V_{CC} = 2.8 \text{ V}$, $V_{SLP} = 2.8 \text{ V}$, SW1 = a (refer to " \blacksquare Application Circuit Examples"), $V_{LO} = -7.5 \text{ dBm}$: f = 333.7 MHz, V_I , V_{Q} , V_Q , (DC operating point voltage for each input) = 1.5 V, input signal is 700 kHz sine wave, amplitude 900 mV[p-p] (single phase), phase I: 0°, IX: 180°, Q: 90° and QX: 270°.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output level dependency on supply voltage	dPo	V_{GC} = 1.85 V, output level variation from V_{CC} = 2.7 V to 2.9 V	-1.2	0	1.2	dB
In-band output deviation	ΔΡο	Level deviation at output over 1.23 MHz inband	- 0.5	0	0.5	dB
Carrier leak 1	ΔCL1	$V_{GC} = 1.8$ V, IQ input operating point (DC) is no adjustment	_	-35	-25	dBc
Image leak 1	ΔIL1	$V_{GC} = 1.8$ V, IQ input operating point (DC) is no adjustment		-35	-25	dBc
Gain adjustment sensitivity	β _{GCA}	Gain variation amount from V_{GC} = 0.5 V to 1.85 V	55	60	65	dB/V
Gain variation range	ΔG	Gain variation amount from $V_{GC} = 0.5$ V to 1.85 V	73	80		dB
Local signal input level	V _{LO}		-17	-7.5	-4	dBm
Sleep control (low)	V _{SLP(1)}	Voltage when I_{TOT} becomes 10 μA or less	—		0.2	V
Sleep control (high)	V _{SLP(2)}	Voltage at which IC comes to operate	2.3			V
Gain adjustment voltage	V _{GC}		0.1		2.6	V

Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Carrier leak 2	ΔCL2	$V_{GC} = 1.8 \text{ V}, -20^{\circ}\text{C} \text{ to } 90^{\circ}\text{C}, \text{ When IQ}$ input operating point (DC) is adjusted, adjustment range is within ±15 mV	_	-35	-30	dBc
Image leak 2	ΔIL2	$V_{GC} = 1.8 \text{ V}, -20^{\circ}\text{C}$ to 90°C, When IQ input operating point (DC) is adjusted, adjustment range is within ±15 mV	_	-35	-25	dBc
Adjacent channel leak power suppression 1 (900 kHz detuning)	ACP(1)	Input is OQPSK (based on IS-95) at -13.5 dBm output (single phase) and -20°C to 90°C	_	-58	-50	dBc
Adjacent channel leak power suppression 2 (1.98 MHz detuning)	ACP(2)	Input is OQPSK (based on IS-95) at -13.5 dBm output (single phase) and -20°C to 90°C	_	-66	-60	dBc
In-band noise 1	N(1)	Noise level in center frequency ± 630 kHz at -28 dBm output(single phase) and -20° C to 90° C	_	-141	-135	dBm/Hz
In-band noise 2	N(2)	Noise level in center frequency ± 630 kHz at -76.5 dBm output(single phase) and -20° C to 90° C		-165	-160	dBm/Hz

Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

Unless otherwise specified, $V_{CC} = 2.8 \text{ V}$, $V_{SLP} = 2.8 \text{ V}$, SW1 = a (refer to " \blacksquare Application Circuit Examples"), $V_{LO} = -7.5 \text{ dBm}$: f = 333.7 MHz, V_I , V_{IX} , V_Q , V_{QX} (DC operating point voltage for each input) = 1.5 V, input signal is 700 kHz sine wave, amplitude 900 mV[p-p] (single phase), phase I: 0°, IX: 180°, Q: 90° and QX: 270°.

Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gain deviation	∆Gerr	Output level deviation at 27°C as reference, -20 °C to 90°C, $V_{GC} = 0.5$ V to 1.85 V	-3	0	+3	dB
Rise time 1	t _{r1}	Time so as to get 90% or more output when V_{CC} , V_{SLP} are from 0 V to 2.8 V		50	100	μs
Rise time 2	t _{r2}	V_{CC} is fixed at 2.8 V Time so as to get 90% or more output when V_{SLP} are from 0 V to 2.8 V		30	80	μs
Fall time 1	t _{d1}	Time so as to get 10% or less output when V_{CC} , V_{SLP} are from 2.8V to 0V	—	20	70	μs
Fall time 2	t _{d2}	V_{CC} is fixed at 2.8 V Time so as to get 10% or less output when V_{SLP} are from 2.8 V to 0 V		50	100	μs
Gain adjustment pin Input impedance	Z _{GC}	Impedance between pin 4 and GND	65	110		kΩ
IQ input pin Input impedance	Z _{IQ}	Impedance between each pin of pin 5, pin 6, pin 8 and 9 pin and GND	15	21		kΩ
Output level 4	P _{O(4)}	V _{GC} = 1.85 V Single phase output level at pin 16 IQ input is OQPSK (based on IS-95)	-10	-8		dBm
Output level 5	P _{O(5)}	V _{GC} = 1.3 V Single phase output level at pin 16 IQ input is OQPSK (based on IS-95)	-44	-39	-34	dBm
Output level 6	P _{O(6)}	V _{GC} = 0.5 V Single phase output level at pin 16 IQ input is OQPSK (based on IS-95)		-87	-80	dBm

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	DC voltage (V)
1	$v_{\rm CC}$	Signal output (–): Output pin (reverse) of IF signal.	_
2	—	Power supply (output): Power supply pin of output amplifier.	—

Note) The characteristics listed above are theoretical values based on the IC design and are not guaranteed.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
3	_	Power supply (GCA): Power supply pin of GCA system.	
4	(4)	Gain adjustment : Adjust the gain. The voltage from 0 V to supply voltage can be applied.	0
5, 6	10.5 kΩ 21 kΩ 5 6	Pin 5: \overline{Q} input; Pin 6: Q input: Pin to input the Q signal (differential). Apply DC bias voltage (1.5 V) to each pin.	_
7		Power supply (base band): Supply voltage pin of base band system.	
8, 9	10.5 kΩ ≥ 10.5 kΩ 7 8 8 10.5 kΩ ≥ 10.5 kΩ	Pin 8: Ī input; Pin 9: I input: Pin to input the I signal (differential). Apply DC bias voltage (1.5 V) to each pin.	_
10	_	GND (base band): Ground pin of base band system.	
11		Local signal input: Input pin of local signal for IQ modulation.	2.7
12		Sleep: Operating mode: Connect this pin to supply voltage pin. Sleep mode: Connect to GND.	

Note) The characteristics listed above are theoretical values based on the IC design and are not guaranteed.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
13	—	N.C.	—
14	_	GND (GCA): Ground pin of GCA system.	
15	_	GND (output): Ground pin of output amplifier.	
16	V_{CC}	Signal output (+): Output pin of IF signal.	

Note) The characteristics listed above are theoretical values based on the IC design and are not guaranteed.

Usage Note

There are three systems (pin 2, pin 3 and pin 7) of supply voltage pins in this product. Apply the same voltage at the same time to these three pins on use. (When power supply is switched to on or off, it must be done at the same time for these three pins. Never use with off for any pins.)

Technical Data

1. $P_D - T_a$ curves of QFN016-P-0304

Technical Data (continued)

2. Main characteristics

(Gain control characteristics in the "■ Application Circuit Example 1. Bi-phase output circuit")

ie 1. Bi-priase output circuit)

Output level — GC temperature characteristics

Balance transformer insertion loss (S21)

[Balance transformer insertion loss measuring circuit]

■ Application Circuit Examples

1. Bi-phase output circuit

- Application Circuit Examples (continued)
- 2. Single phase output circuit

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.