Confidential Information

KS8993M 3-port Integrated Switch with PHY

Features

- Proven $2^{\text {nd }}$ generation of Integrated 3-port 10/100 Ethernet switch with 3 MACs and 2 PHYs (2+1)
- Non-blocking architecture to assure fast packet delivery, with 1024 MAC address table lookup and packet forwarding via store-and-forward architecture
- MII registers can be accessed via MDIO bus or SPI bus
- MII interfaces support both a MAC mode or PHY mode or 7-wire (SNI) mode
- Automatic MDI/MDIX crossover for 100Base-TX and 10BaseT ports with disable and enable option
- Support 802.1Q VLAN up to 16 group
- 802.1p/q tag insertion or removal on a per port basis (egress)
- QoS / CoS packets prioritization supports: per port, 802.1P and DiffServ based
- Re-mapping of 802.1 p priority field and VLAN ID field per port basis
- LED Indicators for link, activity, full/half duplex and speed
- Support Port Mirroring
- Advanced Rate limiting
- Management Information Base (MIB)
- Power Dissipation: < 200mA including Physical transmit drivers
- Plastic QFP 128 Package
- 1.8 volt for Vcc core and 3.3 volt for I / O

KS8993 Block Diagram

TABLE OF CONTENTS

KS8993 Block Diagram 2
1.0 Signal Description 1
1.1 KS8993M Pin Diagram 1
1.2 KS8993M Pin Description and I/O Assignment 2
2.0 Advanced Functions 9
2. 1 Port Mirroring Support 9
2.2 VLAN support 9
2.3 QoS Priority support 11
2.4 Rate Limit Support 12
2.5 Static MAC address table 12
2.6 VLAN table 13
2.7 Dynamic MAC address table 14
2.8 MIB (Management Information Base) counters 14
3.0 Package Outline and Dimensions 18
LIST OF TABLES AND FIGURES
†able 1 I/O Pin Out (by pin \#). 2

1.0 Signal Description

1.1 KS8993M Pin Diagram

1.2 KS8993M Pin Description and I/O Assignment

Table 1 I/O Pin Out (by pin \#)

Pin \#	Pin Name	Type	Description		
1	P1LED2	I(pu)/O	Port 1 LED indicators, defined as below:		
2	$\begin{aligned} & \hline \text { P1LED1 } \\ & \hline \text { P1LED0 } \end{aligned}$	I(pu)/O			
3				LEDSEL = 0	LEDSEL = 1
		I(pu)/O	P1LED2	LINK/ACT	100LINK/ACT
			P1LED1	FULLD/COL	10LINK/ACT
			P1LED0	SPEED	FULLD
			Note: LEDSEL is an external pin. Pin\# Note: During reset, these pins are inputs for internal testing.		
4	P2LED2	I(pu)/O	Port 2 LED indicators, defined as below:		
5	P2LED1	I(pu)/O	LEDSEL = 0 LEDSEL = 1		
6	P2LED0	I(pu)/O			
			P2LED2	LINK/ACT	100LINK/ACT
			P2LED1	FULLD/COL	10LINK/ACT
			P2LED0	SPEED	FULLD
			Note: LEDSEL is an external pin. Pin\# Note: During reset, these pins are inputs for internal testing and don't pull these pins down.		
7	DGND	Gnd	Digital Ground		
8	DVCC	Pwr	Digital Vcc		
9	NC	Ipd	NC		
10	NC	Ipd	NC		
11	NC	Ipu	NC		
12	ADVFC	Ipu	1= advertise the switch's flow control capability via auto-negotiation. $0=$ will not advertise the switch's flow control capability via auto-negotiation.		
13	P2ANEN	Ipu	1 = enable Auto-negotiation on port 2. $0=$ disable Auto-negotiation on port 2.		
14	P2SPD	Ipd	$\begin{aligned} & 1=\text { Force port } 2 \text { in 100BT if P2ANEN }=0 . \\ & 0=\text { Force port } 2 \text { in 10BT if P2ANEN }=0 . \end{aligned}$		
15	P2DPX	Ipd	1 = port 2 default to full duplex mode if P2ANEN = 1 and auto negotiation fails. Force port 2 in Full duplex mode if P2ANEN $=0$. $0=$ port 2 default to half duplex mode if P2ANEN $=1$ and auto negotiation fails. Force port 2 in Half duplex mode if P2ANEN $=0$.		
16	P2FFC	Ipd	1 = always enable (force) port 2 flow control feature		

Pin \#	Pin Name	Type	Description
			0 = flow control feature enable is determined by Auto Negotiation result.
17	NC	Opu	NC
18	NC	Ipd	NC.
19	NC	Ipd	NC
20	NC	Opd	NC
21	DGND	Gnd	Digital Ground
22	DVCC	Pwr	Digital Vcc
23	NC	Ipd	NC
24	NC	0	NC
25	NC	0	NC
26	NC	0	NC
27	NC	Ipd	NC
28	NC	Ipd	NC
29	NC	Ipd	NC
30	P1ANEN	Ipu	1 = enable Auto-negotiation on port 1 $0=$ disable Auto-negotiation on port 1
31	P1SPD	Ipd	$\begin{aligned} & 1=\text { Force port } 1 \text { in 100BT if P1ANEN }=0 . \\ & 0=\text { Force port } 1 \text { in } 10 B T \text { if } P 1 \text { ANEN }=0 . \end{aligned}$
32	P1DPX	Ipd	1 = port 1 default to full duplex mode if P1ANEN = 1 and auto negotiation fails. Force port 1 in Full duplex mode if P1ANEN $=0$. $0=$ port 1 default to half duplex mode if P1ANEN = 1 and auto negotiation fails. Force port 1 in Half duplex mode if P1ANEN $=0$.
33	P1FFC	Ipd	1 = always enable (force) port 1 flow control feature $0=$ port 1 flow control feature enable is determined by Auto Negotiation result.
34	NC	Ipd	NC
35	NC	Ipd	NC
36	PWRDN	I	Chip power down input
37	AGND	GND	1.8 v gnd
38	AVDD	PWR	1.8 v vdd
39	AGND	GND	1.8 v gnd
40	MUX1	1	Factory test pin
41	MUX2	I	Factory test pin
42	AGND	GND	1.8 v gnd
43	AVDD	PWR	1.8 v vdd
44	NC	I	NC
45	RXP1	I/O	Physical receive or transmit signal + differential
46	RXM1	I/O	Physical receive or transmit signal - differential
47	AGND	GND	
48	TXP1	I/O	Physical receive or transmit signal + differential
49	TXM1	I/O	Physical receive or transmit signal - differential
50	VDDTX33	PWR	3.3 v vdd
51	VDDRX33	PWR	3.3 v vdd
52	RXP2	I/O	Physical receive or transmit signal + differential
53	RXM2	O/O	Physical receive or transmit signal - differential
54	AGND	GND	

Pin \#	Pin Name	Type	Description
			priority is determined by the P3_PP pin.
111	P2_1PEN	Ipd	Enable port 2 ingress 802.1 p priority classification The enable is from the receive perspective. If the 802.1 p processing is disabled or there is no tag, priority is determined by the P2_PP pin.
112	P1_1PEN	Ipd	Enable port 1 ingress 802.1 p priority classification. The enable is from the receive perspective. If the 802.1p processing is disabled or there is no tag, priority is determined by the P1_PP pin.
113	P3_TXQ2	Ipd	Selects transmit queue split on port 3. The split sets up high and low priority queues. Note: packet priority classification is done on ingress ports, via port based, 802.1 p or TOS based scheme. The priority enabled queueing on port 3 is set by P3_TXQ2
114	P2_TXQ2	Ipd	Selects transmit queue split on port 2. The split sets up high and low priority queues. Note: packet priority classification is done on ingress ports, via port based, 802.1 p or TOS based scheme. The priority enabled queueing on port 2 is set by P2_TXQ2
115	P1_TXQ2	Ipd	Selects transmit queue split on port 1. The split sets up high and low priority queues. Note: packet priority classification is done on ingress ports, via port based, 802.1 p or TOS based scheme. The priority enabled queueing on port 1 is set by P2_TXQ2
116	P3_PP	Ipd	Port 3 ingress default port priority. Note: 802.1 p and Diffserv, if applicable, will take precedence.
117	P2_PP	Ipd	Port 2 ingress default port priority. Note: 802.1 p and Diffserv, if applicable, will take precedence.
118	P1_PP	Ipd	Port 1 ingress default port priority. Note: 802.1p and Diffserv, if applicable, will take precedence.
119	P3_TAGINS	Ipd	Enable tag insertion on port 3. All packets transmitted from port 3 will have 802.1Q tag. Packets received with tag will be sent out intact. Packets received without tag will be tagged with ingress port's default tag.
120	P2_TAGINS	Ipd	Enable tag insertion on port 2. All packets transmitted from port 2 will have 802.1Q tag. Packets received with tag will be sent out intact. Packets received without tag will be tagged with ingress port's default tag.
121	P1_TAGINS	Ipd	Enable tag insertion on port 1. All packets transmitted from port 1 will have 802.1Q tag. Packets received with tag will be sent out intact. Packets received without tag will be tagged with ingress port's default tag.
122	DGND	Gnd	Digital Ground
123	DVCC	Pwr	Digital VCC
124	P3_TAGRM	Ipd	Enable tag removal on port 3. All packets transmitted from port 3 will not have 802.1Q tag. Packets received with tag will be modified by removing 802.1Q

Pin \#	Pin Name	Type	Description
			tag. Packets received without tag will be sent out intact.
125	P2_TAGRM	Ipd	Enable tag removal on port 2. All packets transmitted from port 2 will not have 802.1Q tag. Packets received with tag will be modified by removing 802.1Q tag. Packets received without tag will be sent out intact.
126	P1_TAGRM	Ipd	Enable tag removal on port 1. All packets transmitted from port 1 will not have 802.1Q tag. Packets received with tag will be modified by removing 802.1Q tag. Packets received without tag will be sent out intact.
127	TESTEN	Ipd	Scan Test Enable
128	SCANEN	Ipd	Scan Test Scan Mux Enable

Note:

Pwr = power supply;
Gnd = ground;
I = input;
O = output;
I / O = bi-directional;
Ipu = input w/ internal pull-up;
lpd = input w/ internal pull-down;
lpd / O = input w/ internal pull-down during reset, output pin otherwise;
Ipu / O = input w/ internal pull-up during reset, output pin otherwise;
PU = strap pin pull-up;
PD = strap pull-down;
Otri = output tristated;
Opu = Output with internal pull-up
Opd = Output with internal pull-down

2.0 Advanced Functions

2.1 Port Mirroring Support

KS8993M supports "port mirror" comprehensively as:
(1), "receive only" mirror on a port. All the packets received on the port will be mirrored on the sniffer port. For example, port 1 is programmed to be "rx sniff", and port 2 is programmed to be the "sniffer port". A packet, received on port 1, is destined to port 2 after the internal look up. The KS8993M will forward the packet to both port 2 and port 3. KS8993M can optionally forward even "bad" received packets to port 3.
(2), "transmit only" mirror on a port. All the packets transmitted on the port will be mirrored on the sniffer port. For example, port 1 is programmed to be "tx sniff", and port 3 is programmed to be the "sniffer port". A packet, received on any of the ports, is destined to port 1 after the internal look up. The KS8993M will forward the packet to both port 1 and port 3.
(3), "receive and transmit" mirror on two ports. All the packets received on port A AND transmitted on port B will be mirrored on the sniffer port. To turn on the "AND" feature, set register 5 bit 0 to 1 . For example, port 1 is programmed to be "rx sniff", port 2 is programmed to be "transmit sniff" and port 3 is programmed to be the "sniffer port". A packet, received on port 1, is destined to port 2 after the internal look up. The KS8993M will forward the packet to port 2 only, since it does not meet the "AND" condition. A packet, received on port 1, is destined to port 2 after the internal look up. The KS8993M will forward the packet to both port 2 and port 3 .

Multiple ports can be selected to be "rx sniffed" or "tx sniffed". And any port can be selected to be the "sniffer port". All these per port features can be selected through register 17.

2.2 VLAN support

KS8993M supports 16 active VLANs out of 4096 possible VLANs specified in IEEE 802.1Q. KS8993M provides a $16-$ entry VLAN table, which converts VID (12 bits) to FID (4bits) for address look up. If a non-tagged or null-VID-tagged packet is received, the ingress port VID is used for look up. In the VLAN mode, the look up process starts with VLAN table look up to determine whether the VID is valid. If the VID is not valid, the packet will be dropped and its address will not be learned. If the VID is valid, FID is retrieved for further look up. FID+DA is used to determine the destination port. FID+SA is used for learning purposes.

FID+DA look up in the VLAN mode

DA found in Static MAC table	USE FID flag?	FID match?	DA+FID found in dynamic MAC table	Action
No	Don't care	Don't care	No	Broadcast to the membership ports defined in the VLAN table bit [20:16]
No	Don't care	Don't care	Yes	Send to the destination port defined in the dynamic MAC table bit[54:52]
Yes	0	Don't care	Don't care	Send to the destination port(s) defined in the static MAC table bit[52:48]
Yes	1	No	No	Broadcast to the membership ports defined in the VLAN table bit [20:16]
Yes	1	No	Yes	Send to the destination port defined in the dynamic MAC table bit[54:52]
Yes	1	Yes	Don't care	Send to the destination port(s) defined in the static MAC table bit[52:48]

FID+SA look up in the VLAN mode

SA+FID found in dynamic MAC table	
No	The SA+FID
Yes will be learned into the dynamic table.	

Advanced VLAN features are also supported in KS8993M, such as "VLAN ingress filtering" and "discard non PVID" defined in register 18 bit 6 and bit 5 . These features can be controlled on a port basis.

2.3 QoS Priority support

This feature provides QOS for applications such as VOIP, video conferencing, and mission critical applications. The KS8993M per port transmit queue could be split into two priority queues, high priority and low priority queues. The splitting feature could be optionally per port enabled (using pin Px_TXQ2). If a port is split, high priority packets will be put in the high priority queue. If a port's transmit queue is not split, high priority and low priority packets will be treated equally. There are four priority schemes (selected by pins PRSEL1 and PRSELO): (1), transmit high priority packets always before low priority packets, i.e. A low priority packet could be transmitted only when the high priority queue is empty. (2), 10/1 ratio, transmit a low priority after every 10 high priority packets transmitted if both queues are busy. (3), $5 / 1$ ratio, (4) $2 / 1$ ratio. Incoming packet priority could be classified in two ways, port-based or 802.1p.

Port based priority: Each port could be individually specified as a high priority receiving port (using pin Px_PP). All the packets received at the high priority receiving port will be marked high priority and sent to the high priority transmit queue if the corresponding queue is split.
802.1p based priority: 802.1 p based priority could be enabled by pins Px_1PEN. KS8993M will examine incoming packets to determine whether they are tagged and retrieve the corresponding priority information. The priority field in the VLAN tag is 3 bits wide and is compared against "priority base value specified by register 2 bit $6-4$. (the default value is 0×4). If a received packet has an equal or larger priority value than the "priority base" value, the packet will be put in the high priority transmit queue if the corresponding queue is split.
KS8993M can optionally remove or insert priority tagged frame's header (2 bytes of tag protocol identifier 0×8100 and 2 bytes of tag control information). If a transmitting port has its corresponding Px_TAGINS set (meaning tag insertion), the transmitting logic will automatically insert tag with source port's default tag value. For already tagged packets, KS8993M will pass the original packet without changing its tag content. If a transmitting port has its corresponding Px_TAGRM set (meaning tag removal), the transmitting logic will automatically remove "802.1Q tag". For untagged packets, KS8993M will pass the original packet without changing any content. Either tag insertion or removal will cause CRC recalculation.

2.4 Rate Limit Support

KS8993M supports hardware rate limiting on "receive" and "transmit" independently on a per port basis. It also supports rate limiting in a priority or non-priority environment. The rate limit starts from 0 kbps and goes up to the line rate in steps of 32 kbps . The KS8993M uses one second as an interval. At the beginning of each interval, the counter is cleared to zero, and the rate limit mechanism starts to count the number of bytes during this interval.

For receive, if the number of bytes exceeds the programmed limit, the switch will stop receiving packets on the port until the "one second" interval expires. There is an option provided for flow control to prevent packet loss. If the rate limit is programmed greater than or equal to 128 kbps and the byte counter is 8 Kbytes below the limit, the flow control will be triggered. If the rate limit is programmed lower than 128 kbps and the byte counter is 2 Kbytes below the limit, the flow control will be triggered.

For transmit, if the number of bytes exceeds the programmed limit, the switch will stop transmitting packets on the port until the "one second" interval expires.

If priority is enabled, the KS8993M can support different rate controls for both high priority and low priority packets. This can be programmed through registers.

2.5 Static MAC address table

KS8993M has a static and a dynamic address table. When a DA look up is requested, both tables will be searched to make a packet forwarding decision. When an SA look up is requested, only the dynamic table is searched for aging, migration and learning purposes. The static DA look up result will have precedence over the dynamic DA look up result. If there are DA matches in both tables, the result from the static table will be used. The static table can only be accessed and controlled by an external SPI master (usually a processor). The entries in the static table will not be aged out by KS8993M. An external device does all addition, modification and deletion.

Note: Register bit assignments are different for static MAC table reads and static MAC table write as shown in the two tables below.

Format of static MAC table (8 entries)

Bit	Name	R/W	Description	Default
57-54	FID	W	Filter VLAN ID, representing one of the 16 active VLANs.	0000
53	Use FID	W	=1, use (FID+MAC) to look up in static table $=0$, use MAC only to look up in static table	0
52	override	W	$=1$, override port setting "transmit enable=0" or "receive enable $=0$ " setting. $=0$, no override	0
51	valid	W	$=1$, this entry is valid, the look up result will be used $=0$, this entry is not valid	0
50-48	Forwarding ports	W	The 3 bits control the forward ports, ex 001, forward to port 1 010, forward to port 2 100, forward to port 3 110, forward to port 2 and port 3 111, broadcasting (excluding the ingress port)	00000
47-0	MAC address	W	48 bit MAC address	0x0

2.6 VLAN table

VLAN table is used to do VLAN table look up. If 802.1 Q VLAN mode is enabled (Register 5 bit 7 $=1$), this table will be used to retrieve VLAN information that the ingress packet is associated with. The information includes FID(fiter ID), VID(VLAN ID), VLAN membership described below:

Format of static VLAN table (16 entries)

Bit	Name	R/W	Description	Default
19	Valid	R/W	$=1$, the entry is valid $=0$, entry is invalid	1
18-16	Membership	R/W	Specify which ports are members of the VLAN. If a DA look up fails (no match in both static and dynamic tables), the packet associated with this VLAN will be forwarded to ports specified in this field. Eg. 11001 means port 5,4, and 1 are in this VLAN.	111
15-12	FID	R/W	Filter ID. KS8993M supports 16 active VLANs represented by these four bit fields. FID is the mapped ID. If 802.1 Q VLAN is enabled, the look up will be based on FID+DA and FID+SA.	0
11-0	VID	R/W	IEEE 802.1Q 12 bit VLAN ID	1

If 802.1Q VLAN mode is enabled, KS8993M will assign a VID to every ingress packet. If the packet is untagged or tagged with a null VID, the packet is assigned with the default port VID of the ingress port. If the packet is tagged with non null VID, the VID in the tag will be used. The look up process will start from the VLAN table look up. If the VID is not valid, the packet will be dropped and no address learning will take place. If the VID is valid, the FID is retrieved. The

FID+DA and FID+SA lookups are performed. The FID+DA look up determines the forwarding ports. If FID+DA fails, the packet will be broadcasted to all the members (excluding the ingress port) of the VLAN. If FID+SA fails, the FID+SA will be learned.

2.7 Dynamic MAC address table

This table is read only. The contents are maintained by KS8993M only.

Format of dynamic MAC address table (1K entries)

Bit	Name	R/W	Description	Default
71	Data not ready	RO	$=1$, The entry is not ready, retry until this bit is set to 0 . $=0$, The entry is ready	
66	MAC empty	RO	$=1$, there is no valid entry in the table $=0$, there are valid entries in the table	1
65-56	No of valid entries	RO	Indicates how many valid entries in the table 0×3 ff means 1 K entries 0×1 means 2 entries 0×0 and bit $67=0$: means 1 entry 0×0 and bit $67=1$: means 0 entry	0
55-54	Time stamp	RO	2-bit counters for internal aging	
53-52	Source port	RO	The source port where FID+MAC is learned. 00 port 1 01 port 2 10 port 3	0x0
51-48	FID	RO	Filter ID	0x0

2.8 MIB (Management Information Base) counters

The MIB counters are provided on per port basis. The indirect memory is as below: For port 1

Port 1 MIB Counter Indirect Memory Offsets

Offset	Counter Name	Description
0×0	RxLoPriorityByte	Rx lo-priority (default) octet count including bad pkts
0×1	RxHiPriorityByte	Rx hi-priority octet count including bad pkts
0×2	RxUndersizePkt	Rx undersize pkts w/ good CRC
0×3	RxFragments	Rx fragment pkts w/ bad CRC, symbol errors or alignment errors
0×4	RxOversize	Rx oversize pkts w/ good CRC (max: 1536 or 1522 bytes)

0x5	RxJabbers	Rx pkts longer than 1522B w/ either CRC errors, Alignment errors, or symbol errors. (Depends on max packet size setting).
0x6	RxSymbolError	Rx pkts w/ invalid data symbol and legal packet size.
0x7	RxCRCerror	Rx pkts within $(64,1522)$ bytes w/ an integral number of bytes and a bad CRC (Upper limit depends on max packet size setting).
0x8	RxAlignmentError	Rx pkts within $(64,1522)$ bytes w/ a non-integral number of bytes and a bad CRC (Upper limit depends on max packet size setting).
0x9	RxControl8808Pkts	The number of MAC control frames received by a port with 88-08h in EtherType field.
0xA	RxPausePkts	The number of PAUSE frames received by a port. PAUSE frame is qualified with EtherType (88-08h), DA, control opcode (00-01), data length (64 B min), and a valid CRC
0xB	RxBroadcast	Rx good broadcast pkts (not including errored broadcast pkts or valid multicast pkts)
0xC	RxMulticast	Rx good multicat pkts (not including MAC control frames, errored multicast pkts or valid broadcast pkts)
0xD	RxUnicast	Rx good unicast packets
0xE	Rx64Octets	Total Rx pkts (bad pkts included) that were 64 octets in length
0xF	Rx65to127Octets	Total Rx pkts (bad pkts included) that are between 65 and 127 octets in length
0x10	Rx128to2550ctets	Total Rx pkts (bad pkts included) that are between 128 and 255 octets in length
0x11	Rx256to5110ctets	Total Rx pkts (bad pkts included) that are between 256 and 511 octets in length
0x12	Rx512to1023Octets	Total Rx pkts (bad pkts included) that are between 512 and 1023 octets in length
0x13	Rx1024to1522Octets	Total Rx pkts (bad pkts included) that are between 1024 and 1522 octets in length (Upper limit depends on max packet size setting).
0x14	TxLoPriorityByte	Tx lo-priority good octet count, including PAUSE pkts
0x15	TxHiPriorityByte	Tx hi-priority good octet count, including PAUSE pkts
0x16	TxLateCollision	The number of times a collision is detected later than 512 bit-times into the Tx of a pkt

$0 x 17$	TxPausePkts	The number of PAUSE frames transmitted by a port
$0 x 18$	TxBroadcastPkts	Tx good broadcast pkts (not including errored broadcast or valid multicast pkts)
$0 x 19$	TxMulticastPkts	Tx good multicast pkts (not including errored multicast pkts or valid broadcast pkts)
$0 x 1 \mathrm{~A}$	TxUnicastPkts	Tx good unicast pkts
$0 \times 1 \mathrm{~B}$	TxDeferred	Tx pkts by a port for which the 1st Tx attempt is delayed due to the busy medium
$0 \times 1 \mathrm{C}$	TxTotalCollision	Tx total collision, half duplex only
0x1D	TxExcessiveCollision	A count of frames for which Tx fails due to excessive collisions
0x1E	TxSingleCollision	Successfully Tx frames on a port for which Tx is inhibited by exactly one collision
$0 x 1 F$	TxMultipleCollision	Successfully Tx frames on a port for which Tx is inhibited by more than one collision

For port 2 , the base is 0×20, same offset definition ($0 \times 20-0 \times 3 f$)
For port 3 , the base is 0×40, same offset definition ($0 \times 40-0 \times 5 f$)

Format of Per Port MIB Counters (16 entries)

Bit	Name	R/W	Description	Default
31	Overflow	RO	$=1$, Counter overflow =0, No Counter overflow	0
30	Count Valid	RO	=1, Counter value is valid =0, Counter value is not valid Counter value	0
$29-0$	Counter values	RO	0	

Table 2-All Port Dropped Packet MIB Counters

Offset	Counter Name	Description
0x100	Port1 TX Drop Packets	Tx packets dropped due to lack of resources
0×101	Port2 TX Drop Packets	Tx packets dropped due to lack of resources
0×102	Port3 TX Drop Packets	Tx packets dropped due to lack of resources
0x103	Port1 RX Drop Packets	Rx packets dropped due to lack of resources
0x104	Port2 RX Drop Packets	Rx packets dropped due to lack of resources
0x105	Port3 RX Drop Packets	Rx packets dropped due to lack of resources

Format of All Port Dropped Packet MIB Counters

Bit	Name	R/W	Description	Default
$30-16$	Reserved	N/A	Reserved	N/A
$15-0$	Counter values	RO	Counter value	0

Note: All port dropped packet MIB counters do not indicate overflow or validity; therefore the application must keep track of overflow and valid conditions.

3.0 Package Outline and Dimensions

128 Pin PQFP Package Outline Drawing

Figure - Package Outline
Thermal resistance $\theta_{\mathrm{JA}}=32{ }^{\circ} \mathrm{C} / \mathrm{W}$

Micrel Inc. - Kendin Operations
486 Mercury Drive
Sunnyvale, CA 94085
© Micrel, Inc. 2001
All rights reserved
Micrel, Kendin are registered trademarks of Micrel and its subsidiaries in the United States and certain other countries. All other trademarks are the property of their respective owners.

