FEATURES

- Fast Cycle Times: 20/25/30 ns
- Selectable 36/18/9-Bit Word Width for Both Input Port and Output Port
- Byte-Order-Reversal Function (i.e., ‘Big-Endian’ \leftrightarrow 'Little-Endian’ Conversion)
- 16-mA-lol Three-State Outputs
- Automatic Byte Parity Checking
- Selectable Byte Parity Generation
- Five Status Flags: Full, Almost-Full, Half-Full, Almost-Empty, and Empty
- All FIFO Status Flags are Synchronous ($\overline{\mathrm{AE}}, \overline{\mathrm{HF}}, \overline{\mathrm{AF}}$ Through Programming of Control Register)
- Programmed Values may be entered from either Port
- Two Enable Control Signals for each Port
- Mailbox Register with Synchronized Flags
- Asynchronous Data-Bypass Function
- 'Smart' Data-Retransmit Function
- Configurable for Paralleled FIFO Operation (72-Bit Data Width)
- Space-Saving PQFP and TQFP ${ }^{1}$ Packages
- PQFP-to-PGA Package Conversion ${ }^{2}$

1. This is a final data sheet; except that all references to the TQFP package have Preliminary status.
2. For PQFP-to-PGA conversion for thru-hole board designs, Sharp recommends ITT Pomona Electronics' SMT/PGA Generic Converter model \#5853 ${ }^{\circledR}$. This converter maps the LH543620 132pin PQFP to a generic 13×13, 132-pin PGA (100-mil pitch). For more information, contact Sharp or ITT Pomona Electronics at 1500 East Ninth Street, Pomona, CA 91766, (909) 469-2900.

FUNCTIONAL DESCRIPTION

The LH543620 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS RAM technology, capable of containing up to 102436 -bit words. It can replace four or more nine-bit-wide FIFOs in many applications.

The input port and the output port operate independently of each other. Write operations are performed on the rising edge of the input clock CKI, and enabled by two enabled signals $\mathrm{ENI}_{1}, \mathrm{ENI}_{2}$. Read operations are performed on the rising edge of the output clock CKO and enabled by two enabled signals $\mathrm{ENO}_{1}, \mathrm{ENO}_{2}$.

Five status flags are available to monitor the memory array status: Full, Almost-Full, Half-Full, Almost-Empty, and Empty. The Almost-Full and Almost-Empty flags are initialized to a default offset of eight locations from their respective boundaries, but they are each programmable over the entire FIFO depth.

Both the input port and the output port may be set independently to operate at three data-word widths: 36 bits, 18 bits, or 9 bits. This setting may be changed during system operation. The LH543620 can perform Byte-Or-der-Reversal on the four nine-bit bytes of each 36-bit data word passing through it, thus accomplishing 'Big Endian' \leftrightarrow 'Little Endian' conversion.

When data is read out of the FIFO a byte-parity check is performed. The parity flag is used to indicate that a parity error was detected in one of the 9 -bit bytes of the output word.

Parity generation, when selected, creates the parity bit of each 8 -bit byte of the input word. The result is written into the MSB-bit of each 9-bit byte, overwriting the previous contents of the bit. The default is odd parity. However, the FIFO may be programmed to use even parity.

The LH543620 has a data-bypass mode that connects the output port to the input portasynchronously. A mailbox facility with Synchronized Flags is provided from the input port to the output port.

The LH543620's 'Smart-Retransmit' capability sets the internal-memory read pointer to any arbitrary memory location. The 'Smart-Retransmit' capability includes a Marking Function and a Programmable Offset to support data communication and digital signal processing applications.

Figure 1. LH543620 Block Diagram

PIN DESCRIPTIONS (SUMMARY)

PIN NAME	$\begin{gathered} \text { PIN } \\ \text { TYPE * } \end{gathered}$	DESCRIPTION	PIN NAME	$\underset{\text { TYPE * }}{\text { TYN }}$	DESCRIPTION
DATABUS			CONTROL SIGNALS SYNCHRONOUS TO THE OUTPUT CLOCK		
D[35:0]	1	36-Bit Input-Port Databus			
Q[15:0]	1/O/Z	Three-State 36-Bit OutputPort Databus	$\mathrm{ENO}_{1}, \mathrm{ENO}_{2}$	I	Output-Port Enables
Q[35:16]	O/Z		ADO[2:0]	1	Output-Port Address
CLOCKS			WSO[1:0]	1	Output-Port Word-Width Selection
CKI	1	Input-Port Clock		I	Retransmit Mode Control
CKO	1	Output-Port Clock	RTMD[1:0]		Retransmit
ASYNCHRONOUS CONTROL			STATUS FLAGS SYNCHRONOUS TO THE OUTPUT CLOCK		
$\overline{\mathrm{RS}}$	I	Master Reset			
OE	I	Output Enable	$\overline{\text { AE }}$	\bigcirc	Almost-Empty Flag
$\overline{\text { BYE }}$	1	Data-Bypass Enable	$\overline{\mathrm{EF}}$	0	Empty Flag
CAPR	1	Command-Address Port Reference	$\overline{\mathrm{PF}}$	0	Parity-Error Flag
CONTROL SIGNALS SYNCHRONOUS TO THE INPUT CLOCK			$\overline{\text { MEF }}$	\bigcirc	Mailbox-Empty Flag
			VOLTAGES AND GROUNDS		
$\mathrm{ENI}_{1}, \mathrm{ENI}_{2}$	1	Input-Port Enables	$\mathrm{V}_{\text {cc }}$	V	Positive Power
ADI[2:0]	1	Input-Port Address	V ss	V	Ground
WSI[1:0]	1	Input-Port Word-Width Selection			
STATUS FLAGS SYNCHRONOUS TO THE INPUT CLOCK					
$\overline{\text { FF }}$	\bigcirc	Full Flag			
$\overline{\mathrm{AF}}$	0	Almost-Full Flag			
HF^{1}	0	Half-Full Flag			
MFF	0	Mailbox-Full Flag			

[^0]
PIN CONNECTIONS

Figure 2. Pin Connections for 132-Pin PQFP Package (Top View)

PIN LIST

PIN NAME	PIN No.	PIN NAME	PIN No.	PIN NAME	PIN No.
D_{14}	1	Q_{15}	61	D_{28}	116
D_{13}	2	Q_{14}	62	D_{27}	117
D_{12}	3	Q_{13}	64	D_{26}	119
D_{11}	4	Q12	65	D_{25}	120
D_{10}	5	Q_{11}	67	D_{24}	121
D9	6	Q10	68	D_{23}	122
D_{8}	8	Q9	70	D_{22}	123
D_{7}	9	Q8	71	D_{21}	124
D6	10	Q_{7}	73	D_{20}	125
D_{5}	11	Q6	74	D_{19}	126
D_{4}	12	Q5	76	D_{18}	127
D_{3}	13	Q4	77	CKI	128
D_{2}	14	Q_{3}	79	D_{17}	130
D_{1}	15	Q_{2}	80	D_{16}	131
D_{0}	16	Q1	82	D_{15}	132
$\overline{\mathrm{MEF}}$	18	Q0	83	Vss	7
$\overline{\text { MFF }}$	19	$\overline{\mathrm{OE}}$	85	$\mathrm{V}_{\text {cc }}$	17
EF	20	RT	86	$\mathrm{V}_{\text {ss }}$	22
$\overline{\mathrm{AE}}$	21	RTMD ${ }_{1}$	87	$\mathrm{V}_{\text {cc }}$	28
$\overline{\mathrm{HF}}$	23	RTMD_{0}	88	$V_{s s}$	31
$\overline{\mathrm{AF}}$	24	RS	89	$V_{\text {cc }}$	34
$\overline{\mathrm{FF}}$	25	WSO_{1}	90	V_{ss}	37
$\overline{\text { PF }}$	26	WSO_{0}	91	$\mathrm{V}_{\text {cc }}$	40
CKO	27	ADO_{2}	93	$\mathrm{V}_{\text {ss }}$	43
Q ${ }_{3}$	29	ADO_{1}	94	V_{cc}	46
Q_{34}	30	ADO_{0}	95	$\mathrm{V}_{\text {ss }}$	49
Q_{3}	32	ENO_{2}	96	$\mathrm{V}_{\text {ss }}$	50
Q_{32}	33	ENO_{1}	97	$\mathrm{V}_{\text {cc }}$	51
Q_{31}	35	BYE	98	V_{CC}	54
Q_{30}	36	CAPR	99	$V_{s s}$	57
Q_{29}	38	WSIt	101	$\mathrm{V}_{\text {cc }}$	60
Q_{28}	39	WSIo	102	$\mathrm{V}_{\text {ss }}$	63
Q 27	41	ADI2	103	V_{cc}	66
Q_{26}	42	ADI ${ }_{1}$	104	$\mathrm{V}_{\text {SS }}$	69
Q_{25}	44	ADIo	105	$\mathrm{V}_{\text {cc }}$	72
Q_{24}	45	ENI_{2}	106	$\mathrm{V}_{\text {SS }}$	75
Q_{23}	47	ENH_{1}	107	V_{CC}	78
Q_{22}	48	D_{35}	109	$\mathrm{V}_{\text {ss }}$	81
Q_{21}	52	D_{34}	110	$\mathrm{V}_{\text {cc }}$	84
Q_{20}	53	D_{3}	111	V_{cc}	92
Q19	55	D_{32}	112	Vss	100
Q_{18}	56	D_{31}	113	V_{Cc}	108
Q17	58	D_{30}	114	$V_{s s}$	118
Q_{16}	59	D_{29}	115	$\mathrm{V}_{\text {cc }}$	129

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER
Supply Voltage to Vss Potential
Signal Pin Voltage to $V_{S S}$ Potential ${ }^{2}$
DC Output Current ${ }^{3}$
Storage Temperature Range
Power Dissipation (Package Limit)

RATING
-0.5 V to 7 V
-0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
$\pm 75 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
2.5 Watts (Quad Flat Pack)

NOTES:

1. Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns , once per cycle.
3. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic LOW Input Voltage 1	-0.5	0.8	V
$\mathrm{~V}_{\mathrm{H}}$	Logic HIGH Input Voltage 2	2.2	$\mathrm{Vcc}+0.5$	V

NOTE:

1. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns , once per cycle.

sYmbol	parameter	test conditions	MIN	TYP	MAX	UNIT
ILI	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$ To $\mathrm{V}_{\text {CC }}$	-10		10	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{HH}}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-10		10	$\mu \mathrm{A}$
VoL	Logic LOW Output Voltage	$\mathrm{loL}=16.0 \mathrm{~mA}$			0.4	V
V_{OH}	Logic HIGH Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-8.0 \mathrm{~mA}$	2.4			V
Icc	Average Supply Current ${ }^{1,2}$	Measured at $\mathrm{f}_{\mathrm{C}}=$ maximum		205	380	mA
Icc2	Average Standby Supply Current ${ }^{1,3}$	All Inputs $=\mathrm{V}_{\text {IHMIN }}$ (Clock idle)		40	85	mA
Icc3	Power-Down Supply Current ${ }^{1}$	$\begin{aligned} & \text { All Inputs }=\mathrm{V}_{\mathrm{cc}}, \\ & \text { Outputs - open, } \\ & \text { Control - deasserted, } \\ & \text { Clocks = } \mathrm{V}_{\mathrm{cc}} \end{aligned}$		0.01	1.0	mA

NOTE:

1. $\mathrm{ICc}_{\mathrm{C}} \mathrm{I}_{\mathrm{Cc} 2}$, and I_{Cc} are dependent upon actual output loading, and $\mathrm{Icc}_{\mathrm{c}}$ is also dependent on cycle times. Specified values are with outputs open (for Icc: $C L=0 \mathrm{pF}$); and, for ICC, operating at minimum cycle times.
2. Icc (MAX): Using worst case conditions and data pattern. Icc (TYP): Using Vcc $=5 \mathrm{~V}$ and average data pattern.
3. Icc2 (TYP): Using $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times (10\% to 90%)	3 ns
Output Reference Levels	1.5 V
Input Timing Reference Levels	1.5 V
Output Load, Timing Tests	Figure 3
CAPACITANCE	
PARAMETER	
CIN MAX. (Input Capacitance)	RATING
Cout MAX. (Output Capacitance)	8 pF

Figure 3. Output Load Circuit

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$, measured at 1.0 MHz , with $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (See Timing Diagrams Pages 21-35)

SYMBOL	DESCRIPTION	-20		-25		-30		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
fc_{C}	Clock Cycle Frequency		50		40		33	MHz
tc	Clock Cycle Time	20		25		30		ns
tch	Clock HIGH Time	8		10		12		ns
tcl	Clock LOW Time	9		12		14		ns
tDS	Data In Setup Time	5		6		7		ns
tDSo	Data Setup Time When Writing to Resource Register From Output Port	10		12		14		ns
$t_{\text {DH }}$	Data In Hold Time	2		2		2		ns
tDHO	Data Hold Time When Writing to Resource Register From Output Port	2		2		2		ns
$t_{\text {A }}$	Data Out Access Time		14		16		18	ns
toh	Data Out Hold Time	4		4		4		ns
tes	Enable Setup Time	5		6		7		ns
ten	Enable Hold Time	2		2		2		ns
toes	Output Enable Setup Time	6		7		8		ns
toen	Output Enable Hold Time	2		2		2		ns
tol	$\overline{\mathrm{OE}}$ to Data Out Low-Z ${ }^{2}$	1		1		1		ns
toz	$\overline{\mathrm{OE}}$ to Data Out High-Z ${ }^{2}$		12		15		19	ns
toe	$\overline{\mathrm{OE}}$ to Data Valid		10		12		14	ns
teF	Empty Flag Access Time		14		16		18	ns
tFF	Full Flag Access Time		14		16		18	ns
$t_{\text {AE }}$	$\overline{\text { AE Flag Access Time }}$		14		16		18	ns
$t_{\text {AF }}$	$\overline{\mathrm{AF}}$ Flag Access Time		14		16		18	ns
thF	$\overline{\text { HF }}$ Flag Access Time		14		16		18	ns
tPF	Parity Flag Access Time		14		16		18	ns
tMFF	Mailbox $\overline{\mathrm{FF}}$ Access Time		14		16		18	ns
tMEF	Mailbox EF Access Time		14		16		18	ns
tAS	Address Setup Time	10		12		14		ns
t_{AH}	Address Hold Time	2		2		2		ns
twss	WSI and WSO Setup Time	10		12		14		ns
twsh	WSI and WSO Hold Time	2		2		2		ns
trTMS	Retransmit Mode Setup Time	5		6		7		ns
trimh	Retransmit Mode Hold Time	2		2		2		ns
tris	Retransmit Setup Time	5		6		7		ns
trit	Retransmit Hold Time	2		2		2		ns
tRS	Reset Pulse Width	20		25		30		ns
trsR	Reset Recovery Time ${ }^{2}$	10		12		15		ns
$t_{\text {RF }}$	Reset LOW to Flag Valid		30		35		40	ns
tro	Reset to Data Out LOW		18		20		22	ns
tBA	Bypass LOW to Data Valid		12		16		18	ns
tBD	Bypass Propagation Delay		12		16		18	ns
tSkEW1	Skew Time Between CKO and CKI for $\overline{\mathrm{FF}}^{3}$	7		9		11		ns
tskew2	Skew Time Between CKI and CKO for $\overline{E F}^{4}$	7		9		11		ns
tskewm	Skew Time Between Clock for Mailbox Flags	7		9		11		ns

NOTES:

PIN DESCRIPTIONS (FUNCTIONAL)

PIN NAME
DESCRIPTION

DATABUS

36-bit Input-Port Databus. The D port is the input port for the FIFO memory array, the resource registers, and the mailbox, or it may be directly connected to the output port. See Figure 4. $\mathrm{D}[35: 0]$ is synchronous to the rising edge of CKI.

Three-State 36-Bit Output-Port Databus. The Q port is the output port for the FIFO memory array, the resource registers, and the mailbox, or it may be directly connected to the input port. See Figure 4. $\mathrm{Q}[35: 0]$ is synchronous to the rising edge of CKO. The lower 16 bits of the Q port ($\mathrm{Q}[15: 0]$) may also be used as the input port for the resource register.

CLOCKS

Input-Port Clock. CKI is a free-running waveform controlled by an oscillator. It may be irregular or asynchronous if minimum clock-HIGH times and clock-LOW times are met.

CKO
Output-Port Clock. CKO is a free-running waveform controlled by an oscillator. It may be irregular or asynchronous if minimum clock-HIGH times and clock-LOW times are met.

* All the operations are synchronized to CKI, except $\overline{\text { MEF }}$ is set HIGH on CKO.
* All the operations are synchronized to CKO, except MFF is set HIGH on CKI.

Figure 4. Resource Registers, Read and Write

ASYNCHRONOUS CONTROL

$\overline{\mathrm{RS}} \quad$ Master Reset. When asserted LOW, the LH543620 internal resource registers are set to their default value. See Table 1. The status flags indicate Empty FIFO.

Output Enable. When asserted LOW, $\overline{\mathrm{OE}}$ forces Q[35:0] to be active. When deasserted HIGH, $\overline{\mathrm{OE}}$ forces Q[35:0] into a Hi-Z state. Bit 6 of the control register governs whether $\overline{\mathrm{OE}}$ suppresses the advancement of the Read Pointer (RP). In this case, $\overline{O E}$ must obey setup time and hold time relative to CKO.

Command-Address Port Reference. CAPR determines the source of the 16 -bit word to be loaded into the resource register. Whenever CAPR is LOW, the word comes from the Input Port. Whenever
CAPR CAPR is HIGH (OE is HIGH), the word comes from the Output Port.
NOTES:

1. The destination of the resource register is always the Output Port.
2. CAPR is assumed to be a steady signal. It is not allowed to change 'on-the-fly' during operation.

CONTROL SIGNALS SYNCHRONOUS TO THE INPUT CLOCK

Input-Port Enables. ENI_{1} and ENI_{2} are active HIGH and synchronous to the rising edge of CKI.
Data is written into the FIFO memory array when both ENI_{1} and ENI_{2} are asserted HIGH.
NOTE: $E N 1_{1}, \mathrm{ENI}_{2}$ DO NOT ENABLE writing data into the Resource Registers or the Mailbox.
Input-Port Address. ADI[2:0] specifies the Input-Port destination. See Table 1. ADI[2:0] is synchronized to the rising edge of CKI.

Input-Port Word-Width Selection. WSI[1:0] selects the Input-Port Word-Width. See Table 2. WSI[$1: 0$] is synchronous to the rising edge of CKI.

Table 1. Input-Port Address

ADl	ADl1	ADlo	SELECTION	DEFAULT VALUE (of the selected REGISTER)
L	L	L	RBASE register	0
L	L	H	ROFFSET register	0
L	H	L	$\overline{\text { AF offset value }}$	8
L	H	H	Parity register	0
H	L	L	$\overline{\text { AE offset value }}$	8
H	L	H	Control register	1
H	H	L	Mailbox	0
H	H	H	Resource registers write disabled	

Table 2. Input-Port Word-Width Selection

wSI $_{1}$	wSI $_{0}$	FUNCTION	
L	L	9-Bit Data-Path Width	Input data D[8:0]
L	H	18-Bit Data-Path Width	Input data $D[17: 0]$
H	L	Reserved	
H	H	36-Bit Data-Path Width	Input data $D[35: 0]$

PIN NAME

DESCRIPTION

STATUS FLAGS SYNCHRONOUS TO THE INPUT CLOCK

Full Flag. $\overline{\mathrm{FF}}$ is synchronous to the rising edge of CKI. When asserted LOW, 102436 -bit words of $\overline{\text { FF }} \quad$ the FIFO memory array contain meaningful data. When $\overline{\text { FF }}$ is asserted, writing data to the FIFO is disabled.

Almost-Full Flag. When asserted LOW, $\overline{\mathrm{AF}}$ indicates that there are at most ' p ' vacant 36 -bit words remaining in the FIFO memory array, where 'p' is the value of the Almost-Full-Offset-Value.
$\overline{\mathrm{AF}} \quad \overline{\mathrm{AF}}$ has two synchronization modes depending on Bit 5 of the control register.
Bit $5=0$ (Default) Asynchronous Mode
Bit $5=1: \overline{\mathrm{AF}}$ is synchronous to the rising edge of CKI.
Half-Full Flag. When asserted LOW, there are at least 513 36-bit words in the FIFO memory
$\overline{\mathrm{HF}} \quad$ array. $\overline{\mathrm{HF}}$ has three synchronization modes depending on Bits 3 and 4 of the control register. See Table 3.
$\overline{\text { MFF }} \quad$ Mailbox-Full Flag. $\overline{\text { MFF }}$ is synchronized to the rising edge of CKI. When asserted LOW, it indicates that a new mail word has been placed in the mailbox.

CONTROL SIGNALS SYNCHRONOUS TO THE OUTPUT CLOCK

Output-Port Enables. ENO_{1} and ENO_{2} are active HIGH , synchronous to the rising edge of CKO.
$\mathrm{ENO} 1, \mathrm{ENO}_{2}$ Data is read from the FIFO memory array when both $\mathrm{ENO}_{1}, \mathrm{ENO}_{2}$ are asserted.
NOTE: $\mathrm{ENO}_{1}, \mathrm{ENO}_{2}$ DO NOT ENABLE reading data from the Resource Register or the Mailbox.
Output-Port Address. ADO[2:0] specifies the Output-Port source/destination. See Table 4.
ADO[2:0] ADO[2:0] is synchronous to the rising edge of CKO.
NOTE: In order to read the resource register at the output bus, $\overline{B Y E}$ should be deasserted and the FIFO memory array should be disabled.

Table 3. $\overline{H F}$ Synchronization Modes

CONTROL REGISTER		
BIT 4	BIT 3	
L^{*}	L *	Asynchronous Mode: $\overline{\mathrm{HF}}$
L	H	Synchronous Mode I: $\overline{\mathrm{HF}}$ is synchronous to the rising edge of CKO
H	L	Synchronous Mode II: $\overline{\mathrm{HF}}$ is synchronous to the rising edge of CKI
H	H	
Default Mode		

Table 4. Output-Port Address

ADO $_{2}$	ADO $_{1}$	ADO $_{0}$	SELECTION	DEFAULT VALUE (of the selected REGISTER)
L	L	L	RBASE register	0
L	L	H	ROFFSET register	0
L	H	L	$\overline{\text { AF offset value }}$	8
L	H	H	Parity register	0
H	L	L	$\overline{\text { AE offset value }}$	8
H	L	H	Control register	1
H	H	L	Mailbox Resource	Not applicable
H	H	H	registers read disabled	N

PIN NAME

DESCRIPTION

CONTROL SIGNALS SYNCHRONOUS TO THE OUTPUT CLOCK (cont'd)

Output-Port Word-Width Selection. WSO[1:0] is synchronous to the rising edge of CKO.
WSO[1:0] WSO[1:0] selects the Output-Port Word-Width and controls byte-order-reversal according to Table 5.

Retransmit Mode Control. RTMD[1:0] is synchronized to the rising edge of CKO. RTMD[1:0] controls the placement of new contents into the Read Pointer (RP) and/or the Retransmit Base (RBASE) registers. Whenever Retransmit ($\overline{\mathrm{RT}}$) is asserted, one of three operations is performed according to the setting of RTMD[1:0]. See Table 6.
NOTES:

1. When RTMD[1:0] is set to 0 , the FIFO is in depth cascade mode, and the Retransmit mechanism can not be used. In cascade mode, the Almost-Empty Flag is a handshake signal for cascading. The Almost-Empty Flag is used as an input to the ENI of the next FIFO in the chain. 2. In standard FIFO operation RTMD[1:0] must not be set to 0 and the Retransmit signal must be HIGH.

Retransmit. $\overline{\mathrm{RT}}$ is synchronized to the rising edge of CKO. When asserted LOW, $\overline{\mathrm{RT}}$ causes one
$\overline{\mathrm{RT}}$ of the Retransmit Mode operations to be performed, according to the encoding of RTMD[1:0]. See Table 6.
NOTE: When RTMD[1:0] = 0 (FIFO is in cascade mode) $\overline{\mathrm{RT}}$ is ignored.

Table 5. Output-Port Word-Width Selection

WSO $_{1}$	wSO $_{0}$	FUNCTION	
L	L	9-Bit Data-Path Width	Output data Q[8:0]
L	H	18-Bit Data-Path Width	Output data Q[17:0]
H	L	36-Bit Data-Path Width With Byte- Order-Reversal	Output data Q[35:0]
H	H	36-Bit Data-Path Width	Output data Q[35:0]

Table 6. Retransmit Operation Modes

RTMD $_{1}$	RTMD $_{0}$	OPERATION	ACTION TAKEN
L	L	Depth Cascade Mode	The Almost-Empty Flag is a handshake signal for cascading
L	H	Retransmit	(RBASE) + (ROFFSET) \rightarrow RP (RBASE) + (RBASE) (ROFFSET) \rightarrow RP (nd (RBASE) + (ROFFSET) \rightarrow RBASE
H	L	Retransmit and Mark	Mark

STATUS FLAGS SYNCHRONOUS TO THE OUTPUT CLOCK

Almost-Empty Flag. The $\overline{\mathrm{AE}}$ flag has two modes of operation depending on the RTMD[1:0] setting.

1. RTMD[1:0] $\neq 0$: $\overline{\mathrm{AE}}$ is a standard Almost-Empty Flag. When asserted LOW, $\overline{\mathrm{AE}}$ implies that there are at most ' q ' 36 -bit words in the FIFO memory array, where ' q ' is Almost-Empty-Offset-
$\overline{\mathrm{AE}} \quad$ Value register value. In this mode $\overline{\mathrm{AE}}$ has two synchronization options depending on the setting of Bit 2 of the control register.
Bit 2 $=0$ (Default) Asynchronous Mode
Bit $2=1$ Synchronous Mode: $\overline{A E}$ is synchronous to the rising edge of CKO.
2. $\operatorname{RTMD}[1: 0]=0: \overline{\mathrm{AE}}$ is a handshake signal for cascading.
$\overline{\mathrm{EF}} \quad$ Empty Flag. $\overline{\mathrm{EF}}$ is synchronous to the rising edge of CKO. When asserted LOW, all 1024 36 -bit words are vacant. When asserted, EF disables the FIFO Read operation.

Parity-Error Flag. $\overline{\mathrm{PF}}$ is synchronized to the rising edge of CKO. When asserted LOW, $\overline{\mathrm{PF}}$ implies that a parity error has occurred in at least one 9-bit byte within a 36 -bit word read from the $\overline{\mathrm{PF}} \quad \mathrm{FIFO}$ memory array. If there are no errors, it is deasserted HIGH. When an error is detected, the parity check result of each 9 -bit byte of the 36 -bit output word is written to the parity register. The content of the parity register is frozen until read. The $\overline{\mathrm{PF}}$ signal is delayed by one CKO cycle compared to the output data (i.e., if the $\overline{\mathrm{PF}}$ is asserted, there was an error in the previous word).

Mailbox-Empty Flag. $\overline{\text { MEF }}$ is synchronous to the rising edge of CKO. When asserted LOW, $\overline{\text { MEF }}$ indicates that there is no new mail word in the mailbox.

VOLTAGES AND GROUNDS

VCC Positive Power.
VSS Ground.

OPERATIONAL DESCRIPTION

The LH543620 has four operating modes: Normal Mode, Programmable Resource Registers, Mailbox, and Data Bypass.

NORMAL MODE

Normal FIFO operation refers to Read and Write operations to the FIFO memory array. Data Write operations into the FIFO memory array occur at the rising edge of

CKI. The operation is enabled if both ENI_{1} and ENI_{2} are asserted HIGH. Data Read operations from the FIFO memory occur at the rising edge of CKO. The operation is enabled if both ENO_{1} and ENO_{2} are asserted HIGH.

The FIFO write and read operations are supported by the following mechanisms: Byte-Order-Reversal and Bus Funneling/Defunneling Functions, Status Flags, Retransmit Mechanism, Parity Checking, and Parity Generation.

Byte-Order-Reversal and Bus Funneling/ Defunneling Functions

Word width can be selected at the Input Port and/or the Output Port to be 36, 18 or 9 bits wide. When the Output Port width is selected to be 36 bits, it is possible to select Byte-Order-Reversal.

The funneling mechanism is controlled by the inputs WSI[$1: 0$] and WSO[1:0] according to Tables 2 and 5. Data is packed and unpacked from a 36 -bit word memory array. Table 7 describes all combinations of funneling/defunneling.

Changes to the funneling/defunneling settings during system operation should be made one clock before a word boundary, as shown in Example 3.

Example 1: 36-to-9 Funneling
CONDITIONS

WSI[1:0]	WSO[1:0]	RESULTS
3	-	Input 36 bits wide.
-	0	Output 9 bits wide.
Pins used are Q[8:0].		

The dataflow structure is illustrated by Figure 5.

Example 2: 18-to-36 Defunneling With Byte Reversal
This example performs two functions:

1. Bus width change

2. Big Endian to Little Endian conversion

This configuration can be used for connecting the Intel 80286 to the Motorola 68040.

CONDITIONS		RESULTS
WSI[1:0]	WSO[1:0]	Input 18 bits wide.
1	-	Pins used are $D[17: 0]$.
-	2	Output 36 bits wide with byte order reversal.

The dataflow structure is illustrated by Figure 6.
Example 3: Changing Input Bus Width From 9 to 36 During Operation

CKI	WSI	ACTION
0	0	Write 1st 9-bit byte
1	0	Write 2nd 9-bit byte
2	0	Write 3rd 9-bit byte
3	3	Write 4th 9-bit byte
4	3	Write 1st 36-bit word

Table 7. Bus Funneling/Defunneling *

INPUT				OUTPUT																
CKI	WSI $=0$			CKO cycles	WSO $=3$				$W S O=2$$Q[35: 0]$				WSO = 1				WSO $=0$			
cycles	D[35:9]		D [8:0]		Q[35:0]								Q[35:18]		Q[17:0]		Q[35:9]			$\begin{gathered} \text { Q[8:0] } \\ \text { B0 } \end{gathered}$
0	xxx		B0	0	B3	B2	B1	B0	B0	B1	B2	B3	B3	B2	B1	B0	B3	B2	B1	
1	xxx		B1	1	B7	B6	B5	B4	B4	B5	B6	B7	B1	B0	B3	B2	B0	B3	B2	B1
2	$x x x$		B2	2									B7	B6	B5	B4	B1	B0	B3	B2
3	xxx		B3	3									B5	B4	B7	B6	B2	B1	B0	B3
4	xxx		B4	4													B7	B6	B5	B4
5	xxx		B5	5																
6	xxx		B6	6																
7	xxx		B7	7																
8	xxx		B8	8	WSO $=3$															
	WSI = 1								WSO = 2				WSO = 1				WSO $=0$			
	D[35:18]	D[17:0]			Q[35:0]				Q[35:0]				Q[35:18]		Q[17:0]		Q[35:9]			Q[8:0]
0	xX	B1	B0	0	B3	B2	B1	B0	B0	B1	B2	B3	B3	B2	B1	B0	B3	B2	B1	B0
1	xx	B3	B2	1	B7	B6	B5	B4	B4	B5	B6	B7	B1	B0	B3	B2	B0	B3	B2	B1
2	xx	B5	B4	2									B7	B6	B5	B4	B1	B0	B3	B2
3	xx	B7	B6	3									B5	B4	B7	B6	B2	B1	B0	B3
4	xx	B9	B8	4													B7	B6	B5	B4
	WSI $=3$				WSO $=3$				WSO $=2$				WSO = 1				WSO = 0			
	D[35:0]				Q[35:0]				$\mathrm{Q}[35: 0]$				Q[35:18]		Q[17:0]		Q[35:9]			Q[8:0]
0	B3 B2	B1	B0	0	B3	B2	B1	B0	B0	B1	B2	B3	B3	B2	B1	B0	B3	B2	B1	B0
1	B7 B6	B5	B4	1	B7	B6	B5	B4	B4	B5	B6	B7	B1	B0	B3	B2	B0	B3	B2	B1
													B7	B6	B5	B4	B1	B0	B3	B2
													B5	B4	B7	B6	B2	B1	B0	B3
																	B7	B6	B5	B4

* NOTE: B0, B1, ..., represent data bytes.

NOTES:
HEAVY SOLID LINES = Main data path.
SHADED LINES = Not used for this application.
543620-30
Figure 5. Example of 36-to-9 Bus Funneling

Figure 6. Example of 18-to-36 Bus Defunneling With Byte Order Reversal

Status Flags

There are five status flags:
$\overline{\text { FF Full Flag }}$
$\overline{\text { AF }}$ Almost-Full Flag
$\overline{\mathrm{HF}}$ Half-Full Flag
$\overline{\mathrm{AE}}$ Almost-Empty Flag
$\overline{\mathrm{EF}}$ Empty Flag
The functionality and the synchronization of the status flags are detailed in the Pins Descriptions (Functional) section. All status flags are generated for 36 -bit word widths, not according to selected input or output port widths.

Retransmit Mechanism

With standard FIFO operations, every data word can be read out of the FIFO once. The Retransmit mechanism allows reading the data more than once by providing flexible control of the Read Pointer.

Associated with the Retransmit mechanism are three control lines: RTMD[1:0], $\overline{\mathrm{RT}}$, and two Resource registers: RBASE and ROFFSET.

RTMD[1:0] sets the mode of operation. See Table 6.
$\overline{\mathrm{RT}}$ enables the operation synchronous to CKO.

Retransmit allows three modes of operation:

Mark: RTMD[1:0] = 3 and $\overline{\mathrm{RT}}$ is asserted. The value of the Read Pointer is saved into the RBASE register.

Retransmit: RTMD[1:0] = 1 and $\overline{\mathrm{RT}}$ is asserted. The Read Pointer is loaded by the value of RBASE plus the value of ROFFSET.

Retransmit and Mark: RTMD[1:0] = 2 and RT is asserted: The Read Pointer is loaded by the value of RBASE plus the value of ROFFSET. Then the value of the Read Pointer is saved into the RBASE register.

The timing of the retransmit is illustrated in Figures 26 and 27 .

When $\overline{\mathrm{RT}}$ is asserted and $\operatorname{RTMD[1:0]~is~set~to~} 1$ or 2 , the flags change their value to indicate a 'Retransmit state', i.e., $\overline{\mathrm{EF}}, \overline{\mathrm{AE}}, \overline{\mathrm{FF}}$ deasserted; $\overline{\mathrm{AF}}, \overline{\mathrm{HF}}$ asserted. Three enable-read cycles are required to read the new data word. The flags reflect the new status. The retransmit is acknowledged even when the output is disabled (ENO = LOW), but enable-read cycles are needed to fill the pipeline with new information before reading the new data.

NOTES

1. The Retransmit mechanism can be used independently and parallel to the write operation.
2. RTMD[1:0] must be selected two cycles prior to RT being asserted and remain stable during RT low.
3. At least two words need to be in the FIFO memory array prior to performing a retransmit.
4. When using normal read and write operations, the $\overline{\mathrm{FF}}$ inhibits writing when the FIFO is full and the $\overline{\mathrm{EF}}$ inhibits reading when the FIFO is empty. This behavior provides a protection from wraparound situations (i.e., the Read pointer is ahead of the Write Pointer). This protection is NOT provided when using retransmit. The user should be careful not to write more than 1024 words from the marked point.
5. When the retransmit mechanism is not used, the recommended connection is:
```
RTMD[1:0] = 3
\overline { R T } = H I G H
```

The Retransmit mechanism can be useful in many applications. For example:

1. Computer-communications applications.

When the receiver reads a block of data and finds no errors in the data block, it can mark the beginning of the new message by setting the FIFO in MARK mode $\operatorname{RTMD}[1: 0]=3$ and assert the $\overline{\mathrm{RT}}$ signal for one clock cycle.
If the receiver finds an error in the data block, it can read the last message again by setting the FIFO in Retransmit mode RTMD[1:0] $=1$ and asserting the $\overline{\mathrm{RT}}$ signal for one cycle.
2. Overlap addressing for DSP applications.

A typical DSP consists of A/D-FIFO-DSP. In many applications, the DSP needs to read a block of data where each block overlaps the previous block (like the overlap-and-save method for filtering.) The overlap addressing can be implemented by using the LH543620 with no additional hardware as follows:

The FIFO is set to retransmit and mark mode: $\operatorname{RTMD}[1: 0]=2$, the $\overline{\mathrm{AF}}$ offset register is programmed to $\mathrm{N}=$ Block Size, and the ROFFSET register is programmed to (N -Overlap). The data is loaded into the FIFO each time CKin is triggered.

The DSP can sense the $\overline{\mathrm{AF}}$ flag of the FIFO. Whenever this flag is being asserted, a new block of data is available in the FIFO. The DSP then reads a block of data, and then asserts the FIFO's RT signal, which causes the RP and RBASE register to be set at the beginning of the new block.

Parity Checking

The Parity checking mechanism is always active. Parity checking is done separately for each of the 9 -bit bytes of the 36 -bit word read from the memory array. Toggling Bit 0 of the control register selects odd or even parity. When a parity error is detected in one or more bytes, the signal PF is asserted and the result of the individual parity checks are written to the parity register. See Example 3.

To avoid a possible invalid $\overline{\mathrm{PF}}$ signal, ENO_{1} and ENO_{2} should not be deasserted during the CLKO low time.

The parity register is frozen until read. When read, the parity register is released and ready to store the next parity error data.

Parity Generation

After Reset, parity generation is not active. Parity generation is active only when Bit 1 of the control register is HIGH. The parity mechanism, when enabled, creates a parity bit for each of the bytes of the input word. The parity bit for each byte is created based on its 8 least significant bits of each 9 -bit byte of the input-data word and on Bit 0 of the control register (it specifies odd or even parity). The result of the parity generation is written back to the MSB of the data byte. See Example 4.

PROGRAMMABLE RESOURCE REGISTERS

The LH543620 has six programmable resource registers. The resource registers may be loaded from either the Input Port or the Output Port. They can be read from the Output Port. The selection and loading or reading of the resource registers is controlled by ADI, ADO and CAPR. See Tables 1 and 4 and Figure 4.

The resource registers are:
Control (Default = 1).
$\overline{\mathrm{AE}}$ Offset - Offset value of the $\overline{\mathrm{AE}}$ flag (Default $=8$).
$\overline{\mathrm{AF}}$ Offset - Offset value of the $\overline{\mathrm{AF}}$ flag (Default $=8$).
$\overline{\mathrm{RT}}$ Offset-Offset value of the Retransmit mechanism (Default = 0).
$\overline{\text { RT }}$ Base - Base register of the Retransmit mechanism (Default = 0).

Parity

EXAMPLE 3

PARITY CHECK

| | Q35 | | Q0 |
| :--- | :--- | :--- | :---: | :---: |
| Output word: | $100111100 \quad 000111100 \quad 100111000$ | 000111000 | |
| Odd parity: | Parity Register $=0110 ;$ | PF-Asserted Low | |
| Even parity: | Parity Register $=1001 ;$ PF-Asserted Low | | |

EXAMPLE 4

PARITY GENERATION

| | D35 | | DO | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Input word: | $\mathbf{1 0 0 1 1 1 1 0 0}$ | $\mathbf{0 0 0 1 1 1 1 0 0}$ | 100111000 | $\mathbf{0 0 0 1 1 1 0 0 0}$ |
| Output, odd parity: | $\mathbf{1 0 0 1 1 1 1 0 0}$ | $\mathbf{1 0 0 1 1 1 1 0 0}$ | $\mathbf{0 0 0 1 1 1 0 0 0}$ | $\mathbf{0 0 0 1 1 1 0 0 0}$ |
| Output, even parity: | $\mathbf{0 0 0 1 1 1 1 0 0}$ | $\mathbf{0 0 0 1 1 1 1 0 0}$ | $\mathbf{1 0 0 1 1 1 0 0 0}$ | $\mathbf{1 0 0 1 1 1 0 0 0}$ |

Control Register (See Figure 7)

After reset, the control register's value is 1 . This sets the following conditions:

Odd parity
Disabling parity generation (parity check is active).
$\overline{\mathrm{AF}}, \overline{\mathrm{HF}}, \overline{\mathrm{AE}}$ flags are asynchronous.
$\overline{\mathrm{OE}}$ signal does not control the Read pointer.

Read/Write Resource Register Mode

It is possible to write to the resource registers from either the Input Port or the Output Port. Reading from the resource register is possible only from the Output Port. The source port for the write operation is determined by the control signal CAPR.

Input Port:
Data from the Input Port is written to a resource register when:
the value of the input-address field, ADI, selects the register (see Table 1)

CAPR is LOW
The operation is enabled by ADI[2:0] and synchronized to CKI.

Output Port:
Data from the Output Port is written to a resource register when:
the value of the output-address field, ADO, selects the register (see Table 4)

CAPR is HIGH
OE is HIGH
NOTE: ADI[2:0] should remain stable whenever data is coming in from the output port.

Data is read from a resource register to the Output Port when:
the value of the output-address field, ADO, selects the register (see Table 4)

$\overline{O E}$ is LOW

Both operations are enabled by ADO[2:0] and are synchronous to CKO.

MAILBOX

The mailbox mechanism includes:
One 36-bit data register.
Two status flags:

- $\overline{\text { MFF }}$ Mailbox Full Flag
- $\overline{\text { MEF }}$ Mailbox Empty Flag

```
|\begin{array}{l|lll|l|l|llll}{6}&{5}&{4}&{3}&{2}&{2}&{1}&{0}\\{\hline6}\end{array}|
                            1 ODD PARITY
                            { PARITY GENERATION IS DISABLED
                            1 PARITY GENERATION IS ENABLED
                            0 \overline{AE ASYNCHRONOUS}
                            1 \overline{AE SYNCHRONOUS TO CKO}
                                    0 \overline{HF}ASYNCHRONOUS
                            1 \overline{ FF SYNCHRONOUS TO CKO}
                            2 OR 3 HF SYNCHRONOUS TO CKI
                            0 \overline{AF}}\mathrm{ ASYNCHRONOUS
                            1 \overline{AF SYNCHRONOUS TO CKI}
                            0 \overline{OE}}\mathrm{ DOES NOT CONTROL THE READ POINTER
                            { OE CONTROLS THE READ POINTER
```

Figure 7. LH543620 Control Register

Writing to the Mailbox is enabled from the Input Port when the Input Port address field ADI[2:0] $=6$. The write operation is synchronous to the rising edge of CKI.

When writing to the Mailbox, the status flags are changed as follows:
$\overline{\mathrm{MEF}}$ is deasserted HIGH on the rising edge of CKO.
$\overline{\text { MFF }}$ is asserted LOW on the rising edge of CKI.
A Mailbox read is enabled from the Output Port, when the Output Port address field ADO[2:0] $=6$. The Read operation is synchronized to CKO.

When reading the Mailbox, the status flags are changed as follows:
$\overline{\mathrm{MEF}}$ is asserted LOW on the rising edge of CKO.
$\overline{\text { MFF }}$ is deasserted HIGH on the rising edge of CKI.
After reset the Mailbox is empty (i.e., $\overline{\text { MFF }}=\mathrm{HIGH}$, $\overline{\mathrm{MEF}}=\mathrm{LOW}$).

When using Mailbox, the transmitter side can transfer a message to the receiver side without interrupting the data in the FIFO memory array.

DATA BYPASS MODE

Data Bypass mode is selected when $\overline{\text { BYE }}=$ LOW. In this mode, data may be transferred asynchronously from the Input Port to the Output Port. The device may be placed in Data Bypass mode without voiding the contents of the FIFO memory array, the Mailbox Register, or the Resource Register. However, if the input is enabled ($\mathrm{ENI}_{1,2}=\mathrm{HIGH}$) then the input data D is also written to the FIFO memory array on the rising edge of CKI. If the Output is enabled, $\left(\mathrm{ENO}_{1,2}=\mathrm{HIGH}\right)$ then the input data D is transferred to the output buffer, and the Read Pointer is incremented by CKO. The control signal $\overline{\mathrm{OE}}$ is functioning when BYE is asserted.

The recommended control setting for bypass is:
$\mathrm{ENI}=\mathrm{LOW}, \mathrm{ENO}=\mathrm{LOW}, \mathrm{ADI[2:0]}=7$,
$\mathrm{ADO}[2: 0]=7, \overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{BYE}}=\mathrm{LOW}$

OPERATIONAL MODES AND CONFIGURATIONS

Interlocked Width Expansion (Figure 8A)

Two LH543620s may be configured to expand the width to 72 bits. This is accomplished by:

Cross-connecting the $\overline{\text { FF }}$ output of each FIFO to ENI_{1} (or ENI_{2}) input of the other FIFO.

Cross-connecting the $\overline{\mathrm{EF}}$ output of each FIFO to ENO_{1} (or ENO2) input of the other FIFO.

The composite status flags are the OR function of the individual flags.

Pipeline Cascading Mode and 'Two-Dimension' Pipeline Cascading Mode (Figure 8B and 8C)

Depth cascading is accomplished by:
Setting the upper FIFO into cascade mode:
RTMD[1:0] = 0
Connecting the same free-running clock to CKO of the upper FIFO and to CKI input of the lower FIFO.

Connecting the $\overline{\mathrm{AE}}$ output of the upper FIFO to ENI_{1} input (or ENI_{2}) of the lower FIFO.

Connecting the FF output of the lower FIFO to ENO 1 input (or ENO_{2}) of the upper FIFO.

NOTE: RTMD[1:0] should remain stable during cascade mode operation (i.e., remain low).

Figure 8. LH543620 Width and Depth Expansion Scheme

TIMING DIAGRAMS

NOTES:

1. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=\mathrm{LOW}$, and in a high-impedance state if $\mathrm{OE}=\mathrm{HIGH}$.
2. The clocks (CKI, CKO) may be free-running during a reset operation.
3. If $\mathrm{CAPR}=\mathrm{L}$, then $\mathrm{ADO}=\mathrm{XXX}$ and ADI must be $=\mathrm{H}, \mathrm{H}, \mathrm{H}$ for proper reset. If $C A P R=H$, then $A D I=X X X$ and $A D O$ must be $=H, H, H$ for proper reset.

Figure 9. Reset Timing

Figure 10. Write and Read Operation

Figure 11. Empty Flag Timing

Figure 12. Full Flag Timing

Figure 13. Almost-Full Flag Synchronous and Asynchronous Modes

Figure 14. Almost-Empty Flag -
Synchronous and Asynchronous Modes

NOTE: The synchronization mode of $\overline{\mathrm{HF}}$ is determined by the state of bits 3 and 4 of the Control Register.
Figure 15. Half-Full Flag Synchronous and Asynchronous Modes

Figure 16. First Word Latency

Figure 17. Parity Flag

Figure 18. Bypass

Figure 19. Read Resource Register

Figure 20. Write Resource Register From the Input Port

Figure 21. Write Resource Register From Output Port

Figure 22. WSI[1:0] Timing

Figure 23. WSO[1:0] Timing

Figure 24. Mailbox Read

Figure 25. Mailbox Write

Figure 26. Retransmit Using Retransmit and Mark Mode

Figure 27. Retransmit Using Mark Mode and Retransmit Mode

Figure 28. $\overline{\mathrm{OE}}$ When Bit 6 of the Control Register is HIGH

PACKAGE DIAGRAM

132-pin PQFP

ORDERING INFORMATION

[^0]: * $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{V}=$ Voltage, Z = High-Impedance

 1. The half-full flag is user-selectable to be synchronized to either CKI or CKO.
