Power driver IC for CD changer

BD7961FM

BD7961FM is a 6-channel driver IC developed for CD changer. In addition to the 4-channel BTL driver and the 2-channel loading driver, the 3.3 V regulator and 5.0 V regulator used in the peripheral circuit are also incorporated. The size reduction of the set is achieved by integrating functions that were used in two chips into a single chip.

- Applications

CD changer

-Features

1) This circuit is a 6-channel driver IC consisting of four BTL drivers and two loading drivers.
2) Two wide dynamic range loading drivers of MOS output (R on=1.0 2).
3) The circuit is provided with loading driver voltage setting terminals.
4) A 5.0 V regulator and a 3.3 V regulator are built in.
(Each regulator has an external PNP transistor and an ON/OFF switch)
5) The circuit has a mute switch.
6) A thermal shutdown circuit is built in.
7) Since HSOP-M36 power package is used, the set requires a reduced space.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	15	V
Power dissipation	Pd	2200^{*}	mW
Operating temperature range	Topr	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

* Reduced by 17.6 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$, on less than 3%
(percentage occupied by copper foil), $70 \mathrm{~mm} \times 70 \mathrm{~mm}, \mathrm{t}=1.6 \mathrm{~mm}$, glass epoxy mounting.
- Recommended operating conditions $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply voltage 1	Vcc1	4.5	8.0	14.0	V
Supply voltage 2	$\mathrm{Vcc2}$	4.5	8.0	14.0	V
Supply voltage 3* *	$\mathrm{Vcc3}$	6.0	8.0	14.0	V

[^0]-Block diagram

-Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	GND2	POW GND (loading driver unit)	19	OUT3+	BTL driver (CH3) output +
2	OUT5-	Loading driver (CH5) output -	20	OUT3-	BTL driver (CH 3) output -
3	OUT5+	Loading driver (CH5) output +	21	OUT4+	BTL driver (CH4) output +
4	IN5FWD	Loading driver (CH5) FWD input	22	OUT4-	BTL driver (CH 4) output -
5	IN5REV	Loading driver (CH5) REV input	23	LDCONT2	Loading driver (CH6) voltage setting terminal
6	IN6REV	Loading driver (CH6) REV input	24	LDCONT1	Loading driver (CH5) voltage setting terminal
7	IN6FWD	Loading driver (CH6) FWD input	25	Vcc1	Supply voltage (BTL driver unit)
8	REG2SW	Regulator 2 switch terminal	26	Vcc3	Supply voltage (regulator unit)
9	REG1SW	Regulator 1 switch terminal	27	GND3	REG GND (regulator unit)
10	IN4	CH4 input	28	Vcc2	Supply voltage (loading driver unit)
11	IN3	CH3 input	29	REG1OUT	Regulator 1 output
12	IN1	CH1 input	30	REG1_B	Regulator 1 Tr base
13	IN2	CH2 input	31	REG2_B	Regulator 2 Tr base
14	GND1	POW GND (BTL driver unit)	32	REG2OUT	Regulator 2 output
15	OUT2-	BTL driver (CH 2$)$ output -	33	MUTE	BTL driver mute terminal
16	OUT2+	BTL driver (CH 2$)$ output +	34	OUT6+	Loading driver (CH6) output +
17	OUT1-	BTL driver (CH1) output -	35	OUT6-	Loading driver (CH6) output -
18	OUT1+	BTL driver (CH1) output +	36	BIAS	BIAS terminal

Optical disc ICs

- Input output circuit

(N1/IN2/IN3/IN4
(20)

Optical disc ICs

－Electrical characteristics

（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc} 1, \mathrm{Vcc} 2, \mathrm{Vcc} 3=8 \mathrm{~V}, \mathrm{BIAS}=2.5 \mathrm{~V}, \mathrm{RL}=8 \Omega$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions
Quiescent current	Icc1	12	25	38	mA	Under no load
Quiescent current（BTL MUTE）	Icc2	5	10	15	mA	Under no load
〈 BTL driver CH 1 to CH 4 〉						
Output offset voltage	Vofs	－70	0	＋70	mV	
Max．output amplitude	Vom	5.4	6.0	－	V	
Closed circuit voltage gain	Gvc	16	18	20	dB	$\mathrm{V}_{\mathrm{I}=}=\mathrm{BIAS} \pm 0.5 \mathrm{~V}$
Difference between positive and nagative voltage gains	Δ Grc	－2．0	0	2.0	dB	
〈 Loading driver CH 5 and CH 6 〉						
Output offset voltage	VofsL	－35	0	＋35	mV	When brake is applied
Output saturation voltage H	Vo나	－	0.32	0.48	V	$1 \mathrm{l}=500 \mathrm{~mA}$
Output saturation voltage L	Voll	－	0.18	0.27	V	$1 \mathrm{l}=500 \mathrm{~mA}$
Voltage gain	Gvld	4.0	6.0	8.0	dB	LDCONT＝1V
Difference between positive and nagative voltage gains	Δ Gvid	－2．0	0	2.0	dB	
＜Regulator 1＞						
Output voltage	Vregi	3.135	3.300	3.465	V	
Output load stability	$\Delta V_{\text {RL1 }}$	5	10	20	mV	$\mathrm{l}=0 \sim 200 \mathrm{~mA}$
Supply voltage stability	$\Delta \mathrm{V} \mathrm{Vcc}^{1}$	5	10	20	mV	$\mathrm{V} \mathrm{cc}=6 \sim 10 \mathrm{~V}$ Io $=100 \mathrm{~mA}$
REG1＿B terminal sink current	Iregsi1	2	－	－	mA	
＜Regulator 2＞						
Output voltage	Vreg2	4.75	5.00	5.25	V	
Output load stability	$\Delta V_{\text {RL2 }}$	5	10	20	mV	$\mathrm{lo}=0 \sim 200 \mathrm{~mA}$
Supply voltage stability	$\Delta \mathrm{VV} \mathrm{cc}^{2}$	5	10	20	mV	$\mathrm{Vcc}=7 \sim 10 \mathrm{~V}$ lo $=100 \mathrm{~mA}$
RE2＿B terminal sink current	Ireasiz	2	－	－	mA	

© The product is not designed for protection against radioactive rays．

- Measurement circuits

Fig. 1

Fig. 2

Fig. 3

Optical disc ICs

－Switch table for measuring circuit diagrams

（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc} 1, \mathrm{Vcc} 2, \mathrm{Vcc} 3=8 \mathrm{~V}, \mathrm{BIAS}=2.5 \mathrm{~V}, \mathrm{RL}=8 \Omega$ Unless otherwise specified，the switch 1 is used．）

Parameter	Symbol	SWITCH		Conditions	Measurement circuit
		1	2		
Quiescent current	Icc1			＊1	Fig． 1
Quiescent current（BTL MUTE）	lcc2			＊2	Fig． 1
〈BTLdriver CH 1 to CH 4 〉					
Output offset voltage	Vofs			V In $=\mathrm{VB}$ ，VOFS $=\mathrm{VO}$	Fig． 2
Max．output amplitude	Vом			V in＝$=\mathrm{Vcc}$ ， $\mathrm{VOM}=\mathrm{VO}$	Fig． 2
Closed circuit voltage gain（ CH 1 to CH 4 ）	Gvc			$\mathrm{V} \mathrm{IN}=\mathrm{VB} \pm 0.5 \mathrm{~V}, \mathrm{GVC}=20 \log (\mathrm{VO} / 0.5)$	Fig． 2
Difference between positive and negative voltage gains（CH1 to CH 4 ）	$\Delta \mathrm{Gvc}$				Fig． 2
Mute terminal sink current	Imute			VMUTE＝5V，IMUTE＝IMUTE	Fig． 1
Bias terminal sink current	Ibias			$\mathrm{VB}=2.5 \mathrm{~V}$ ，IBIAS＝IQB	Fig． 1
＜Loading driver CH 5 and CH 6 〉					
Output offset voltage	VofsL			LDINF＝LDINR＝5V，VOFSL＝VOLD	Fig． 3
Output saturation voltage H	Volh	2		＊3	Fig． 3
Output saturation voltage L	Voll	2		LDINF＝5V，LDINR＝0V，IDR＝500mA，VOLL＝VOLR	Fig． 3
Voltage gain（Loading）	Gvid			＊ 4	Fig． 1
Difference between positive and negative voltage gains（Loading）	Δ GvLD				Fig． 1
Input terminal sink current	lint			LDINF＝LDINR＝5V，IINL＝IQ5F，IQ5R，IQ6F，IQ6R	Fig． 1
LDCONT terminal source current	ILDC			LDCONT＝5V，ILDC＝ILDC	Fig． 1
〈Regulator 1〉					
Output voltage	Vreg1				Fig． 1
Output load stability	$\Delta \mathrm{V}_{\text {RL1 }}$		2	IREG＝0～200mA	Fig． 1
Supply voltage stability	$\Delta \mathrm{VVcc} 1$		2	$\mathrm{Vcc}=6 \sim 10 \mathrm{~V}$ ，IREG＝100mA	Fig． 1
REG1＿B terminal sink current	Iregsil		3	REGOUT＝2．5V，IREGSI1＝IQREGSW1	Fig． 1
REG1SW terminal sink current	Ireg1			REGSW＝5V，IREGSI1＝IQREGSW1	Fig． 1
〈Regulator 2＞					
Output voltage	Vregr				Fig． 1
Output load stability	$\Delta \mathrm{V}_{\mathrm{RL} 2}$		2	IREG＝0～200mA	Fig． 1
Supply voltage stability	$\Delta \mathrm{VV}$ cc2		2	$\mathrm{Vcc}=7 \sim 10 \mathrm{~V}$ ，IREG＝100mA	Fig． 1
REG2＿B terminal sink current	IREGSI2		3	REGOUT＝4V，IREGSI2＝IQREGSW2	Fig． 1
REG2SW terminal sink current	Ireg2			REGSW＝5V，IREGSI2＝IQREGSW2	Fig． 1

＊4 LDINF＝5V，LDINR＝0V，LDCONT＝1V，GVLD＝20log（VOLD／LDCONT）

Optical disc ICs

Fig. 4

-Operation notes

(1) BD7961FM has a built-in thermal shutdown circuit.

When the chip temperature reaches $175^{\circ} \mathrm{C}$ (Typ.), the output current from all drivers is muted.
When the chip temperature returns to $150^{\circ} \mathrm{C}$ (Typ.), the circuit of the driver unit starts up.
(2) When the mute terminal (pin33) is opened or the terminal voltage is reduced to 0.5 V or less, the output current of the BTL driver unit is muted.
In the normal state of use, pull up the voltage to 2.0 V or more.
(3) When the voltage of the regulator switch terminals (pin8 and 9) is increased to 2.0 V or more, the output from the regulator is muted. In the normal state of use, pull down the voltage to 0.5 V or less.
(4) When the bias terminal (pin36) voltage is reduced to 0.7 V or less, the BTL driver unit is muted. In the normal state of use, set the voltage to 1.1 V or more.
(5) Thermal shutdown mutes all drivers. When the mute ON voltage and the bias terminal voltage are reduced, only the BTL drivers are muted. When the drivers are muted, the BTL driver output terminal voltage becomes the internal bias voltage (Vcc1-0.7)/2V.

Optical disc ICs

(6) The loading drivers operate according to the following logic.

INPUT		OUTPUT		Function
FWD	REV	OUT +	OUT-	
L	L	Hi Z	Hi Z	High impedance
L	H	L	H	REV mode
H	L	H	L	FWD mode
H	H	L	L	Brake mode

The output voltage can be changed by adjusting the voltage input to the LDCONT terminal (gain of 6 dB Typ.).
However, even if the input voltage is increased excessively, the output voltage will not exceed the max. output voltage that depends on the supply voltage.
(7) Supply the same voltage to $\mathrm{Vcc}_{\mathrm{c}} 1$ (pin25), Vcc 2 (pin28) and Vcc 3 (pin26).

Insert by the pass capacitor (approx. $0.1 \mu \mathrm{~F}$) between Vcc pin and GND pin of IC as near as possible.
(8) Connect the radiating fin with external GND.
(9) Output pin is to avoid short-circuit with Vcc, GND and other output pins. An integrated circuit is damaged, and smoke may come out by the case.

- Electrical characteristic curves

Fig. 5 Circuit current characteristic

LDCONT VOLTAGE: Vld (V)
Fig. 8 Input-output characteristic

Fig. 6 Input-output characteristic

Fig. 7 Output load current regulation

LOAD CURRENT : IL (mA)
Fig. 9 Output load current regulation

Fig. 10 Reg1 power supply characteristic

Fig. 11 Reg2 power supply characteristic

Fig. 12 Power dissipation

- External dimensions (Units : mm)

HSOP-M36

Notes

No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.

- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.

Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

[^0]: * When REG2 (5.0-V regulator) is not used, the supply voltage3 (VCC3) is 4.5 to 14.0 V .

