FAIRCHILD

SEMICONDUCTOR TM

FSTU3384 10-Bit Bus Switch with –2V Undershoot Protection

General Description

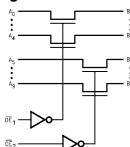
The Fairchild Switch FSTU3384 provides 10 bits of highspeed CMOS TTL-compatible bus switches. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay generating additional ground bounce noise. Both the A Ports and the B Ports have "undershoot hardened" circuit protection to support an extended input range to 2.0V below ground. Fairchild's integrated Undershoot Hardened Circuit (UHCTM) senses undershoot at the I/Os, and responds by preventing voltage differentials from developing and turning on the switch. The device is organized as two 5-bit switches with separate bus enable (\overline{OE}) signals. When \overline{OE} is LOW, the switch is ON and Port A is connected to Port B. When \overline{OE} is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Features

- $\blacksquare 4\Omega$ switch connection between two ports
- Undershoot Hardened to -2.0V.
- Minimal propagation delay through the switch

May 1999

Revised December 2000


- Low I_{CC}.
- Zero ground bounce in flow-through mode
- Control inputs compatible with TTL level
- See Applications Note AN-5008 for details.

Ordering Code:

Order Number	Package Number	Package Description
FSTU3384WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
FSTU3384QSC	MQA24	24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 Wide
FSTU3384MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Diagram

Connection Diagram

_		\mathcal{O}		
0E1 -	1		24	-v _{cc}
B ₀ —	2		23	— 8 ₉
л _о —	3		22	— A ₉
A1 —	4		21	— A ₈
в, —	5		20	-8 ₈
в2	6		19	- B ₇
A2 -	7		18	- A ₇
A3 —	8		17	_ ∧ ₆
Β3 -	9		16	- 8 ₆
В4 —	10		15	-85
A ₄ —	11		14	— A ₅
GND -	12		13	- OE ₂

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enable
A ₀ -A ₉	Bus A
B ₀ -B ₉	Bus B

Truth Table

OE ₁	OE ₂	B ₀ –B ₄	B ₅ –B ₉	Function	
L	L	A ₀ -A ₄	A ₅ –A ₉	Connect	
L	Н	A ₀ -A ₄	HIGH-Z State	Connect	
Н	L	HIGH-Z State	A ₅ -A ₉	Connect	
Н	Н	HIGH-Z State	HIGH-Z State	Disconnect	

UHC[™] is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS500195

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	-2.0V to +7.0V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) V _{IN} <0V	–50 mA
DC Output (I _{OUT}) Sink Current	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0nS/V to 5nS/V
Switch I/O	0nS/V to DC
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V _{CC} (V)	T _A :	= −40°C to +8	85°C	Units	Condition
			Min	Typ (Note 5)	Max		
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = - 18 mA
V _{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
V _{IL}	LOW Level Input Voltage	4.0-5.5			0.8	V	
I _I	Input Leakage Current	5.5			±1.0	μA	$0 \le V_{IN} \le 5.5V$
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \leq A, \ B \leq V_{CC}, \ V_{IN} = V_{IH}$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_S = 0V$, $I_{IN} = 64 \text{ mA}$
	(Note 4)	4.5		4	7	Ω	$V_S = 0V$, $I_{IN} = 30$ mA
		4.5		8	15	Ω	$V_{S} = 2.4V, I_{IN} = 15 \text{ mA}$
		4.0		11	20	Ω	$V_{S} = 2.4V, I_{IN} = 15 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5			3	μA	$V_{S} = V_{CC} \text{ or GND, } I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	OE input at 3.4V
							Other inputs at V_{CC} or GND
I _{BIAS}	Bias Pin Leakage Current	5.5			±1.0	μA	$\overline{OE} = 0V, B = 0V, BiasV = 5.5V$
I _{OZU}	Switch Undershoot Current	5.5			100	μA	I_{IN} = - 20 mA, \overline{OE} = 5.5V, $V_{OUT} \ge V_{IH}$
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$0.0 \text{ mA} \ge I_{IN} \ge -50 \text{ mA}, \overline{OE} = 5.5 \text{ V}$

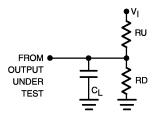
DC Electrical Characteristics

the two (A or B) pins.

Note 5: All typical values are at V_{CC} = 5.0V, T_A = 25°C.

AC Electrical Characteristics

	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF, RU} = \text{RD} = 500\Omega$						Figure
Symbol		$V_{CC} = 4.5 - 5.5 V$		$V_{CC} = 4.0V$		Units	Conditions	No.
		Min	Max	Min	Max			
t _{PHL} , t _{PLH}	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$V_I = OPEN$	Figures 1, 2
t _{PZH} , t _{PZL}	Output Enable Time \overline{OE}_1 , \overline{OE}_2 to A _n , B _n	1.0	5.7		6.2	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 1, 2
t _{PHZ} , t _{PLZ}	Output Disable Time \overline{OE}_1 , \overline{OE}_2 to A_n , B_n	1.5	5.2		5.5	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 1, 2


Note 6: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Input Capacitance	3		pF	$V_{CC} = 5.0V$
C _{I/O} (OFF)	Input/Output Capacitance	5		pF	$V_{CC}, \overline{OE} = 5.0V$

Note 7: Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50 Ω source terminated in 50 $\Omega,$ RU = RD = 500 Ω Note: C_L includes load and stray capacitance, C_L= 50 pF

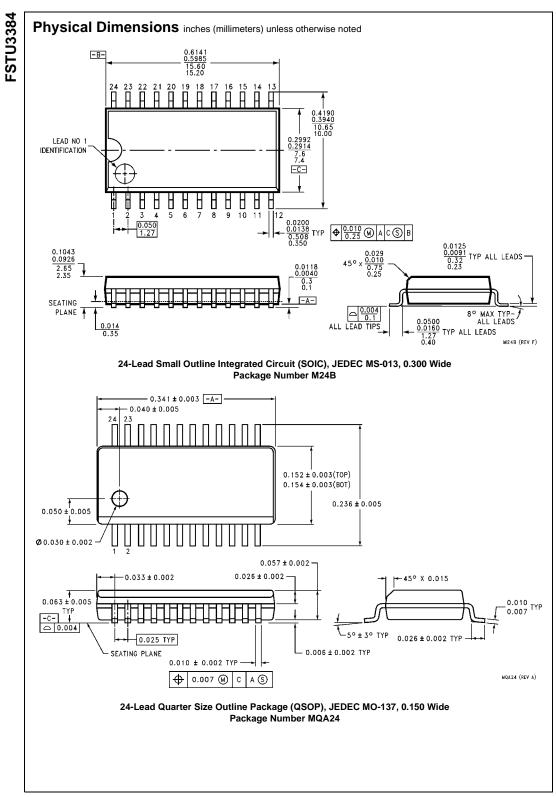
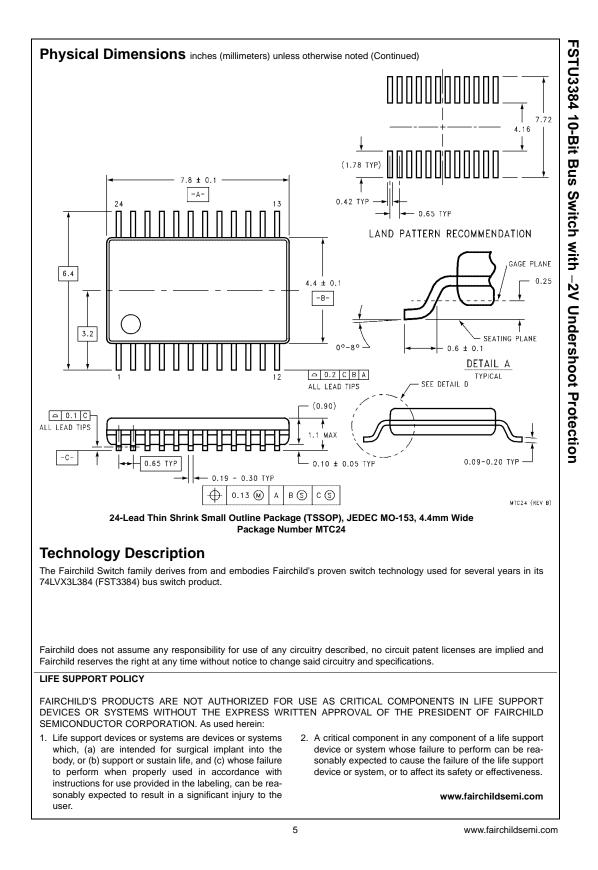

Note: Input PRR = 1.0 MHz, $t_W = 500 \text{ ns}$

FIGURE 1. AC Test Circuit


www.fairchildsemi.com

FSTU3384

www.fairchildsemi.com

4

