

Preliminary

Overview

The LC66E5316 is an on-chip EPROM version of the LC6653XX Series CMOS 4-bit single-chip microcontrollers. The LC66E5316 provides the same functions as the LC665316A, and is pin compatible with that product. Since the LC66E5316 is provided in a window package, it can be reprogrammed repeatedly and is thus optimal for program development.

Features and Functions

- On-chip EPROM capacity of 16 kilobytes, and an onchip RAM capacity of 512×4 bits.
- Fully supports the LC66000 Series common instruction set (128 instructions).
- I/O ports: 42 pins
- A sub-oscillator circuit can be used (option)

This circuit allows power dissipation to be reduced by operating at lower speeds.

- 8-bit serial interface: two circuits (can be connected in cascade to form a 16-bit interface)
- Instruction cycle time: 0.95 to $10 \mu \mathrm{~s}$ (at 4.5 to 5.5 V)
- Powerful timer functions and prescalers
- Time limit timer, event counter, pulse width measurement, and square wave output using a 12-bit timer.
- Time limit timer, event counter, PWM output, and square wave output using an 8 -bit timer.
- Time base function using a 12 -bit prescaler.
- Powerful interrupt system with 8 interrupt factors and 8 interrupt vector locations.
- External interrupts: 3 factors/3 vector locations
- Internal interrupts: 5 factors/5 vector locations
- Flexible I/O functions

16 -value comparator inputs, $20-\mathrm{mA}$ drive outputs, inverter circuits, pull-up and open-drain circuits selectable as options.

- Optional runaway detection function (watchdog timer)
- 8-bit I/O functions
- Power saving functions using halt and hold modes.
- Packages: DIC52S (window), QFC48 (window)
- Evaluation LSIs: LC66599 (evaluation chip) + EVA800/850 - TB662YXX2

Package Dimensions

unit: mm
3225-DIC52S

unit: mm
3157-QFC48

Series Organization

Type No.	No. of pins	ROM capacity	RAM capacity		kage	Features
LC66304A/306A/308A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	Normal versions 4.0 to $6.0 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66404A/406A/408A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	
LC66506B/508B/512B/516B	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64A	
LC66354A/356A/358A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	Low-voltage versions 2.2 to $5.5 \mathrm{~V} / 3.92 \mu \mathrm{~s}$
LC66354S/356S/358S	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W		QFP44M	
LC66556A/558A/562A/566A	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64E	
LC66354B/356B/358B	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	Low-voltage high-speed versions 3.0 to $5.5 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66556B/558B/562B/566B	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64E	
LC66354C/356C/358C	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	2.5 to $5.5 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC662104A/06A/08A	30	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	384 W	DIP30SD	MFP30S	On-chip DTMF generator versions 3.0 to $5.5 \mathrm{~V} / 0.95 \mu \mathrm{~s}$
LC662304A/06A/08A/12A/16A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP42S	QFP48E	
LC662508A/12A/16A	64	$8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64E	
LC665304A/06A/08A/12A/16A	48	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP48S	QFP48E	Dual oscillator support 3.0 to $5.5 \mathrm{~V} / 0.95 \mu \mathrm{~s}$
LC66E308	42	EPROM 8 KB	512 W	DIC42S with window	QFC48 with window	Window and OTP evaluation versions 4.5 to $5.5 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66P308	42	OTPROM 8 KB	512 W	DIP42S	QFP48E	
LC66E408	42	EPROM 8 KB	512 W	DIC42S with window	QFC48 with window	
LC66P408	42	OTPROM 8 KB	512 W	DIP42S	QFP48E	
LC66E516	64	EPROM 16 KB	512 W	DIC64S with window	QFC64 with window	
LC66P516	64	OTPROM 16 KB	512 W	DIP64S	QFP64E	
LC66E2108*	30	EPROM 8 KB	384 W			Window evaluation versions 4.5 to $5.5 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66E2316	42	EPROM 16 KB	512 W	DIC42S with window	QFC48 with window	
LC66E2516	64	EPROM 16 KB	512 W	DIC64S with window	QFC64 with window	
LC66E5316	52/48	EPROM 16 KB	512 W	DIC52S with window	QFC48 with window	
LC66P2108*	30	OTPROM 8 KB	384 W	DIP30SD	MFP30S	OTP 4.0 to $5.5 \mathrm{~V} / 0.95 \mu \mathrm{~s}$
LC66P2316*	42	OTPROM 16 KB	512 W	DIP42S	QFP48E	
LC66P2516	64	OTPROM 16 KB	512 W	DIP64S	QFP64E	
LC66P5316	48	OTPROM 16 KB	512 W	DIP48S	QFP48E	

Note: * Under development

Pin Assignments

DIC52S			
P20/SIO/A0 1	LC66E5316	52	P13/D7
P21/SO0/A1 2		51	P12/D6
P22/SCKO/A2 3		50	P11/D5
P23/INT0/A3 4		49	P10/D4
P30/INT1/A4 5		48	P03/D3
P31/POUTO/A5 6		47	P02/D2
P32/POUT1/A6 7		46	P01/D1
VSS 8		45	P00/D0
OSC1 9		44	PD3/AN4/INV4O
OSC2 10		43	PD2/AN3/INV4I
VDD 11		42	PD1/AN2/INV3O
$\overline{\mathrm{RES}} / \mathrm{VPP} / \mathrm{OE} 12$		41	PD0/AN1/INV3I
PE0/XT1 13		40	PC3/INV2O/DASEC
PE1/XT2 14		39	PC2/INV21/CE
TEST/EPMOD 15		38	PC1
P33/HOLD 16		37	PCO
P40/INVOI/A7 17		36	P83
P41/INV00/A8 18		35	P82
P42/INV11/A9 19		34	P81/DS1
P43/INV1O/A10 20		33	P80/DS0
P50/A11 21		32	P63/PIN1
P51/A12 22		31	P62/SCK1
P52/A13 23		30	P61/SO1
P53/INT2/TA 24		29	P60/SI1
N. C. 25		28	N. C.
N.C. 26		27	N. C.

Usage Notes

The LC66E5316 was created for program development, product evaluation, and prototype development for products based on the LC6653XX Series microcontrollers. Keep the following points in mind when using this product.

1. After a reset

The $\overline{\mathrm{RES}}$ pin must be held low for an additional 3 instruction cycles after the oscillator stabilization period has elapsed. Also, the port output circuit types are set up during the 9 instruction cycles immediately after $\overline{\mathrm{RES}}$ is set high. Only then is the program counter set to 0 and program execution started from that location. (The port output circuits all revert to the open-drain type during periods when $\overline{\mathrm{RES}}$ is low.)

2. Notes on LC6653XX evaluation

The high end of the EPROM area (locations 3 FFOH to 3 FFFH) are the option specification area. Option specification data must be programmed for and loaded into this area. The Sanyo specified cross assembler for this product is the program LC66S.EXE. Also, insert JMP instructions so that user programs do not attempt to execute addresses that exceed the capacity of the mask ROM, and write zeros $(00 \mathrm{H})$ to areas (other than 3 FF 0 H to 3 FFFH) that exceed the actual capacity of the mask ROM.
3. Always apply an opaque seal to the window on the LC66E5316 package when actually using the device.

Main differences between the LC66E5316, LC66P5316, and LC6653XX Series

Item	LC6653XX Series (mask version)	LC66E5316	LC66P5316
Differences in the main characteristics - Operating temperature range	-30 to $+70^{\circ} \mathrm{C}$	+10 to $+40^{\circ} \mathrm{C}$	-30 to $+70^{\circ} \mathrm{C}$
- Operating supply voltage/operating frequency (cycle time)	3.0 to $5.5 \mathrm{~V} / 0.95$ to $10 \mu \mathrm{~s}$ (When the main oscillator is operating) 3.0 to $5.5 \mathrm{~V} / 25$ to $127 \mu \mathrm{~s}$ (When the sub-oscillator is operating)	4.5 to $5.5 \mathrm{~V} / 0.95$ to $10 \mu \mathrm{~s}$ (When the main oscillator is operating) 4.5 to $5.5 \mathrm{~V} / 25$ to $127 \mu \mathrm{~s}$ (When the sub-oscillator is operating)	4.0 to $5.5 \mathrm{~V} / 0.95$ to $10 \mu \mathrm{~s}$ (When the main oscillator is operating) 4.0 to $5.5 \mathrm{~V} / 25$ to $127 \mu \mathrm{~s}$ (When the sub-oscillator is operating)
- Input high-level current ($\overline{\mathrm{RES}}$)	Maximum: $1 \mu \mathrm{~A}$	Typical: $10 \mu \mathrm{~A}$ (normal operation and halt mode) Hold mode: $1 \mu \mathrm{~A}$ maximum	Typical: $10 \mu \mathrm{~A}$ (normal operation and halt mode) Hold mode: 1μ A maximum
- Input low-level current ($\overline{\mathrm{RES}})$	Maximum: $1 \mu \mathrm{~A}$	Typical: $100 \mu \mathrm{~A}$	Typical: $100 \mu \mathrm{~A}$
- Current drain (Operating at 4 MHz) (Operating at 32 kHz) (Halt mode at 4 MHz) (Halt mode at 32 kHz) (Hold mode)	Typical: 10 nA, maximum: $10 \mu \mathrm{~A}$	Larger than that for the mask versions Typical: 10 nA , maximum: $10 \mu \mathrm{~A}$ *	Larger than that for the mask versions Typical: 10 nA , maximum: $10 \mu \mathrm{~A}$ *
Port output types at reset	The output type specified in the options	Open-drain outputs	Open-drain outputs
Package	- DIP48S - QFP48E	- DIC52S window package - QFC48 window package	- DIP48S - QFP48E

Note: * Although the microcontroller will remain in hold mode if the RES pin is set low while it is in hold mode, always use the reset start sequence (after switching HOLD from low to high, switch $\overline{\mathrm{RES}}$ from low to high) when clearing hold mode. Also a current of about $100 \mu \mathrm{~A}$ flows from the $\overline{\mathrm{RES}}$ pin when it is low. This increases the hold mode current drain by about $100 \mu \mathrm{~A}$.

See the data sheets for the individual products for details on other differences.

System Block Diagram

Pin Function Overview

Pin	I/O	Overview	Output driver type	Options	State after a reset	Standby mode operation
$\begin{aligned} & \text { P00/D0 } \\ & \text { P01/D1 } \\ & \text { P02/D2 } \\ & \text { P03/D3 } \end{aligned}$	I/O	I/O ports P00 to P03 - Input or output in 4-bit or 1-bit units - P00 to P03 support the halt mode control function (This function can be specified in bit units.) - Used as data pins in EPROM mode	- Pch: Pull-up MOS type - Nch: Intermediate sink current type	- Pull-up MOS or Nch OD output - Output level on reset	High or low (option)	Hold mode: Output off Halt mode: Output retained
$\begin{aligned} & \text { P10/D4 } \\ & \text { P11/D5 } \\ & \text { P12/D6 } \\ & \text { P13/D7 } \end{aligned}$	I/O	I/O ports P10 to P13 - Input or output in 4-bit or 1-bit units - Used as data pins in EPROM mode	- Pch: Pull-up MOS type - Nch: Intermediate sink current type	- Pull-up MOS or Nch OD output - Output level on reset	High or low (option)	Hold mode: Output off Halt mode: Output retained
$\begin{gathered} \mathrm{P} 20 / \mathrm{SIO} / \mathrm{A} 0 \\ \mathrm{P} 21 / \mathrm{SOO} / \mathrm{A} 1 \\ \mathrm{P} 22 / \mathrm{SCK0} / \\ \mathrm{A} 2 \\ \mathrm{P} 23 / \mathrm{NTO} / \mathrm{A} 3 \end{gathered}$	I/O	I/O ports P20 to P23 - Input or output in 4-bit or 1-bit units - P20 is also used as the serial input SIO pin. - P21 is also used as the serial output SO0 pin. - P22 is also used as the serial clock $\overline{\text { SCKO }}$ pin. - P23 is also used as the INT0 interrupt request pin, and also as the timer 0 event counting and pulse width measurement input. - Used as address pins in EPROM mode	- Pch: CMOS type - Nch: Intermediate sink current type	CMOS or Nch OD output	H	Hold mode: Output off Hold mode: Output off

Continued from preceding page.

Pin	I/O	Overview	Output driver type	Options	State after a reset	Standby mode operation
P30/INT1/A4 P31/POUT0/ A5 P32/POUT1/ A6	I/O	I/O ports P30 to P32 - Input or output in 3-bit or 1-bit units - P30 is also used as the $\overline{\mathrm{NT} 1}$ interrupt request. - P31 is also used for the square wave output from timer 0 . - P32 is also used for the square wave and PWM output from timer 1. - P31 and P32 also support 3-state outputs. - Used as address pins in EPROM mode	- Pch: CMOS type - Nch: Intermediate sink current type	CMOS or Nch OD output	H	Hold mode: Output off Halt mode: Output retained
P33/[OLD	1	Hold mode control input - Hold mode is set up by the HOLD instruction when HOLD is low. - In hold mode, the CPU is restarted by setting $\overline{\mathrm{HOLD}}$ to the high level. - This pin can be used as input port P33 along with P30 to P32. - When the P33/HOLD pin is at the low level, the CPU will not be reset by a low level on the $\overline{R E S}$ pin. Therefore, applications must not set P33/HOLD low when power is first applied.				
P40/INV0I/ A7 P41/INV0O/ A8 P42/INV1I/ A9 P43/INV1O/ A10	I/O	I/O ports P40 to P43 - Input or output in 4-bit or 1-bit units - Input or output in 8-bit units when used in conjunction with P50 to P53. - Can be used for output of 8 -bit ROM data when used in conjunction with P50 to P53. - Dedicated inverter circuit (option) - Used as address pins in EPROM mode	- Pch: Pull-up MOS type - CMOS type when the inverter circuit option is selected - Nch: Intermediate sink current type	- Pull-up MOS or Nch OD output - Output level on reset - Inverter circuit	- High or low (option) - Inverter I/O is set to the output off state.	Hold mode: Port output off, inverter output off Halt mode: Port output retained, inverter output continues
$\begin{gathered} \text { P50/A11 } \\ \text { P51/A12 } \\ \text { P52/A13 } \\ \text { P53/INT2/TA } \end{gathered}$	I/O	I/O ports P50 to P53 - Input or output in 4-bit or 1-bit units - Input or output in 8-bit units when used in conjunction with P40 to P43. - Can be used for output of 8-bit ROM data when used in conjunction with P40 to P43. - P53 is also used as the INT2 interrupt request. - Used as address pins in EPROM mode	- Pch: Pull-up MOS type - Nch: Intermediate sink current type	- Pull-up MOS or Nch OD output - Output level on reset	High or low (option)	Hold mode: Output off Halt mode: Output retained
$\begin{aligned} & \text { P60/SI1 } \\ & \text { P61/SO1 } \\ & \text { P62/SCK1 } \\ & \text { P63/PIN1 } \end{aligned}$	I/O	I/O ports P60 to P63 - Input or output in 4-bit or 1-bit units - P60 is also used as the serial input SI1 pin. - P61 is also used as the serial output SO1 pin. - P62 is also used as the serial clock SCK1 pin. - P63 is also used for the event count input to timer 1.	- Pch: CMOS type - Nch: Intermediate sink current type	- CMOS or Nch OD output	H	Hold mode: Output off Halt mode: Output retained

Continued from preceding page.

Pin	I/O	Overview	Output driver type	Options	State after a reset	Standby mode operation
$\begin{gathered} \text { P80/DS0 } \\ \text { P81/DS1 } \\ \text { P82 } \\ \text { P83 } \end{gathered}$	0	Dedicated output ports P80 to P83 - Output in 4-bit or 1-bit units - The contents of the output latch are input using input instructions. - P80 is a data shaper input (options) - P81 is a data shaper output (options)	- Pch: CMOS type - Nch: Intermediate sink current type	- CMOS or Pch OD output - Output level at reset - Data shaper circuit	High or low (option)	Hold mode: Output off Halt mode: Output retained
PC0 PC1 PC2/INV2I/ $\overline{\mathrm{CE}}$ PC3/INV2O/ DASEC	1/O	I/O ports PC0 to PC3 - Output in 4-bit or 1-bit units - Dedicated inverter circuits (option) - Used as the control $\overline{\mathrm{CE}}$ and DASEC pin in EPROM mode.	- Pch: CMOS type - Nch: Intermediate sink current type	- CMOS or Nch OD output - Inverter circuits	H	Hold mode: Output off Halt mode: Output retained
PD0/AN1/ INV3I PD1/AN2/ INV3O PD2/AN3/ INV4I PD3/AN4/ INV4O	1	Dedicated input ports PD0 to PD3 - Can be switched in software to function as 16 -value analog inputs. - Dedicated inverter circuits (option)	- Only when the inverter circuit option is selected: - Pch: CMOS type - Nch: Intermediate sink current type	Inverter circuits	Normal input	Inverter - Hold mode: Output off - Halt mode: Output continues
$\begin{aligned} & \text { PE0/XT1 } \\ & \text { PE1/XT2 } \end{aligned}$	1	Dedicated input ports and sub-oscillator connections		Sub-oscillator/port PE selection	Option selection	
$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$	I 0	System clock oscillator connections When an external clock is used, leave OSC2 open and connect the clock signal to OSC1.		Ceramic oscillator or external clock selection	Option selection	Hold OSC stop Halt OSC cont
$\frac{\overline{\mathrm{RES}} / \mathrm{V}_{\mathrm{PP}} /}{\overline{\mathrm{OE}}}$	1	System reset input - When the P33//HOLD pin is at the high level, a low level input to the $\overline{\text { RES }}$ pin will initialize the CPU. - Used as the VPP/ $\overline{O E}$ pin in EPROM mode.				
$\begin{aligned} & \text { TEST/ } \\ & \text { EPMOD } \end{aligned}$	I	CPU test pin This pin must be connected to V_{SS} during normal operation.				
$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$		Power supply pins				

Note: Pull-up MOS type: The output circuit includes a MOS transistor that pulls the pin up to V_{DD}
CMOS output: Complementary output.
OD output: Open-drain output.

User Options

1. Port $0,1,4,5$, and 8 output level at reset option

The output levels at reset for I/O ports $0,1,4,5$, and 8 , in independent 4 -bit groups, can be selected from the following two options.

Option	Conditions and notes
1. Output high at reset	The four bits of ports $0,1,4,5$, or 8 are set in a group
2. Output low at reset	The four bits of ports $0,1,4,5$, or 8 are set in a group

2. Oscillator circuit options

- Main clock

Option	Circuit	Conditions and notes
1. External clock	OSC1	The input has Schmitt characteristics
2. Ceramic oscillator	Ceramic oscillator	

Note: There is no RC oscillator option.

- Sub-clock

Option	Circuit	Conditions and notes
1. Ports PEO and PE1		
2 Sub-oscillator (crystal oscillator)	Crystal oscillator	

3. Watchdog timer option

A runaway detection function (watchdog timer) can be selected as an option.
4. Port output type options

- The output type of each bit (pin) in ports P0, P1, P2, P3 (except for the P33/ $\overline{\mathrm{HOLD}}$ pin), P4, P5, P6, and PC can be selected individually from the following two options.

Option	Circuit	Conditions and notes
1. Open-drain output		The port P2, P3, P5, and P6 inputs have Schmitt characteristics.
2. Output with built-in pull-up resistor		The port P2, P3, P5, and P6 inputs have Schmitt characteristics. The CMOS outputs (ports P2, P3, P6, and PC) and the pull-up MOS outputs (P0, P1, P4, and P5) are distinguished by the drive capacity of the p-channel transistor.

- One of the following two options can be selected for P8, in bit units.

Option	Circuit	Conditions and notes
1. Open-drain output		
2. Output with built-in pulldown resistor (CMOS output)		

5. Inverter array circuit option

One of the following options can be selected for each of the following port sets: P40/P41, P42/P43, PC2/PC3, PD0/PD1, and PD2/PD3. (PDs do not use option 1 because they are dedicated to inputs)

1. Normal port I/O circuit
2. Buffer array circuit option

In addition to normal port output, one of the following two options may also be selected for P80 and P81.

Option	Circuit	Conditions and notes
1. Normal port output		When the open-drain output type is selected
		When the built-in pull-down resistor output type is selected (CMOS output)
2. Buffer input (P80) and buffer output (P81) circuits		If this option is selected, the I/O circuit is disabled by the DSB signal. Also note that the open-drain port output type option and the low level at reset option must be selected.
3. Buffer input (P80) and buffer output (P81) circuits with built-in zero-cross detection circuits		If this option is selected, the I/O circuit is disabled by the DSB signal. Also note that the open-drain port output type option and the low level at reset option must be selected.

LC665316 Series Option Data Area and Definitions

ROM area	Bit 7	Option specified		Option/data relationship	
3FFOH		P5	Output level at reset	$0=$ high level, 1 = low level	
	6	P4			
	5	Sub-oscillator option		$0=$ port PE, 1 = crystal oscillator	
	4	Oscillator option		0 = external clock, 1 = ceramic oscillator	
	3	P8	Output level at reset	0 = low level, 1 = high level	
	2	P1			
	1	P0			
	0	Watchdog timer option		0 = none, 1 = yes (present)	
3FF1H	7	P13	Output type	$0=O D, 1=P U$	
	6	P12			
	5	P11			
	4	P10			
	3	P03	Output type	$0=O D, 1=P U$	
	2	P02			
	1	P01			
	0	P00			
3FF2H	7	Unused		This bit must be set to 0 .	
	6	P32	Output type	$0=O D, 1=P U$	
	5	P31			
	4	P30			
	3	P23	Output type	$0=O D, 1=P U$	
	2	P22			
	1	P21			
	0	P20			
3FF3H	7	P53	Output type	$0=O D, 1=P U$	
	6	P52			
	5	P51			
	4	P50			
	3	P43	Output type		
	2	P42		- 1 , 1 - PU	
	1	P41		= OD, 1 = PU	
	0	P40			
3FF4H	7	Unused		This bit must be set to 0 .	
	6				
	5				
	4				
	3	P63	Output type	$0=O D, 1=P U$	
	2	P62			
	1	P61			
	0	P60			
3FF5H	7	Unused		This bit must be set to 0 .	
	6				
	5				
	4				
	3	P83	Output type	$0=O D, 1=P D$	
	2	P82			
	1	P81			
	0	P80			
3FF6H	7	Unused		This bit must be set to 0 .	
	6				
	5				
	4				
	3				
	2	Unused		This bit must be set to 0 .	
	1	Unused		This bit must be set to 0 .	
	0				

Continued from preceding page.

ROM area	Bit	Option specified	Option/data relationship
3FF7H	7	Unused	This bit must be set to 0 .
	6		
	5		
	4		
	3	Output type	$0=\mathrm{OD}, 1=\mathrm{PU}$
	2		
	1		
	0		
3FF8H	7	Unused	This bit must be set to 1 .
	6	Buffer output	0 = used, 1 = none
	5	Buffer output with zero-cross bias input	0 = used, 1 = none
	4	Inverter output	$0=$ inverter output, $1=$ none
	3		
	2		
	1		
	0		
3FF9H	7	Unused	This bit must be set to 0 .
	6		
	5		
	4		
	3	Unused	This bit must be set to 0 .
	2		
	1		
	0		
3FFAH	7	Unused	This bit must be set to 0 .
	6		
	5		
	4		
	3	Unused	This bit must be set to 0 .
	2		
	1		
	0		
3FFBH	7	Unused	This bit must be set to 0 .
	6		
	5		
	4		
	3	Unused	This bit must be set to 0 .
	2		
	1		
	0		
3FFCH	7	Unused	This bit must be set to 0 .
	6		
	5		
	4		
	3	Unused	This bit must be set to 0 .
	2		
	1		
	0		
3FFDH	7	Reserved. Must be set to predefined data values.	This data is generated by the assembler. If the assembler is not used, set this data to ' 00 '.
	6		
	5		
	4		
	3		
	2		
	1		
	0		

Continued from preceding page.

ROM area	Bit	Option specified	Option/data relationship
3FFEH	7	Reserved. Must be set to predefined data values.	This data is generated by the assembler. If the assembler is not used, set this data to ' 00 '.
	6		
	5		
	4		
	3		
	2		
	1		
	0		
3FFFH	7	Reserved. Must be set to predefined data values.	This data is generated by the assembler. If the assembler is not used, set this data to ' 00 '.
	6		
	5		
	4		
	3		
	2		
	1		
	0		

Usage Notes

1. Option specification

When using a Sanyo cross assembler with the LC66E5316, use the version called "LC66S.EXE" and specify the actual microcontroller to be evaluated with the CPU pseudo instruction in the source file. The port options must be specified in the source file. The cross assembler will create an option code list in the option specification area (locations 3FFOH to 3FFFH). It is also possible to directly set up data in the option specification area. If this is done, the options must be specified according to the option code creation table shown on the following page.
2. Writing the EPROM Use a special-purpose writing conversion board (the W66EP5316D for the DIP package, and the W66EP5316Q for the QFP package) to allow the EPROM programmers listed below to be used when writing the data created by the cross assembler to the LC66E5316.

- The EPROM programmers listed below can be used.

Manufacturer	Models that can be used
Advantest	R4945, R4944A, R4943, or equivalent products
Ando	AF9704 $\quad-$
AVAL	
Minato Electronics	MODEL1890A

- The "27512 ($\mathrm{V}_{\mathrm{PP}} 12.5 \mathrm{~V}$) Intel high-speed write" technique must be used to write the EPROM. Set the address range to location 0 to 3FFFH. The DASEC jumper must be off.

3. Using the data security function

The data security function sets up the microcontroller in advance so that data that was written to the microcontroller EPROM cannot be read out.
Use the following procedure to enable the LC66E5316 data security function.

- Set the write conversion board DASEC jumper to the on position.
- Write the data to the EPROM once again.

At this time, since this function will operate, the EPROM programmer will issue an error. However, this error does not indicate that there was a problem in either the programmer or the LSI.
Notes: 1. If the data at all addresses was "FF" at step 2, the data security function will not be activated.
2. The data security function will not be activated at step 2 if the "blank \rightarrow program \rightarrow verify" operation sequence is used.
3. Always return the jumper to the off position after the data security function has been activated.
4. Erase procedure

Use a general-purpose EPROM eraser to erase data written to the EPROM.

LC66E5316 (DIC)

Pin 1 Aligned to the top

SW DASEC

Write board (W66EP5316D)

LC66E5316 (QFC)

Write board (W66EP5316Q)

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit	Note
Maximum supply voltage	V_{DD} max	V_{DD}	-0.3 to +7.0	V	
Input voltage	$\mathrm{V}_{\text {IN }} 1$	P2, P3 (except for the P33/ $\overline{\mathrm{HOLD}} \mathrm{pin}$), P61, and P63	-0.3 to +7.0	V	1
	$\mathrm{V}_{1 \mathrm{~N}}{ }^{2}$	All other inputs	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	2
Output voltage	$\mathrm{V}_{\text {OUT }}{ }^{1}$	P2, P3 (except for the P33//BOLD pin), P61, and P63	-0.3 to +7.0	V	1
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	All other inputs	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	2
Output current per pin	ION1	P0, P1, P2, P3 (except for the P33/갱 pin), P4, P5, P6, P8, PC, PD1, PD3	20	mA	3
	$-_{0 \mathrm{O}} 1$	P0, P1, P4, P5	2	mA	4
	${ }_{-108}{ }^{2}$	P2, P3 (except for the P33//̄OLD pin), P6,P8, and PC	4	mA	4
	${ }^{-1} \mathrm{OP}^{3}$	P41, P43, PC3, PD1, PD3, P81	10	mA	4
Total pin current	$\Sigma \mathrm{ION}^{1}$	P4, P5, P6, P8, PC	75	mA	3
	$\Sigma \mathrm{ION}^{2}$	P0, P1, P2, P3 (except for the P33/HOLD pin), PD1, PD3	75	mA	3
	$\Sigma \mathrm{lOP}^{1}$	P4, P5, P6, P8, PC	25	mA	4
	$\Sigma \mathrm{IOP}^{2}$	P0, P1, P2, P3 (except for the P33/HOLD pin), PD1, PD3	25	mA	4
Allowable power dissipation	Pd max	$\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}$: DIC42S (QFC48)	600 (430)	mW	
Operating temperature	Topr		+10 to +40	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: 1. Applies to pins with open-drain output specifications. For pins with other than open-drain output specifications, the ratings in the pin column for that pin apply.
2. For the oscillator input and output pins, levels up to the free-running oscillation level are allowed.
3. Sink current (Applies to P8 and PD when either the CMOS output specifications or the inverter array specifications have been selected.)
4. Source current (Applies to all pins except P8 and PD for which the pull-up output specifications, the CMOS output specifications, or the inverter array specifications have been selected. Applies to PD pins for which the inverter array specifications have been selected.) Contact your Sanyo representative for the electrical characteristics when the inverter array or buffer array options are specified

Allowable Operating Ranges at $\mathrm{Ta}=+10$ to $+40^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5$ to 5.5 V , unless otherwise specified.

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Operating supply voltage	$V_{\text {DD }}$	$V_{\text {DD }}$	4.5		5.5	V	
Memory retention supply voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{H}$	V_{DD} : During hold mode	1.8		5.5	V	
Input high-level voltage	$\mathrm{V}_{1 \mathrm{H}^{1}}$	P2, P3 (except for the P33/HOLD pin), P61, and P63: N-channel output transistor off	0.8 V ${ }_{\text {DD }}$		+7.0	V	1
	$\mathrm{V}_{1 \mathrm{H}^{2}}$	P33/HOLD, $\overline{R E S}, ~ O S C 1:$ N-channel output transistor off	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	
	$\mathrm{V}_{1 \mathrm{H}^{3}}$	P0, P1, P4, P5, PC, PD, PE: N -channel output transistor off	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	2
Input low-level voltage	$\mathrm{V}_{\text {IL }} 1$	P2, P3 (except for the P33/개OLD pin), P6, $\overline{R E S}$, and OSC1: N-channel output transistor off	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	P33/HOLD: $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }} 3$	P0, P1, P4, P5, PC, PD, PE, TEST: N-channel output transistor off	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\text {DD }}$	V	2
Operating frequency (instruction cycle time)	$\begin{gathered} \text { fop } \\ \text { (Tcyc) } \end{gathered}$	When the main oscillator is operating	$\begin{array}{r} 0.4 \\ (10) \end{array}$		$\begin{array}{r} 4.2 \\ (0.95) \end{array}$	MHz ($\mu \mathrm{s}$)	
		When the sub-oscillator is operating	$\begin{array}{r} 30 \\ (133.2) \end{array}$	$\begin{array}{r} 32.768 \\ (122) \end{array}$	$\begin{aligned} & 100 \\ & (40) \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & (\mu \mathrm{~s}) \end{aligned}$	
[External clock input conditions]							
Frequency	$\mathrm{f}_{\text {ext }}$	OSC1: Defined by Figure 1. Input the clock signal to OSC1 and leave OSC2 open. (External clock input must be selected as the oscillator circuit option.)	0.4		4.20	MHz	
Pulse width	$\mathrm{t}_{\text {exth }}, \mathrm{t}_{\text {extL }}$	OSC1: Defined by Figure 1. Input the clock signal to OSC1 and leave OSC2 open. (External clock input must be selected as the oscillator circuit option.)	100			ns	
Rise and fall times	$\mathrm{t}_{\text {extR }}, \mathrm{t}_{\text {extF }}$	OSC1: Defined by Figure 1. Input the clock signal to OSC1 and leave OSC2 open. (External clock input must be selected as the oscillator circuit option.)			30	ns	

Note: 1. Applies to pins with open-drain specifications. However, $\mathrm{V}_{\mathrm{IH}}{ }^{2}$ applies to the $\mathrm{P} 33 / \overline{\mathrm{HOLD}}$ pin. When ports P2, P3, and P6 have CMOS output specifications they cannot be used as input pins.
2. PC port pins with CMOS output specifications cannot be used as input pins.

Contact your Sanyo representative for the allowable operating ranges for P4, PC, and PD when the inverter array is used, and for P8 when the buffer array is used.
3. Applies to pins with open-drain specifications. However, $\mathrm{V}_{\mathrm{IL}} 2$ applies to the $\mathrm{P} 33 / \overline{\mathrm{HOLD}}$ pin. P2, P3, and P6 port pins with CMOS output specifications cannot be used as input pins.

Electrical Characteristics at $\mathrm{Ta}=+10$ to $+40^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5$ to 5.5 V unless otherwise specified.

Parameter		Symbol	Conditions	min	typ	max	Unit	Note	
Input high-level current		$\mathrm{I}_{\mathrm{IH}} 1$	P2, P3 (except for the P33/근 pin), P61, and P63: $\mathrm{V}_{\mathrm{IN}}=+10.0 \mathrm{~V}$, with the output Nch transistor off			5.0	$\mu \mathrm{A}$	1	
		$\mathrm{I}_{1 \mathrm{H}^{2}}$	P0, P1, P4, P5, P6, PC, OSC1, and P33/ $\overline{\mathrm{HOLD}}$ (Does not apply to PD, PE, PC2, and PC3): $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, with the output Nch transistor off			1.0	$\mu \mathrm{A}$	1	
		$1_{1 H^{3}}$	PD, PC2, PC3, PE0 (When used as a port; does not apply when the sub-oscillator option is selected.): $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$, with the output Nch transistor off			1.0	$\mu \mathrm{A}$	1	
		$\mathrm{I}_{\mathrm{H}} 4$	$\overline{\mathrm{RES}}$: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$, operating, halt mode		10		$\mu \mathrm{A}$	1	
		$\mathrm{I}_{\mathrm{H}} 5$	$\overline{R E S}: \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, hold mode			1.0	$\mu \mathrm{A}$	1	
		${ }_{1+1} 6$	PE1 (When used as a port; does not apply when the sub-oscillator option is selected.) $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}$			1.0	$\mu \mathrm{A}$	1	
Input low-level current		$\mathrm{I}_{\text {IL }} 1$	Input ports other than PD, PE, PC2, and PC3: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, with the output Nch transistor off	-1.0			$\mu \mathrm{A}$	2	
		$\mathrm{I}_{\text {IL }}{ }^{2}$	PD, PC2, PC3, PE0 (When used as a port; does not apply when the sub-oscillator option is selected.): $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, with the output Nch transistor off	-1.0			$\mu \mathrm{A}$	2	
		$\mathrm{I}_{\text {LL }}{ }^{3}$	$\overline{R E S}$: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		100		$\mu \mathrm{A}$	1	
		$\mathrm{I}_{\text {IL }} 4$	PE1 (When used as a port; does not apply when the sub-oscillator option is selected.): $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$		20		$\mu \mathrm{A}$	1	
Output high-level voltage		$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	P2, P3 (except for the P33//HOLD pin), P6, P8, and PC: $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$V_{D D}-1.0$			V	3	
		P2, P3 (except for the P33//̄OLD pin), P6, P8, and PC: $\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$						
Value of the output pull-up	resistor		R_{PO}	P0, P1, P4, P5	30	100	150	k	4
Output low-level voltage		$\mathrm{V}_{\text {OL }}{ }^{1}$	P0, P1, P2, P3, P4, P5, P6, P8, and PC (except for the P33/HOLD pin): $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V	5	
		$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	P0, P1, P2, P3, P4, P5, P6, P8, and PC (except for the P33/HOLD pin): $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			1.5	V		
Output off leakage current		loff 1	P2, P3, P61, P63: $\mathrm{V}_{\text {IN }}=+7.0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$	6	
		loff2	Does not apply to P2, P3, P61, P63, and P8.: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			1.0	$\mu \mathrm{A}$	6	
		lOFF^{3}	P8: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-1.0			$\mu \mathrm{A}$	7	
[Schmitt characteristics]									
Hysteresis voltage		$\mathrm{V}_{\mathrm{HYS}}$	P2, P3, P5, P6, OSC1 (EXT), $\overline{\text { RES }}$		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V		
High-level threshold volta		Vt_{H}		$0.5 \mathrm{~V}_{\mathrm{DD}}$		$0.8 \mathrm{~V}_{\mathrm{DD}}$	V		
Low-level threshold voltage		Vt ${ }_{\text {L }}$		$0.2 \mathrm{~V}_{\text {DD }}$		$0.5 \mathrm{~V}_{\mathrm{DD}}$	V		
[Ceramic oscillator]									
Oscillator frequency		${ }^{\text {f }}$ CF	OSC1, OSC2: Figure 2, 4 MHz		4.0		MHz		
Oscillator stabilization tim		$\mathrm{f}_{\mathrm{CFS}}$	Figure 3, 4 MHz			10.0	ms		
[Crystal oscillator]									
Oscillator frequency		f_{XT}	XT1, XT2: Figure 2, when the sub-oscillator option is selected, 32 kHz		32.768		kHz		
Oscillator stabilization tim		$\mathrm{f}_{\mathrm{XTS}}$	Figure 3, when the sub-oscillator option is selected, 32 kHz		1.0	5.0	S		
[Serial clock]									
Cycle time	Input	${ }^{\text {t }}$ CKCY	$\overline{\text { SCK0 }}, \overline{\text { SCK1 }}$: With the timing of Figure 4 and the test load of Figure 5.	0.9			$\mu \mathrm{s}$		
	Output			2.0			Tcyc		
Low-level and high-level pulse widths	Input	${ }_{\text {t }}$ CKL		0.4			$\mu \mathrm{s}$		
	Output	${ }_{\text {t }}^{\text {CKH }}$		1.0			Tcyc		
Rise an fall times	Output	$\mathrm{t}_{\text {CKR }}, \mathrm{t}_{\text {CKF }}$				0.1	$\mu \mathrm{s}$		
[Serial input]									
Data setup time		$\mathrm{t}_{\text {ICK }}$	SIO, SI1: With the timing of Figure 4. Stipulated with respect to the rising edge (\uparrow) of $\overline{\text { SCK0 }}$ or $\overline{\text { SCK1 }}$.	0.3			$\mu \mathrm{s}$		
Data hold time		${ }^{\text {ckI }}$		0.3			$\mu \mathrm{s}$		

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
[Serial output]							
Output delay time	${ }^{\text {t }}$ CKO	SO0, SO1: With the timing of Figure 5 and the test load of Figure 5. Stipulated with respect to the falling edge (\downarrow) of $\overline{\text { SCK0 }}$ or $\overline{\text { SCK1 }}$.			0.3	$\mu \mathrm{s}$	
[Pulse conditions]							
INT0 high and low-level	$\mathrm{t}_{\mathrm{IOH}}, \mathrm{t}_{\text {IOL }}$	INTO: Figure 6, conditions under which the INTO interrupt can be accepted, conditions under which the timer 0 event counter or pulse width measurement input can be accepted	2			Tcyc	
High and low-level pulse widths for interrupt inputs other than INTO	${ }^{\text {IIIH }}$, $\mathrm{t}_{\text {IIL }}$	$\overline{\mathrm{NT} 1}$, INT2: Figure 6, conditions under which the corresponding interrupt can be accepted	2			Tcyc	
PIN1 high and low-level pulse widths	$\mathrm{t}_{\text {PINH }}, \mathrm{t}_{\text {PINL }}$	PIN1: Figure 6, conditions under which the timer 1 event counter input can be accepted	2			Tcyc	
$\overline{\text { RES }}$ high and low-level pulse widths	$\mathrm{t}_{\text {RSH }}, \mathrm{t}_{\text {RSL }}$	$\overline{\mathrm{RES}}$: Figure 6, conditions under which reset can be applied.	3			Tcyc	
Operating current drain	$\mathrm{I}_{\mathrm{DD} \mathrm{OP}}$	$\mathrm{V}_{\mathrm{DD}}: 4-\mathrm{MHz}$ ceramic oscillator		6.0	12	mA	8
		V_{DD} : 4-MHz external clock		6.0	12	mA	
Halt mode current drain	$I_{\text {DDHALT }}$	$\mathrm{V}_{\mathrm{DD}}: 4-\mathrm{MHz}$ ceramic clock		4	8	mA	
		$\mathrm{V}_{\mathrm{DD}}: 32 \mathrm{kHz}$ (main oscillator stopped), sub-oscillator: crystal		100	500	$\mu \mathrm{A}$	
Hold mode current drain	IDDHOLD	$\mathrm{V}_{\mathrm{DD}}: \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V		0.01	10	$\mu \mathrm{A}$	

Note: 1. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. These pins cannot be used as input pins if the CMOS output specifications are selected.
2. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. The rating for the pull-up output specification pins is stipulated in terms of the output pull-up current IPO. These pins cannot be used as input pins if the CMOS output specifications are selected
3. With the output Nch transistor off for CMOS output specification pins. (Also applies when the Pch open-drain option is selected for P8.)
4. With the output Nch transistor off for pull-up output specification pins.
5. When CMOS output specifications are selected for P8.
6. With the output Nch transistor off for pull-up output specification pins.
7. With the output Pch transistor off for open-drain output specification pins.
8. Reset state

Comparator Characteristics at $\mathbf{T a}=\mathbf{- 3 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Note						
Absolute precision	$\mathrm{V}_{\mathrm{CECM}}$	AN1 to $\mathrm{AN4:} \mathrm{~V}_{\mathrm{DD}}=4.5$ to 5.5 V		$\pm 1 / 2$	± 1	LSB
Threshold voltage	$\mathrm{V}_{\mathrm{THCM}}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$\mathrm{~V}_{\mathrm{SS}}$		V_{DD}	V
Input voltage	$\mathrm{V}_{\text {INCM }}$	AN1 to $\mathrm{AN4:} \mathrm{~V}_{\mathrm{DD}}=4.5$ to 5.5 V	$\mathrm{~V}_{\mathrm{SS}}$		V_{DD}	V
Conversion time	$\mathrm{T}_{\mathrm{CCM}}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			30	$\mu \mathrm{~s}$

Note: 1. Does not include the quantization error.

Figure 1 External Clock Input Waveform

Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Period

Table 1 Guaranteed Ceramic Oscillator Constants External capacitor type

External capacitor type		Built-in capacitor type	
4 MHz (Murata Mfg. Co., Ltd.) CSA4.00MG	$\mathrm{C} 1=33 \mathrm{pF} \pm 10 \%$	4 MHz (Murata Mfg. Co., Ltd.) CST4.00MG	$\mathrm{Rd}=220 \pm 5 \%$
	$\mathrm{C} 2=33 \mathrm{pF} \pm 10 \%$		
	$\mathrm{Rd}=220 \pm 5 \%$		
4 MHz (Kyocera Corporation) KBR4.0MS	$\mathrm{C} 1=33 \mathrm{pF} \pm 10 \%$	4 MHz (Kyocera Corporation) KBR4.0MES	
	$\mathrm{C} 2=33 \mathrm{pF} \pm 10 \%$		
	$\mathrm{Rd}=0$		

Table 2 Guaranteed Crystal Oscillator Constants

32 kHz (Seiko Epson) C-002RX	$\mathrm{C} 1=18 \mathrm{pF} \pm 10 \%$
	$\mathrm{C} 2=18 \mathrm{pF} \pm 10 \%$
	$\mathrm{Rd}=470 \mathrm{k} \pm 5 \%$

Figure 4 Serial I/O Timing

Figure 6 Input Timing for the INTO, $\overline{\text { INT1, }}$ INT2, PIN1, and $\overline{\operatorname{RES}}$ pins

LC66XXXX Series Instruction Table (by function)

Abbreviations:
AC: Accumulator
E: E register
CF: Carry flag
ZF: Zero flag
HL: Data pointer DPH, DPL
XY: Data pointer DPX, DPY
M: Data memory
M (HL): Data memory pointed to by the DPH, DPL data pointer
M (XY): Data memory pointed to by the DPX, DPY auxiliary data pointer
M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPH, DPL data pointer
SP: Stack pointer
M2 (SP): Two words of data memory pointed to by the stack pointer
M4 (SP): Four words of data memory pointed to by the stack pointer
in: $\quad n$ bits of immediate data
t2: Bit specification

t2	11	10	01	00
Bit	2^{3}	2^{2}	2^{1}	2^{0}

PCh: \quad Bits 8 to 11 in the PC
PCm: \quad Bits 4 to 7 in the PC
$\mathrm{PCl}: \quad$ Bits 0 to 3 in the PC
Fn: \quad User flag, $\mathrm{n}=0$ to 15
TIMER0: Timer 0
TIMER1: Timer 1
SIO: Serial register
P: Port
P (i4): \quad Port indicated by 4 bits of immediate data
INT: Interrupt enable flag
(), []: Indicates the contents of a location
$\leftarrow: \quad$ Transfer direction, result
*: Exclusive or
\wedge : Logical and
v : Logical or
+: Addition
-: \quad Subtraction
-: \quad Taking the one's complement

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$D_{7} D_{6} D_{5} D_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Accumulator manipulation instructions]									
CLA	Clear AC	1000	$0 \quad 0 \quad 00$	1	1	$A C \leftarrow 0$ (Equivalent to LAI 0.)	Clear AC to 0.	ZF	Has a vertical skip function.
DAA	Decimal adjust AC in addition	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{array}$	2	2	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+6 \\ & \text { (Equivalent to ADI 6.) } \end{aligned}$	Add six to AC.	ZF	
DAS	Decimal adjust AC in subtraction	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{array}$	2	2	$A C \leftarrow(A C)+10$ (Equivalent to ADI OAH.)	Add 10 to AC.	ZF	
CLC	Clear CF	000001	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1	1	$\mathrm{CF} \leftarrow 0$	Clear CF to 0.	CF	
STC	Set CF	00001	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{CF} \leftarrow 1$	Set CF to 1.	CF	
CMA	Complement AC	$0 \quad 0 \quad 01$	1000	1	1	$\mathrm{AC} \leftarrow \overline{(\overline{A C})}$	Take the one's complement of AC.	ZF	
IA	Increment AC	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	1	1	$\mathrm{AC} \leftarrow(\mathrm{AC})+1$	Increment AC.	ZF, CF	
DA	Decrement AC	000	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	1	1	$\mathrm{AC} \leftarrow(\mathrm{AC})-1$	Decrement AC.	ZF, CF	
RAR	Rotate $A C$ right through CF	0	0000	1	1	$\begin{aligned} & \mathrm{AC}_{3} \leftarrow(\mathrm{CF}), \\ & \mathrm{ACn} \leftarrow(\mathrm{ACn}+1), \\ & \mathrm{CF} \leftarrow\left(\mathrm{AC}_{0}\right) \end{aligned}$	Shift AC (including CF) right.	CF	
RAL	Rotate AC left through CF	0000	$0 \quad 0 \quad 0 \quad 1$	1	1	$\begin{aligned} & \mathrm{AC}_{0} \leftarrow(\mathrm{CF}), \\ & \mathrm{ACn}+1 \leftarrow(\mathrm{ACn}), \\ & \mathrm{CF} \leftarrow\left(\mathrm{AC}_{3}\right) \\ & \hline \end{aligned}$	Shift AC (including CF) left.	CF, ZF	
TAE	Transfer AC to E	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1	1	$\mathrm{E} \leftarrow(\mathrm{AC})$	Transfer the contents of AC to E.		
TEA	Transfer E to AC	00100	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1	1	$\mathrm{AC} \leftarrow(\mathrm{E})$	Transfer the contents of E to AC.	ZF	
XAE	Exchange AC with E	0100	0100	1	1	$(\mathrm{AC}) \leftrightarrow(\mathrm{E})$	Exchange the contents of $A C$ and E.		
[Memory manipulation instructions]									
IM	Increment M	$0 \quad 0 \quad 01$	0 0 010	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{HL}) \leftarrow \\ & {[\mathrm{M}(\mathrm{HL})]+1} \end{aligned}$	Increment M (HL).	ZF, CF	
DM	Decrement M	0 0 010	$0 \quad 0 \quad 10$	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{HL}) \leftarrow \\ & {[\mathrm{M}(\mathrm{HL})]-1} \end{aligned}$	Decrement M (HL).	ZF, CF	
IMDR i8	Increment M direct	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{cccc} \hline 0 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\mathrm{M}(\mathrm{i8)}$) $\leftarrow[\mathrm{M}(\mathrm{i8)}]+1$	Increment M (i8).	ZF, CF	
DMDR i 8	Decrement M direct	$\begin{array}{\|cccc\|} \hline 1 & 1 & 0 & 0 \\ \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} \\ \hline \end{array}$	$\begin{array}{cccc} \hline 0 & 0 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\mathrm{M}(\mathrm{i8)}$) $\leftarrow[\mathrm{M}(\mathrm{i} 8)]-1$	Decrement M (i8).	ZF, CF	
SMB t2	Set M data bit	0000	$11 t_{1} t_{0}$	1	1	[$\mathrm{M}(\mathrm{HL}), \mathrm{t} 2] \leftarrow 1$	Set the bit in $M(H L)$ specified by t 0 and t 1 to 1 .		
RMB t2	Reset M data bit	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	$\begin{array}{lllll}1 & 1 & t_{1} & t_{0}\end{array}$	1	1	[$\mathrm{M}(\mathrm{HL}), \mathrm{t} 2] \leftarrow 0$	Clear the bit in M(HL) specified by t0 and t 1 to 0 .	ZF	
[Arithmetic, logic and comparison instructions]									
AD	Add M to AC	0000	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+ \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Add the contents of AC and M (HL) as two's complement values and store the result in $A C$.	ZF, CF	
ADDR i8	Add M direct to AC	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \end{array}$	$\begin{array}{cccc} 1 & 0 & 0 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2	2	$A C \leftarrow(A C)+[M(i 8)]$	Add the contents of AC and M (i8) as two's complement values and store the result in AC.	ZF, CF	
ADC	Add M to AC with CF	0000	0 0 010	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+ \\ & {[\mathrm{M}(\mathrm{HL})]+(\mathrm{CF})} \end{aligned}$	Add the contents of AC, $M(H L)$ and C as two's complement values and store the result in AC.	ZF, CF	
ADI i4	Add immediate data to AC	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{cccc} 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2	2	$\begin{aligned} & A C \leftarrow(A C)+ \\ & I_{3}, I_{2}, I_{1}, I_{0} \end{aligned}$	Add the contents of AC and the immediate data as two's complement values and store the result in AC.	ZF	
SUBC	Subtract AC from M with CF	$0 \quad 0 \quad 01$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{HL})]- \\ & (\mathrm{AC})-(\mathrm{CF}) \end{aligned}$	Subtract the contents of AC and $\overline{\mathrm{CF}}$ from $\mathrm{M}(\mathrm{HL})$ as two's complement values and store the result in AC.	ZF, CF	CF will be zero if there was a borrow and one otherwise.
ANDA	And M with $A C$ then store AC	0000	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \wedge \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical and of AC and $M(\mathrm{HL})$ and store the result in AC.	ZF	
ORA	Or M with AC then store AC	0000	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \vee \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical or of AC and $\mathrm{M}(\mathrm{HL})$ and store the result in AC.	ZF	

Continued from preceding page.

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description		Affected status bits	Note
		$D_{7} D_{6} D_{5} D_{4}$	$D_{3} D_{2} D_{1} D_{0}$							
[Load and store instructions]										
LA reg, I	Load AC from M (reg) then increment reg	01100	$10 t_{0} 1$	1	2	$\begin{aligned} & \mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{reg})] \\ & \mathrm{DP} \mathrm{~L}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{~L}_{\mathrm{L}}\right)+1 \\ & \text { or } \mathrm{DP} \mathrm{Y} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{Y}}\right)+1 \end{aligned}$	Load into A or XY. conten The re and re for the	contents of M (reg) The reg is either HL Then increment the of either DP_{L} or DP_{Y}. onship between t_{0} the same as that reg instruction.	ZF	ZF is set according to the result of incrementing $D P_{L}$ or DP_{Y}.
LA reg, D	Load AC from M (reg) then decrement reg	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	$10 t_{0} 1$	1	2	$\begin{aligned} & \mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{reg})] \\ & \mathrm{DP} \mathrm{~L}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{~L}_{\mathrm{L}}\right)-1 \\ & \text { or } \mathrm{DP} \mathrm{Y}_{\mathrm{Y}} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{Y}}\right)-1 \end{aligned}$	Load th into AC. or XY. conten The re and re for the	contents of M (reg) The reg is either HL hen decrement the of either DP_{L} or DP_{Y}. onship between t_{0} is the same as that reg instruction.	ZF	ZF is set according to the result of decrementing $D P_{L}$ or DP_{Y}.
XA reg	Exchange AC with M (reg)	01100	$11 t_{0} 0$	1	1	$(\mathrm{AC}) \leftrightarrow[\mathrm{M}(\mathrm{reg})]$	Exchan M (reg) The reg dependi	the contents of and $A C$. either HL or XY on t_{0}.		
XA reg, I	Exchange AC with M (reg) then increment reg	01100	$11 t_{0} 1$	1	2	$\begin{aligned} & (\mathrm{AC}) \leftrightarrow[\mathrm{M}(\mathrm{reg})] \\ & \mathrm{DP} \mathrm{~L}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{~L}_{\mathrm{L}}\right)+1 \\ & \text { or } \mathrm{DP}_{\mathrm{Y}} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{Y}}\right)+1 \end{aligned}$	Excha M (reg) either increm either relatio reg is the XA	the contents of nd AC. (The reg is or XY.) Then the contents of or DP_{Y}. The ip between t_{0} and same as that for ginstruction.	ZF	ZF is set according to the result of incrementing $D P_{L}$ or DP_{Y}.
XA reg, D	Exchange AC with M (reg) then decrement reg	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	$11 t_{0} 1$	1	2	$\begin{aligned} & (\mathrm{AC}) \leftrightarrow[[\mathrm{M}(\mathrm{reg})] \\ & \mathrm{DP} \mathrm{~L} \leftarrow\left(\mathrm{DP} \mathrm{~L}_{\mathrm{L}}\right)-1 \\ & \text { or } \mathrm{DP} \mathrm{P}_{\mathrm{Y}} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{Y}}\right)-1 \end{aligned}$	Exchan M (reg) either H decrem either D relation reg is th the XA	the contents of and $A C$. (The reg is or XY.) Then the contents of or DP ${ }_{\gamma}$. The ip between t_{0} and same as that for g instruction.	ZF	ZF is set according to the result of decrementing $D P_{L}$ or D_{Y}.
XADR i8	Exchange AC with M direct	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 0 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$(\mathrm{AC}) \leftrightarrow[\mathrm{M}$ (i) $]$	Exch and M	the contents of AC		
LEAI i8	Load E \& AC with immediate data	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{cccc} \hline 0 & 1 & 1 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\begin{aligned} & \mathrm{E} \leftarrow I_{7} I_{6} I_{5} I_{4} \\ & \mathrm{AC} \leftarrow I_{3} I_{2} I_{1} I_{0} \\ & \hline \end{aligned}$	Load into	mmediate data i8		
RTBL	Read table data from program ROM	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1	2	$\mathrm{E}, \mathrm{AC} \leftarrow$ [ROM (PCh, E, AC)]	Load i at the replac the PC	E, AC the ROM data ation determined by the lower 8 bits of th E, AC.		
RTBLP	Read table data from program ROM then output to P4, 5	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1000	1	2	Port 4, $5 \leftarrow$ [ROM (PCh, E, AC)]	Output ROM d determi lower 8 E, AC.	ports 4 and 5 the at the location d by replacing the its of the PC with		
[Data pointer manipulation instructions]										
LDZ i4	Load DP_{H} with zero and $D P_{L}$ with immediate data respectively	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	$\begin{array}{lllll}l_{3} & l_{2} & l_{1} & l_{0}\end{array}$	1	1	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{DPL} \leftarrow I_{3} I_{2} I_{1} I_{0} \end{aligned}$	Load ze immedi	into DP_{H} and the data i4 into DP_{L}.		
LHI i4	Load $D P_{H}$ with immediate data	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ l_{3} & I_{2} & I_{1} & l_{0} \\ \hline \end{array}$	2	2	$\mathrm{DP}_{H} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	Load the into DP	immediate data i4		
LLI i4	Load DP $_{L}$ with immediate data	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$D P_{L} \leftarrow I_{3} I_{2} I_{1} I_{0}$	Load th into DP	immediate data i4		
LHLI i8	Load $\mathrm{DP}_{\mathrm{H}}, \mathrm{DP}_{\mathrm{L}}$ with immediate data	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} \\ \hline \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\begin{aligned} & D P_{H} \leftarrow I_{7} I_{6} I_{5} I_{4} \\ & D P_{L} \leftarrow I_{3} I_{2} I_{1} I_{0} \end{aligned}$	Load th $\mathrm{DL}_{\mathrm{H}}, \mathrm{DI}$	immediate data into		
LXYI i8	Load $D P_{X}, D P_{Y}$ with immediate data	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} \\ \hline \end{array}$	$\begin{array}{cccc} \hline 0 & 0 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\begin{aligned} & D P_{X} \leftarrow I_{7} I_{6} I_{5} I_{4} \\ & D P_{Y} \leftarrow I_{3} I_{2} I_{1} I_{0} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Load the } \\ \mathrm{DL}_{\mathrm{X}}, \mathrm{DF} \\ \hline \end{array}$	immediate data into		

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$D_{7} D_{6} D_{5} D_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Data pointer manipulation instructions]									
IL	Increment DP_{L}	$0 \quad 0001$	$0 \quad 0 \quad 0 \quad 1$	1	1	$D P_{L} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)+1$	Increment the contents of $D P_{L}$.	ZF	
DL	Decrement DP_{L}	$0 \begin{array}{llll}0 & 1 & 0\end{array}$	$0 \quad 0001$	1	1	$\mathrm{DP} \mathrm{L}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)-1$	Decrement the contents of $D P_{L}$.	ZF	
IY	Increment DPY	$0 \quad 0001$	$0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$D P_{Y} \leftarrow\left(P_{Y}\right)+1$	Increment the contents of $D P_{Y}$.	ZF	
DY	Decrement DP ${ }_{Y}$	$0 \quad 0010$	$0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$D P_{Y} \leftarrow\left(P_{Y}\right)-1$	Decrement the contents of DP_{Y}.	ZF	
TAH	Transfer AC to DP_{H}	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}$	2	2	$\mathrm{DP}_{\mathrm{H}} \leftarrow(\mathrm{AC})$	Transfer the contents of AC to DP_{H}.		
THA	Transfer DPH to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	2	2	$\mathrm{AC} \leftarrow\left(\mathrm{DP}_{\mathrm{H}}\right)$	Transfer the contents of DP_{H} to AC.	ZF	
XAH	Exchange AC with DP_{H}	01000	$0 \quad 0 \quad 00$	1	1	$(\mathrm{AC}) \leftrightarrow\left(\mathrm{DP}_{\mathrm{H}}\right)$	Exchange the contents of AC and DP_{H}.		
TAL	Transfer AC to DP ${ }_{\text {L }}$	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}$	2	2	$D P_{L} \leftarrow(\mathrm{AC})$	Transfer the contents of AC to DP_{L}.		
TLA	Transfer DP ${ }_{\text {L }}$ to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}$	2	2	$\mathrm{AC} \leftarrow(\mathrm{DPL})$	Transfer the contents of DP_{L} to AC.	ZF	
XAL	Exchange AC with DP_{L}	01100	$0 \quad 0 \quad 0 \quad 1$	1	1	$(\mathrm{AC}) \leftrightarrow(\mathrm{DPL})$	Exchange the contents of AC and DP_{L}.		
TAX	Transfer AC to DP ${ }_{\text {X }}$	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0\end{array}$	2	2	$\mathrm{DP} \mathrm{x} \leftarrow(\mathrm{AC})$	Transfer the contents of AC to DP_{X}.		
TXA	Transfer DP ${ }_{\text {X }}$ to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0\end{array}$	2	2	$A C \leftarrow\left(P^{\prime} x\right)$	Transfer the contents of $D P_{X}$ to AC.	ZF	
XAX	Exchange AC with DP_{X}	01100	0 0 010	1	1	$(\mathrm{AC}) \leftrightarrow(\mathrm{DPx})$	Exchange the contents of AC and DP_{X}.		
TAY	Transfer AC to DP ${ }_{Y}$	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}$	2	2	$\mathrm{DP}_{Y} \leftarrow(\mathrm{AC})$	Transfer the contents of AC to DP_{Y}.		
TYA	Transfer DPY to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}$	2	2	$\mathrm{AC} \leftarrow\left(\mathrm{DP}_{\mathrm{Y}}\right)$	Transfer the contents of DP_{Y} to AC.	ZF	
XAY	Exchange AC with DP_{Y}	01100	$0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$(\mathrm{AC}) \leftrightarrow(\mathrm{DPY})$	Exchange the contents of AC and DP_{Y}.		
[Flag manipulation instructions]									
SFB $n 4$	Set flag bit	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	$n_{3} n_{2} n_{1} n_{0}$	1	1	$\mathrm{Fn} \leftarrow 1$	Set the flag specified by n 4 to 1 .		
RFB n4	Reset flag bit	$0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}$	$n_{3} n_{2} n_{1} n_{0}$	1	1	$\mathrm{Fn} \leftarrow 0$	Reset the flag specified by n 4 to 0 .	ZF	
[Jump and subroutine instructions]									
JMP addr	Jump in the current bank	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 1 & 0 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{aligned} & P_{11} P_{10} P_{9} P_{8} \\ & P_{3} P_{2} P_{1} P_{0} \end{aligned}\right.$	2	2	$\begin{aligned} & \mathrm{PC} 13,12 \leftarrow \\ & \mathrm{PC} 13,12 \\ & \mathrm{PC} 11 \text { to } 0 \leftarrow \\ & \mathrm{P}_{11} \text { to } \mathrm{P}_{8} \end{aligned}$	Jump to the location in the same bank specified by the immediate data P12.		This becomes PC12 + ($\overline{\mathrm{PC} 12})$ immediately following a BANK instruction.
JPEA	Jump to the address stored at E and AC in the current page	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{PC} 13 \text { to } 8 \leftarrow \\ & \text { PC13 to } 8, \\ & \text { PC7 to } 4 \leftarrow(\mathrm{E}), \\ & \text { PC3 to } 0 \leftarrow(\mathrm{AC}) \end{aligned}$	Jump to the location determined by replacing the lower 8 bits of the PC by E, AC.		
CAL addr	Call subroutine	$\left\|\begin{array}{cccc} 0 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right\|$	$\begin{gathered} 0 P_{10} P_{9} P_{8} \\ P_{3} P_{2} P_{1} P_{0} \end{gathered}$	2	2	$\begin{aligned} & \mathrm{PC} 13 \text { to } 11 \leftarrow 0, \\ & \mathrm{PC} 10 \text { to } 0 \leftarrow \\ & \mathrm{P}_{10} \text { to } \mathrm{P}_{0}, \\ & \mathrm{M} 4(\mathrm{SP}) \leftarrow \\ & (\mathrm{CF}, \mathrm{ZF}, \mathrm{PC} 13 \text { to } 0), \\ & \mathrm{SP} \leftarrow(\mathrm{SP})-4 \\ & \hline \end{aligned}$	Call a subroutine.		
$\begin{aligned} & \text { CZP } \\ & \text { addr } \end{aligned}$	Call subroutine in the zero page	10010	$P_{3} P_{2} P_{1} P_{0}$	1	2	$\begin{aligned} & \text { PC13 to } 6, \\ & \text { PC10 } \leftarrow 0, \\ & \text { PC5 to } 2 \leftarrow P_{3} \text { to } P_{0}, \\ & \text { M4 (SP) } \leftarrow \\ & (C F, Z F, \text { PC12 to } 0), \\ & \text { SP } \leftarrow \text { SP-4 } \end{aligned}$	Call a subroutine on page 0 in bank 0.		
BANK	Change bank	0	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1	1		Change the memory bank and register bank.		

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description		Affected status bits	Note
		$D_{7} D_{6} D_{5} D_{4}$	$D_{3} D_{2} D_{1} D_{0}$							
[Jump and subroutine instructions]										
							Store the con M2 (SP). Su after the stor	s of reg in 2 from SP		
PUSH		$1 \begin{array}{llll}1 & 1 & 0 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$			M2 (SP) \leftarrow (reg)	reg			
reg	Push reg on M2 (S	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & i_{1} & i_{0} & 0\end{array}$	2	2	$\mathrm{SP} \leftarrow(\mathrm{SP})-2$	HL XY AE Illegal value	$\begin{array}{ll\|} \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{POP} \\ & \text { reg } \end{aligned}$	Pop reg off M2 (SP)	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & i_{1} & i_{0} & 0 \end{array}$	2	2	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})+2 \\ & \mathrm{reg} \leftarrow[\mathrm{M} 2(\mathrm{SP})] \end{aligned}$	Add 2 to SP contents of M The relation b reg is the sam PUSH reg ins	then load the P) into reg. een i1i0 and s that for the tion.		
RT	Return from subroutine	$0 \quad 0 \quad 0 \quad 1$	1100	1	2	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})+4 \\ & \mathrm{PC} \leftarrow[\mathrm{M} 4 \text { (SP)] } \end{aligned}$	Return from interrupt han and CF are	broutine or routine. ZF restored.		
RTI	Return from interrupt routine	0	$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	1	2	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})+4 \\ & \mathrm{PC} \leftarrow[\mathrm{M} 4(\mathrm{SP})] \\ & \mathrm{CF}, \mathrm{ZF} \leftarrow[\mathrm{M} 4(\mathrm{SP})] \\ & \hline \end{aligned}$	Return from interrupt han and CF are	broutine or routine. ZF red.	ZF, CF	
[Branch instructions]										
BAt2 addr	Branch on AC bit	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{AC}, \mathrm{t} 2)=1 \end{aligned}$	Branch to the same page sp P_{0} if the bit in the immediate	ation in the fied by P_{7} to specified by a $t_{1} t_{0}$ is one.		
BNAt2 addr	Branch on no AC bit	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }(A C, t 2)=0 \end{aligned}$	Branch to the same page sp P_{0} if the bit in the immediate	ation in the fied by P_{7} to specified by $t_{1} t_{0}$ is zero		
BMt2 addr	Branch on M bit	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }[M(H L), \text { t2] } \\ & =1 \end{aligned}$	Branch to the same page sp P_{0} if the bit in by the immed is one.	ation in the fied by P_{7} to HL) specified data $t_{1} t_{0}$		
BNMt2 addr	Branch on no M bit	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }[M(H L), t 2] \\ & \quad=0 \end{aligned}$	Branch to the same page s P_{0} if the bit in by the immed is zero.	ation in the fied by P_{7} to HL) specified data $t_{1} t_{0}$		
BPt2 addr	Branch on Port bit	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{P}\left(\mathrm{DP} \mathrm{P}_{\mathrm{L}}\right), \mathrm{t} 2\right] \\ & \quad=1 \end{aligned}$	Branch to the same page sp P_{0} if the bit in specified by the data $t_{1} t_{0}$ is o	ation in the fied by P_{7} to (DP_{L}) mmediate		Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.
BNPt2 addr	Branch on no Port bit	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{P}\left(\mathrm{DP} \mathrm{P}_{\mathrm{L}}\right), \mathrm{t} 2\right] \\ & \quad=0 \end{aligned}$	Branch to the same page s P_{0} if the bit in specified by data $t_{1} t_{0}$ is z	ation in the ified by P_{7} to (DP_{L}) mmediate		Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Branch instructions]									
BC addr	Branch on CF	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{CFF})=1 \end{aligned}$	Branch to the location in the same page specified by P_{7} to P_{0} if $C F$ is one.		
BNC addr	Branch on no CF	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{CF})=0 \end{aligned}$	Branch to the location in the same page specified by P_{7} to P_{0} if CF is zero.		
BZ addr	Branch on ZF	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{ZF})=1 \end{aligned}$	Branch to the location in the same page specified by P_{7} to P_{0} if $Z F$ is one.		
BNZ addr	Branch on no ZF	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{ZF})=0 \end{aligned}$	Branch to the location in the same page specified by P_{7} to P_{0} if $Z F$ is zero.		
BFn4 addr	Branch on flag bit	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 1 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\begin{array}{lll} n_{3} & n_{2} & n_{1} \\ n_{0} \\ P_{3} & P_{2} & P_{1} \end{array} P_{0}$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }(\mathrm{Fn})=1 \end{aligned}$	Branch to the location in the same page specified by P_{0} to P_{7} if the flag (of the 16 user flags) specified by $n_{3} n_{2} n_{1} n_{0}$ is one.		
BNFn4 addr	Branch on no flag bit	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\begin{array}{lll} n_{3} & n_{2} & n_{1} \\ n_{0} \\ P_{3} & P_{2} & P_{1} \end{array} P_{0}$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }(\mathrm{Fn})=0 \end{aligned}$	Branch to the location in the same page specified by P_{0} to P_{7} if the flag (of the 16 user flags) specified by $n_{3} n_{2} n_{1} n_{0}$ is zero.		
[l/O instructions]									
IP0	Input port 0 to AC	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	$0 \quad 0000$	1	1	$\mathrm{AC} \leftarrow(\mathrm{P} 0)$	Input the contents of port 0 to AC.	ZF	
IP	Input port to AC	$0 \quad 0 \quad 10$	0	1	1	$\mathrm{AC} \leftarrow\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)\right]$	Input the contents of port $P\left(D P_{L}\right)$ to $A C$.	ZF	
IPM	Input port to M	0	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	1	1	$\mathrm{M}(\mathrm{HL}) \leftarrow\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)\right]$	Input the contents of port P (DP_{L}) to $\mathrm{M}(\mathrm{HL})$.		
IPDR i4	Input port to AC direct	$\begin{array}{\|llll} \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ l_{3} & I_{2} & I_{1} & l_{0} \\ \hline \end{array}$	2	2	$\mathrm{AC} \leftarrow[\mathrm{P}(\mathrm{i4)}]$	Input the contents of P (i4) to AC.	ZF	
IP45	Input port 4, 5 to E, AC respectively	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	2	2	$\begin{aligned} & E \leftarrow[P(4)] \\ & A C \leftarrow[P(5)] \end{aligned}$	Input the contents of ports P (4) and $P(5)$ to E and $A C$ respectively.		
OP	Output AC to port	$0 \quad 0 \quad 10$	0	1	1	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right) \leftarrow(\mathrm{AC})$	Output the contents of AC to port $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$.		
OPM	Output M to port	$0 \quad 0 \quad 0 \quad 1$	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1	1	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right) \leftarrow[\mathrm{M}(\mathrm{HL})]$	Output the contents of $\mathrm{M}(\mathrm{HL})$ to port $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$.		
OPDR i 4	Output AC to port direct	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ l_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\mathrm{P}(\mathrm{i} 4) \leftarrow(\mathrm{AC})$	Output the contents of AC to P (i4).		
OP45	Output E, AC to port 4, 5 respectively	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}$	2	2	$\begin{aligned} & P(4) \leftarrow(E) \\ & P(5) \leftarrow(A C) \end{aligned}$	Output the contents of E and $A C$ to ports P (4) and $P(5)$ respectively.		
SPB t2	Set port bit	0000	$10 t_{1} t_{0}$	1	1	$\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right), \mathrm{t} 2\right] \leftarrow 1$	Set to one the bit in port $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$ specified by the immediate data $t_{1} t_{0}$.		
RPB t2	Reset port bit	0	$10 t_{1} t_{0}$	1	1	$\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right), \mathrm{t} 2\right] \leftarrow 0$	Clear to zero the bit in port $P\left(D P_{L}\right)$ specified by the immediate data $\mathrm{t}_{1} \mathrm{t}_{0}$.	ZF	
ANDPDR i4, p4	And port with immediate data then output	$\left\lvert\, \begin{array}{llll} 1 & 1 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}\right.$	$\left\|\begin{array}{cccc} 0 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & P\left(P_{3} \text { to } P_{0}\right) \leftarrow \\ & {\left[P\left(P_{3} \text { to } P_{0}\right)\right] V} \\ & I_{3} \text { to } I_{0} \end{aligned}$	Take the logical AND of $P\left(P_{3}\right.$ to P_{0}) and the immediate data $I_{3} I_{2} I_{1} I_{0}$ and output the result to $\mathrm{P}\left(\mathrm{P}_{3}\right.$ to $\left.\mathrm{P}_{0}\right)$.	ZF	
ORPDR i4, p4	Or port with immediate data then output	$\left\lvert\, \begin{array}{llll} 1 & 1 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & P\left(P_{3} \text { to } P_{0}\right) \leftarrow \\ & {\left[P\left(P_{3} \text { to } P_{0}\right)\right] \vee} \\ & I_{3} \text { to } I_{0} \end{aligned}$	Take the logical OR of $P\left(P_{3}\right.$ to P_{0}) and the immediate data $I_{3} I_{2} I_{1} I_{0}$ and output the result to $P\left(P_{3}\right.$ to $\left.P_{0}\right)$.	ZF	

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Timer control instructions]									
WTTM0	Write timer 0	1100	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1	2	$\begin{aligned} & \text { TIMER0 } \leftarrow[\mathrm{M} 2(\mathrm{HL})], \\ & (\mathrm{AC}) \end{aligned}$	Write the contents of M2 (HL), AC into the timer 0 reload register.		
WTTM1	Write timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	2	2	TIMER1 $\leftarrow(\mathrm{E}),(\mathrm{AC})$	Write the contents of E, AC into the timer 1 reload register A.		
RTIMO	Read timer 0	1100	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1	2	$\begin{aligned} & \text { M2 (HL), } \\ & \text { AC (TIMERO) } \end{aligned}$	Read out the contents of the timer 0 counter into M2 (HL), AC.		
RTIM1	Read timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}$	2	2	$\mathrm{E}, \mathrm{AC} \leftarrow(\mathrm{TIMER1})$	Read out the contents of the timer 1 counter into E, AC.		
START0	Start timer 0	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}$	2	2	Start timer 0 counter	Start the timer 0 counter.		
START1	Start timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{array}$	2	2	Start timer 1 counter	Start the timer 1 counter.		
STOPO	Stop timer 0	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}$	2	2	Stop timer 0 counter	Stop the timer 0 counter.		
STOP1	Stop timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}$	2	2	Stop timer 1 counter	Stop the timer 1 counter.		
[Interrupt control instructions]									
MSET	Set interrupt master enable flag	$\begin{array}{\|llll\|} \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	2	2	MSE $\leftarrow 1$	Set the interrupt master enable flag to one.		
MRESET	Reset interrupt master enable flag	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	2	2	MSE $\leftarrow 0$	Clear the interrupt master enable flag to zero.		
EIH i4	Enable interrupt high	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}$	$\begin{array}{\|cccc} \hline 1 & 1 & 0 & 1 \\ l_{3} & I_{2} & l_{1} & I_{0} \\ \hline \end{array}$	2	2	EDIH $\leftarrow($ EDIH $) \vee$ i4	Set the interrupt enable flag to one.		
EIL i4	Enable interrupt low	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	EDIL $\leftarrow($ EDIL $) \vee$ i4	Set the interrupt enable flag to one.		
DIH i4	Disable interrupt high	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	EDIH $\leftarrow($ EDIH $) \wedge \bar{i}$	Clear the interrupt enable flag to zero.	ZF	
DIL i4	Disable interrupt low	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}$	$\begin{array}{\|cccc\|} \hline 1 & 1 & 0 & 1 \\ \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0} \\ \hline \end{array}$	2	2	EDIL $\leftarrow($ EDIL $) \wedge \overline{\mathrm{i}}$	Clear the interrupt enable flag to zero.	ZF	
WTSP	Write SP	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0\end{array}$	2	2	$\mathrm{SP} \leftarrow(\mathrm{E}),(\mathrm{AC})$	Transfer the contents of E, AC to SP.		
RSP	Read SP	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right.$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}$	2	2	$\mathrm{E}, \mathrm{AC} \leftarrow(\mathrm{SP})$	Transfer the contents of SP to E, AC.		
[Standby control instructions]									
HALT	HALT	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right.$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}$	2	2	HALT	Enter halt mode.		
HOLD	HOLD	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right.$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	2	2	HOLD	Enter hold mode.		
[Serial I/O control instructions]									
STARTS	Start serial 10	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}\right.$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}$	2	2	START SI O	Start SIO operation.		
WTSIO	Write serial I O	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}\right.$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	2	2	$\mathrm{SIO} \leftarrow(\mathrm{E}),(\mathrm{AC})$	Write the contents of E , AC to SIO.		
RSIO	Read serial I O	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right.$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	2	2	$\mathrm{E}, \mathrm{AC} \leftarrow(\mathrm{SIO})$	Read out the contents of SIO into E, AC.		
[Other instructions]									
NOP	No operation	$0 \quad 0 \quad 0 \quad 0$	$0 \quad 000$	1	1	No operation	Consume one machine cycle without performing any operation.		
SB i2	Select bank	1 1 0 0 1 1 0 0	$\left\lvert\, \begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & l_{1} & l_{0}\end{array}\right.$	2	2	$\mathrm{PC} 13, \mathrm{PC} 12 \leftarrow \mathrm{I}_{1} \mathrm{I}_{0}$	Specify the memory bank.		

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

■ Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.

