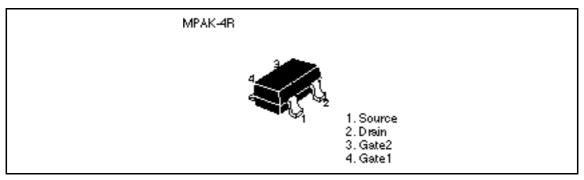
Bias Controlled Monolithic IC VHF/UHF RF Amplifier



ADE-208-705C (Z) 4th. Edition Nov. 1998

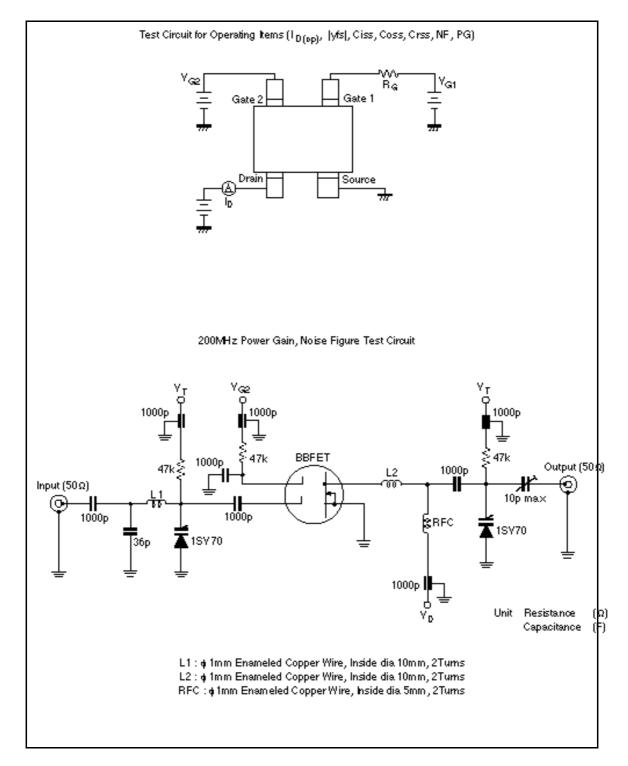
Features

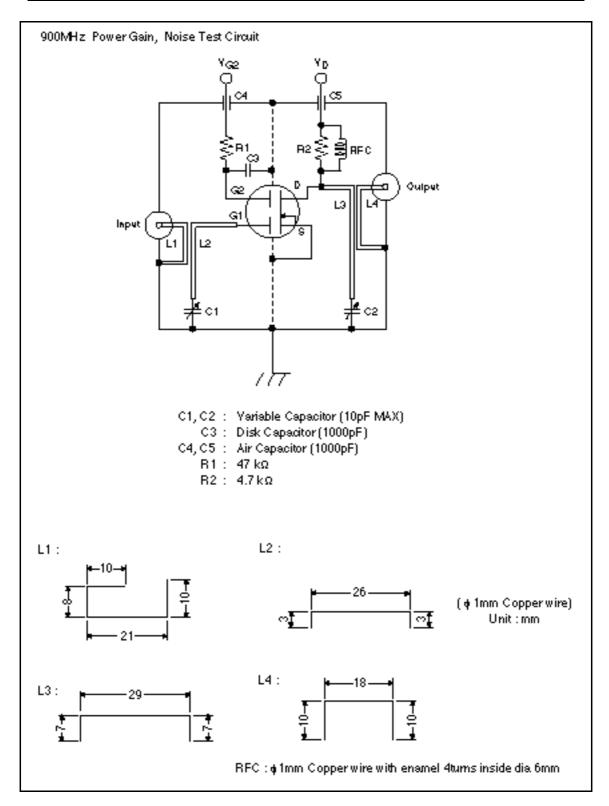
- Bias Controlled Monolithic IC (No external DC biasing voltage on gate1.); To reduce using parts cost & PC board space.
- High gain; PG = 27 dB typ. (at f = 200 MHz), PG = 21.5 dB typ. (at f = 900 MHz)
- Low noise; NF = 1.1 dB typ. (at f = 200 MHz), NF = 1.75 dB typ. (at f = 900 MHz)
- Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200V at C=200pF, Rs=0 conditions.
- Provide mini mold packages; MPAK-4R(SOT-143mod)

Outline

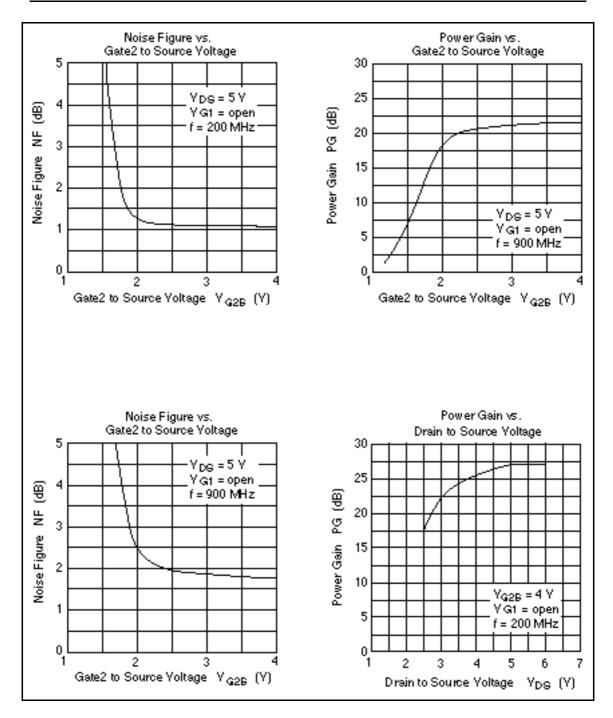
Notes: 1. Marking is "AY-".

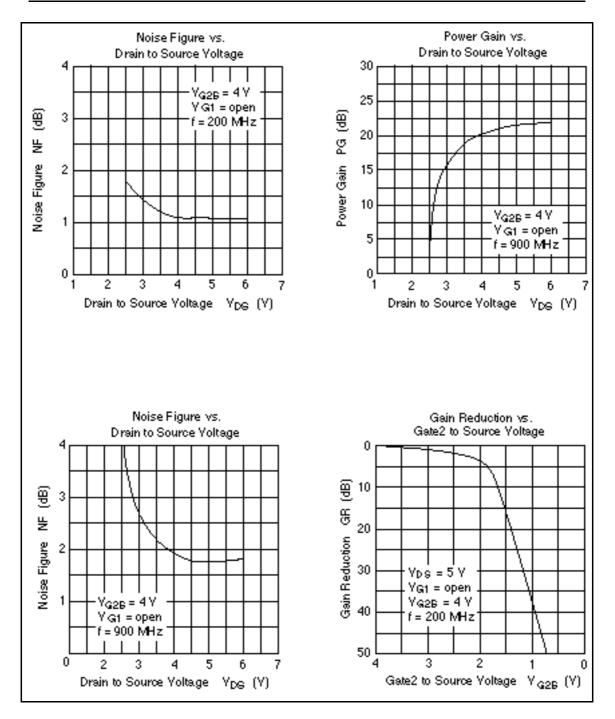
2. BIC801M is individual type number of HITACHI BICMIC.

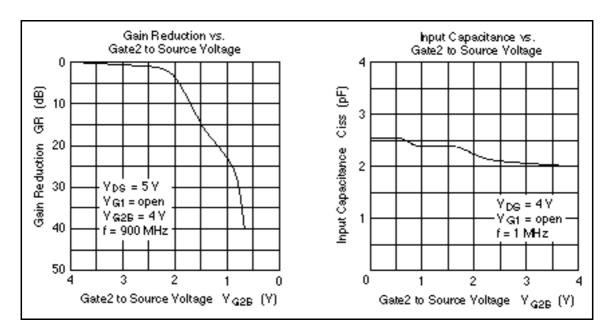

Absolute Maximum Ratings (Ta = 25° C)

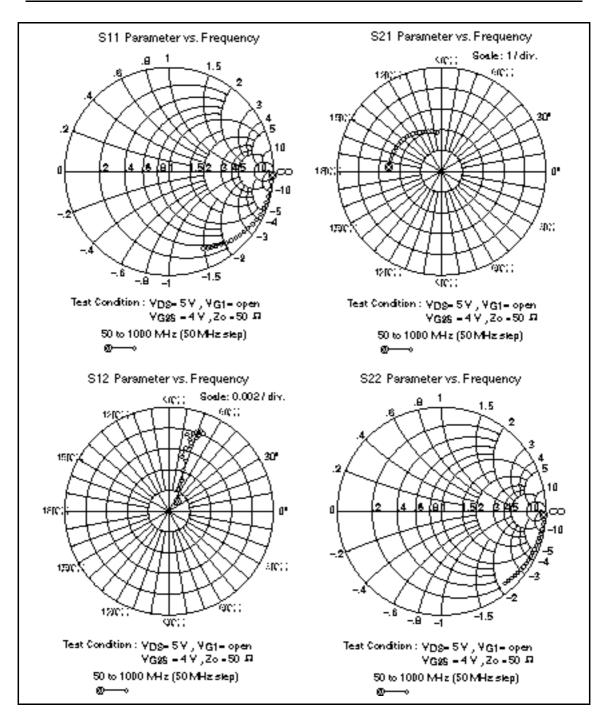

Item	Symbol	Ratings	Unit	
Drain to source voltage	V _{DS}	6	V	
Gate1 to source voltage	V _{G1S}	+6 - 0	V	
Gate2 to source voltage	V_{G2S}	+6 - 0	V	
Drain current	I _D	20	mA	
Channel power dissipation	Pch	150	mW	
Channel temperature	Tch	150	°C	
Storage temperature	Tstg	-55 to +150	°C	

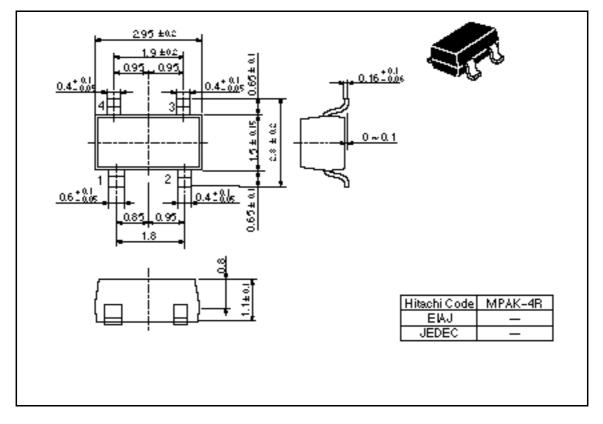

Electrical Characteristics (Ta = 25°C)


Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
Drain to source breakdown voltage	$V_{(\text{BR})\text{DSS}}$	6	_	_	V	$I_{\rm D} = 200 \mu A$ $V_{\rm G2S} = 0, V_{\rm G1} = \rm open$	
Gate1 to source breakdown voltage	$V_{(\text{BR})\text{G1SS}}$	+6	—	—	V	$I_{G1} = +10 \mu A$ $V_{G2S} = V_{DS} = 0$	
Gate2 to source breakdown voltage	$V_{(\text{BR})\text{G2SS}}$	+6	_	_	V	$I_{G2} = +10 \mu A$ $V_{G1S} = V_{DS} = 0$	
Gate1 to source cutoff current	I _{G1SS}	_	_	+100	nA	$V_{G1S} = +5V$ $V_{G2S} = V_{DS} = 0$	
Gate2 to source cutoff current	I _{G2SS}	_	_	+100	nA	$V_{G2S} = +5V$ $V_{G1S} = V_{DS} = 0$	
Gate2 to source cutoff voltage	$V_{\text{G2S(off)}}$	0.5	0.7	1.0	V	$V_{\text{DS}} = 5V, I_{\text{D}} = 100 \mu \text{A}$ $V_{\text{G1}} = \text{open}$	
Drain current	I _{DS(op)}	7	10	13	mA	$V_{\text{DS}} = 5V$, $V_{\text{G2S}} = 4V$ $V_{\text{G1}} = \text{open}$	
Forward transfer admittance	y _{fs}	22	27	32	mS	$V_{\text{DS}} = 5V, I_{\text{D}} = 10\text{mA}$ $V_{\text{G2S}} = 4V, f = 1\text{kHz}$	
Input capacitance	C _{iss}	1.6	2.0	2.3	pF	$V_{\text{DS}} = 5V, V_{\text{G2S}} = 4V$	
Output capacitance	C _{oss}	0.6	1.0	1.4	pF	V _{G1} = open	
Reverse transfer capacitance	C _{rss}		0.024	0.05	pF	f = 1MHz	
Power gain	PG1	23	27	_	dB	$V_{\text{DS}} = 5V, V_{\text{G2S}} = 4V$	
						V _{G1} = open	
Noise figure	NF1	_	1.1	1.6	dB	f = 200MHz	
Power gain	PG2	17	21.5	_	dB	$V_{\rm DS} = 5V, V_{\rm G2S} = 4V$	
						V _{G1} = open	
Noise figure	NF2		1.75	2.3	dB	f = 900MHz	


Main Characteristics







	S11		S21		S12		S22	
f (MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
50	0.994	-3.1	2.54	175.5	0.00132	50.0	0.978	-2.4
100	0.993	-6.6	2.52	171.0	0.00201	59.8	0.981	-5.1
150	0.988	-10.5	2.51	166.4	0.00228	66.1	0.979	-7.5
200	0.983	-14.1	2.49	161.6	0.00323	66.7	0.979	-10.1
250	0.977	-17.9	2.46	157.2	0.00420	70.2	0.976	-12.7
300	0.970	-21.8	2.43	152.8	0.00514	71.9	0.974	-15.1
350	0.963	-25.4	2.40	148.6	0.00532	76.1	0.971	-17.6
400	0.951	-28.8	2.37	143.7	0.00629	74.2	0.969	-20.1
450	0.943	-32.4	2.34	139.4	0.00665	70.8	0.966	-22.4
500	0.933	-35.4	2.29	135.1	0.00700	71.6	0.962	-24.9
550	0.918	-39.1	2.25	131.1	0.00756	69.3	0.958	-27.3
600	0.906	-42.0	2.21	127.2	0.00790	68.1	0.954	-29.7
650	0.895	-45.5	2.17	123.0	0.00836	67.6	0.951	-32.2
700	0.882	-48.7	2.13	119.4	0.00820	66.1	0.946	-34.4
750	0.879	-51.1	2.09	115.6	0.00818	65.9	0.942	-36.8
800	0.860	-54.6	2.05	111.7	0.00819	66.5	0.938	-39.2
850	0.845	-58.3	2.02	107.8	0.00798	70.7	0.933	-41.5
900	0.835	-60.7	1.96	104.2	0.00787	71.9	0.929	-43.8
950	0.827	-63.3	1.92	100.5	0.00727	73.1	0.924	-46.2
1000	0.812	-66.4	1.88	97.0	0.00758	75.6	0.919	-48.5

Sparameter ($V_{DS} = V_{G1} = 5V$, $V_{G2S} = 4V$, $V_{G1} = open$, Zo = 50)

Package Dimensions

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.

http:semiconductor.hitachi.com/

http://www.hitachi-eu.com/hel/eog

7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

: http://www.has.hitachi.com_sg/grp3/sicdindex.htm : http://www.hitachi.com_tw/B/ProductSICD_Frame.htm : http://www.hitachi.com_hk/eng/bo/grp3/index.htm : http://www.hitachi.co.jp/Sicdindx.htm

HITACHI

Hitachi, Ltd. Semicorductor & IC Div

NipponBidt, 24-2 Ohle-madri, Chiyoda-ku, Tokyo 100.0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica Europe Asia (Singapore) Asia (Taivan) Asia (HongKong) Japan

For further information write to: His dri Semiconductor His dri Education (America) Inc. 2000 Sieme Point Perlawy Briebana OL 94005 1901 Germany Fait of b (200) 225-1601 Germany Fait of b (200) 227-0447 Tel: c406 (8)

Hachi Europe GnbH Betronic componente Group Donecher Stellerö D35522 Feldlichen, Munich Germany Tel: c456 (30) 9 9180-0 Fex c456 (30) 9 29 30 00 Hachi Europe Lti. Betronic Componente Group. Whitebrock Park Lower Cookhern Roed Meidenheed Berlehine SL6370, United Kingdom Tel: c446 (1628) 555000 Fex c440 (1628) 778322

His dri Arin Pos Lid. 16 Colyer Casy \$20-00 His dri Tover Sagepore 042018 Tel: 535-2 100 Fex: 535-1533

Hinchi Asin Led. Taipei Brunch Office 35, Hung Kuo Buiking, Na 167, Tun Hwa North Road, Taipei (105) Tel: c886c (2) 2718-3686 Fax: c886c (2) 2718-3180 Hischi Arin (Hong Kong) Ltd. Group III (Biedronic Componente) 7/F., North Tower, World Finence Centre, Harbour Oby, Onnine Roed, Teim Ste Teui, Kowloon, Hong Kong Tel: 28222 (2) 735 92 18 Fax 28225 (2) 735 92 18 Tele: 408 15 HITECHX

Copyright @Hitschi, Ltd., 1998. All rights reserved. Printed in Japan.