

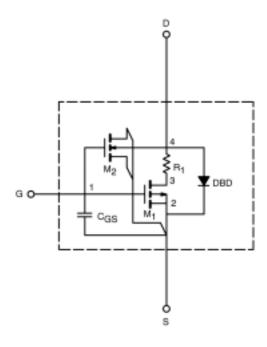
SPICE Device Model Si2305DS

Vishay Siliconix

P-Channel 1.25-W, 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm qd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

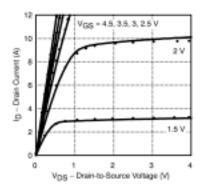
Document Number: 71489 www.vishay.com 07-May-01 1

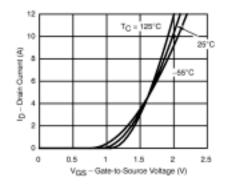
SPICE Device Model Si2305DS

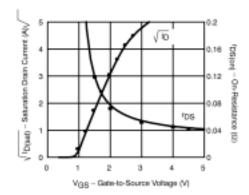
Vishay Siliconix

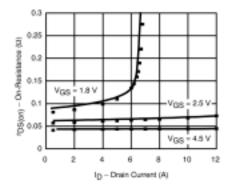
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, \ I_D = -250 \ \mu A$	0.78	V
On-State Drain Current ^a	L	$V_{DS} \ge -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	77	А
	I _{D(on)}	$V_{DS} \ge -5 \text{ V}, V_{GS} = -2.5 \text{ V}$	20	
Drain-Source On-State Resistance ^a		$V_{GS} = -4.5 \text{ V}, I_D = -3.5 \text{ A}$	0.044	Ω
	r _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -3.0 \text{ A}$	0.063	
		$V_{GS} = -1.8 \text{ V}, I_D = -2.0 \text{ A}$	0.095	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -5 \text{ V}, I_{D} = -3.5 \text{ A}$	10	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = -1.6 \text{ A}, V_{GS} = 0 \text{ V}$	0.80	V
Dynamic ^b				
Total Gate Charge	Q_g	$V_{DS} = -4 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -3.5 \text{ A}$	9	nC
Gate-Source Charge	Q_gs		2	
Gate-Drain Charge	Q_gd		1.5	
Input Capacitance	C _{iss}	$V_{GS} = -4 \text{ V}, V_{DS} = 0 \text{ V}, f = 1 \text{ MHz}$	1237	pf
Output Capacitance	C _{oss}		370	
Reverse Transfer Capacitance	C _{rss}		205	
Switching ^c				
Turn-On Delay Time ^b	$t_{d(on)}$	$V_{DD} = -4~V,~R_L = 4~\Omega$ $I_D \cong -1~A,~V_{GEN} = -4.5~V,~R_G = 6~\Omega$	31	ns
Rise Time	t _r		23	
Turn-Off Delay Time ^b	$t_{d(off)}$		54	
Fall Time	t _f		13	

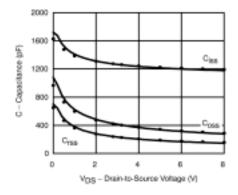
- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%.
- b. For design aid only, not subject to production testing
 c. Switching time is essentially independent of operating temperature

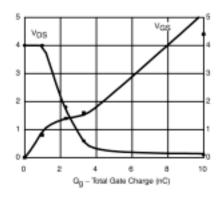

www.vishay.com Document Number: 71489 07-May-01








COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data