## EB-2060x

## DDX All-Digital, High Efficiency Evaluation Amplifier

## FEATURES

## DDX-2000/2060 CHIP SET

- OPERATION 9 to 30 VDC
- $2 \times 35 \mathrm{~W}$ into $8 \Omega$ @ $1 \%$ THD
- $1 \times 70 \mathrm{~W}$ into $4 \Omega$ @ $1 \%$ THD


## TYPICAL PERFORMANCE

- THD+N-0.08\% (1W, 1kHz)
- SNR - 93 dB (A-weighted)
- EFFICIENCY-88\%


## DIGITAL INPUT

- S/PDIF COAX/OPTICAL
- I'S LOOP THROUGH

DIGITAL PREAMP FEATURES

- VOLUME
- BALANCE
- ANTICLIPPING
- AUTOMATIC MUTE


## GENERAL DESCRIPTION

The EB-2060x is an evaluation amplifier that showcases Apogee's all-digital, high efficiency Direct Digital Amplification (DDX®) technology. The board features a DDX-2000 Controller and DDX-2060 Power Device which provide full digital audio preamplifier functions and power amplification. The board includes both coaxial and optical S/PDIF interfaces, digital volume and balance controls and local power regulation to operate from a signal supply voltage.

The EB-2060x is available in both a stereo 35W (EB2060S) and a mono 70W version (EB-2060M).

## ORDERING INFO

EB-2060S - DDX stereo amplifier board
EB-2060M - DDX mono amplifier board

## EB-2060x BLOCK DIAGRAM



## DESIGN OVERVIEW

The EB-2060x is an all-digital amplifier evaluation board that demonstrates Apogee's DDX-2000/2060 chip set solution. The board features - coaxial and optical S/PDIF digital interfaces, volume and balance controls, expansion headers for off-board processing, and local power regulation enabling single supply operation from +10 to +28 VDC. The all-digital amplifier board may be configured as either 2 x 35 W into $8 \Omega$ or $1 \times 70 \mathrm{~W}$ into $4 \Omega$.

## DDX-2000/2060 OVERVIEW

The DDX-2000 Controller is a 3.3 V digital integrated circuit that converts serial PCM digital audio signals into Apogee's patented damped ternary outputs. The device supports two modes of digital volume control, muting and anticlipping functions. A block diagram of the device is shown in Figure 1.


Figure 1 - DDX-2000 Functional Diagram

The DDX-2060 Power Device is a dual channel H-Bridge that can deliver over 35 watts per channel of audio output power. The DDX-2060 includes; a logic interface, integrated bridge drivers, high efficiency MOSFET outputs and protection circuitry. Two logic level signals per channel are used to control high-speed MOSFET switches to connect the speaker load to the input supply or to ground in a bridge configuration, according to Apogee's patented damped ternary PWM. The DDX-2060 includes over-current, thermal, and over-voltage protection and under-voltage lockout with automatic recovery. A thermal warning status is also provided.


Figure 2 - DDX-2060 Block Diagram

## SCHEMATIC DESCRIPTION

## S/PDIF INPUT INTERFACE (FIG. 3A)

The EB-2060x accommodates either a coaxial or an optical S/PDIF digital audio interface. Either input may be selected by moving jumper J2. Connect J2 pins 1-2 for coaxial or J2 pins 23 for optical S/PDIF. A Crystal CS8415A digital audio interface receiver is utilized to convert the incoming S/PDIF signal to serial $I^{2} S$ used by the DDX-2000. The receiver also recovers a 256*Fs clock synchronized to the incoming signal which is used as the master clock to the DDX-2000. The design will support sample rates from below 32 kHz to above 48 kHz . The receiver PLL out-of-lock signal is used to mute the amplifier's output when a valid S/PDIF signal is not present. Zero ohm jumpers R6,R9,R10,R11,R42 are provided to disconnect the outputs of the S/PDIF receiver from the inputs to the DDX-2000 so that external signals may be applied via the expansion header J7, (see Fig. 3D).

## DIGITAL SIGNAL PROCESSING (FIG. 3B)

The DDX-2000 converts serial $I^{2} S$ digital audio signals into pulse-width-modulated digital signals output at 8*Fs, according to Apogee's patented damped ternary architecture. Signals from the S/PDIF receiver are applied as inputs to the DDX processor and signals from the DDX processor are applied to the inputs of the DDX power stage.

A low-cost microcontroller with an ADC is used to implement the volume and balance controls. The amplifier's volume and balance levels are
adjusted using two potentiometers. The DC voltage set by the potentiometers is read by the microcontroller interfaced to the volume serial port of the DDX-2000. The DDX-2000 has independent volume control registers that have an adjustment range from -82.5 dB to +12.0 dB in 0.75 dB increments. A 0 dB flag is included on the microcontroller to set the volume level for both channels to be unity gain. This setting is particularly useful for audio measurements.

The EB-2060x permits three separate methods for clocking the DDX-2000. The default is via the $256 *$ Fs recovered clock output from the S/PDIF receiver IC. The second is via the expansion header J 7 used to apply an external clock source to synchronize, for example, multiple DDX-2000 ICs to the same clock. Zeroohm jumper R35 is installed to pass either of these clock sources to the DDX-2000 master clock input. The last method is asynchronous from an external crystal. The DDX-2000 contains a crystal oscillator which may be used for single sample-rate applications. Oscillator circuit Y1, C30, C37, R24, R26 may be populated and jumper R35 removed for applications where a $256^{*}$ Fs clock source is not convenient. The DDX-2000 tolerates a sample rate mismatch of $+/-0.2 \%$ about the crystal frequency without performance degradation. The crystal footprint is a surface mount Epson MA-506.

There are additional provisions for demonstrating DDX-2000 functionality. The GCEN flag is used to disable the anticlipping function and is controlled by DIP rocker switch SW1. Jumper R29 is provided to change the serial port mode on the DDX-2000 from $I^{2} S$ to left-justified to accommodate an external set of signals. Jumpers R13, R14, R30 are provided for test modes and must not be changed. A channel reverse flag is provided which inverts LRCLK causing left channel data to be output on the right channel and vice versa. This function is intended to be used for multiple amplifiers configured as mono when used in a multichannel audio demonstration.

## POWER OUTPUT (FIG. 3C)

The DDX-2060 provides power amplification by translating logic level PWM signals into power level signals. These power level signals are applied to a passive two-pole lowpass filter to reconstruct the audio signal providing power to the load. The output filter functions to attenuate
unwanted high frequency signals from reaching the load. A filter design for $8 \Omega$ loads is shown in the Fig. 3C schematic for reference.

The DDX-2060 is designed for stereo operation as either two independent full-bridges or for mono operation as one full-bridge with twice the current capability, enabling higher output power. The EB-2060x is designed to demonstrate both configurations via component substitutions. The schematic notes in Fig. 3C detail component changes to convert from stereo to mono operation. Evaluation boards configured as either stereo or mono may be ordered with the appropriate part number designations. Jumpers R19, R22, R25, R33 are used to configure PWM inputs for stereo operation. Jumpers R17, R23, R27, R36 are used to configure PWM inputs for mono operation. Jumpers JP1 and JP3 parallel the output bridges enabling higher output current. Jumpers JP2 and JP4 parallel the output filter sections to a $4 \Omega$ load. Capacitor C29 is the differential capacitor required for the $4 \Omega$ filter only.

In applications where only mono 70W / $4 \Omega$ operation is desired, e.g. subwoofer, the output filter may be simplified. Two filter sections may be employed in lieu of sections in parallel. Inductors may be $1 / 2$ the value with twice the current rating. Capacitors are double the value and resistors are $1 / 2$ the value at twice the power rating.

Snubbers are employed to protect the output MOSFETs from inductive transients. Peak voltage on the DDX-2060 output and power pins must not exceed 40 V . Output snubbers for the stereo implementation are R15,C23 and R31,C40 and the snubber for the mono implementation is R21,C32.

Input protection is provided for the amplifier by diode D1. D1 will protect from overvoltage and reverse power applications by shunting the power supply.

A thermal warning indicator is activated by the DDX-2060 when its junction temperature exceeds $+130^{\circ} \mathrm{C}$. The thermal warning output is used to force the power LED to change color from green to red forecasting the potential of an overtemperature shutdown.

## HEADERS / REGULATORS (FIG. 3D)

The EB-2060x features local power regulation to facilitate operation from a unipolar +10 to +28 VDC supply. Alternatively, auxiliary power may be applied at J8 (removing bead L7) separating logic and output power supplies. Output from the onboard +5 V regulator is available on the J 6 test header. Output from the onboard +3.3 V regulator is available on the J 7 expansion header. There is capability available to power external circuits from either the +5 V or the +3.3 V supplies or a combination not to exceed a total current of 0.33A.

Expansion header J7 is provided to monitor or apply input signals to the DDX-2000. Jumper R42 may be removed to pass serial data provided by an external processor. Test header J6 is provided to monitor signals output from the DDX-2000. Signals INLC, INLD, INRC, INRD are driven low by the DDX-2000 and are used for test purposes only. DIP switch SW1 is used for control functions: POS1 reverses data channels when open, normal when closed; POS2 sets unity gain for test when closed, normal when open; POS3 forces the DDX-2060 into low power mode when closed, normal when open; POS4 disables the anticlipping function when closed, normal when open.

Supervisor U8 is used for power-on-reset, power-off sequencing, and as a convenient means of commanded reset via pushbutton.

## ADDITIONAL INFORMATION

## Bill of Materials

A bill of materials for the evaluation board is provided in Table 1 for reference. Note equivalent components from alternate manufacturers may be substituted. No warranty of system performance is implied by Apogee through use of the reference bill of materials.

## Power Dissipation/Heat Sink Requirements

The DDX-2060 is a high efficiency dual channel design intended for audio applications needs up to 35 Watts RMS per channel. The power dissipation of the device will depend primarily on the supply voltage, load impedance, and output modulation level. The thermal performance of the evaluation board is consistent with a steady-
state duty rating of 25 W RMS per channel with both channels driven into $8 \Omega$.

The DDX-2060 surface mount package includes an exposed thermal pad on the bottom of the device to provide a direct thermal path from the integrated circuit to the PCB. This pad must be soldered to a low thermal impedance path at circuit ground potential for proper operation, e.g. a PCB ground plane. For continuous duty rated applications, careful consideration must be made to the overall thermal design.

## Performance Measurements

Typical performance measurements for the evaluation board are shown in Figs 4 through 11.

Class D amplifiers produce measurable switching distortion outside the audio bandwidth. Apogee's DDX amplifier uses a patented PWM modulation scheme that significantly reduces the size of these products compared to typical Class D designs. However, in order to obtain accurate performance measurements in the audio bandwidth (i.e., 20 Hz to 20 kHz ) additional filtering is required.

The Typical Performance data in was taken using a brick wall filter with a break frequency of 22 kHz . This type of filter is often provided as part of audio measurement systems.

## OPERATING INSTRUCTIONS

Refer to Fig. 12 evaluation amplifier assembly drawing. Attach a regulated power supply at J 3 set between +10 V and +28 VDC . At +28 V , the power supply must be capable of delivering 3A minimum for two channels. Attach a digital audio input source at either the coaxial or optical S/PDIF connectors. Select the digital input source via J2. Connect 8 Ohm speakers to J4 (left speaker) and J5 (right speaker). Configure SW1 as POS1 closed, POS2,3,4 open. Note, the speaker outputs are bridged. Do not ground any speaker connections, e.g. through an oscilloscope. Apply power, digital source material and enjoy!

FIG. 3A - DDX EVAL AMPLIFIER SCHEMATIC: S/PDIF INPUT INTERFACE


FIG. 3B - DDX EVAL AMPLIFIER SCHEMATIC: DIGITAL SIGNAL PROCESSING


FIG. 3C - DDX EVAL AMPLIFIER SCHEMATIC: POWER OUTPUT


Details are subject to change without notice.

FIG. 3D - DDX EVAL AMPLIFIER SCHEMATIC: HEADERS / REGULATORS


Details are subject to change without notice.

## TABLE 1 - DDX EVALUATION AMPLIFIER BOM

| Item | Quantity | Reference | Description | Mfr. Part No. | Mfr. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13 | C1,C2,C6,C7,C9,C18,C20, | Capacitor, Ceramic, Y5V, 100nF, 25V, +80/-20\% | ECJ-2VF1E104Z | Panasonic |
|  |  | C28,C35,C39,C45,C46,C51 |  |  |  |
| 2 | 3 | C26,C31,C50 | Capacitor, Ceramic, Y5V, 100nF, 50V, +80/-20\% | ECJ-2VF1H104Z | Panasonic |
| 3 | 2 | C22,C34 | Capacitor, Ceramic, X7R, 1uF, 25V, 10\% | ECJ-3YB1E105K | Panasonic |
|  |  | NOTE 1 | Capacitor, Ceramic, X7R, 1uF, 50V, 10\% | C1812C105K5RAC | Kemet |
| 4 | 5 | C17,C25,C36,C41,C52 | Capacitor, Ceramic, X7R, 100nF, 50V, 10\% | ECJ-3VB1H104K | Panasonic |
| 5 | 4 | C15,C27,C33,C43 | Capacitor, Polyester Film, 100nF, 100V, 5\% | 222237022104 | Centralab |
| 6 | 9 | C3,C4,C5,C11,C12,C14,C21,C24,C47 | Capacitor, Ceramic, Y5V, 10nF, 50V, +80/-20\% | ECJ-2VF1H103Z | Panasonic |
| 7 | 1 | C42 | Capacitor, Ceramic, X7R, 10nF, 50V, 10\% | ECU-V1H103KBG | Panasonic |
| 8 | 1 | C8 | Capacitor, Ceramic, X7R, 82nF, 25V, 10\% | ECJ-2VB1E823K | Panasonic |
| 9 | 1 | C10 | Capacitor, Ceramic, X7R, 2.2nF, 50V, 10\% | ECU-V1H222KBN | Panasonic |
| 10 | 2 | C19,C38 | Capacitor, Polyester Film, 470nF, 63V, 5\% | 222237012474 | Centralab |
| 11 | 1 | C16 | Capacitor, Aluminum Electrolytic, M-Series, 2200uF, 35V, 20\% | ECA-1VM222 | Panasonic |
| 12 | 2 | C23,C40 | Capacitor, Ceramic, X7R, 330pF, 50V, 10\% | ECJ-2VC1H331J | Panasonic |
| 13 | 1 | C32 | Capacitor, Ceramic, X7R, 680pF, 50V, $10 \%$ | ECJ-2VC1H681J | Panasonic |
| 14 | 1 | C29 | Capacitor, Polyester Film, 1uF, 63V, 5\% | 222237012105 | Centralab |
| 15 | 2 | C30,C37 | Capacitor, Ceramic, NPO, 10pF, 50V, 10\% | ECU-V1H100DCN | Panasonic |
| 16 | 1 | C48 | Capacitor, Aluminum Electrolytic, HFS-Series, 100uF, 35V, 20\% | ECE-A1VFS101 | Panasonic |
| 17 | 3 | C13,C44,C49 | Capacitor, Aluminum Electrolytic, HFS-Series, 100uF, 10V, 20\% | ECE-A1AFS101 | Panasonic |
| 18 | 1 | D1 | Diode, TVS, 1.5KW, Uni-Directional, 30V Standoff, 35.8VBR, 7\%, SMCJ | SMCJ30A | Diodes Inc. |
| 19 | 1 | D2 | LED, T1 3/4, Green/Red, White Diffused | LN11WP23 | Panasonic |
| 20 | 1 | D3 | Diode, Schottkey Barrier, SMD, 1A, 40V | B140 | Diodes Inc. |
| 21 | 4 | JP1,JP2,JP3,JP4 | Buss Wire Jumper, 22 AWG, 0.1" |  |  |
| 22 | 1 | J1 | RCA Phono connector, Right Angle PCB, Tin Plate | 901 | Keystone |
| 23 | 1 | J2 | Header, 3-pin, 1X3, 0.10 spacing. | TSW-103-07-S-S-LL | Samtec |
| 24 | 3 | J3, J4, J5 | Connector, Terminal Block Plug, 5.08mm, 12-30 AWG, Two-position | EMKDS 2.5/2-5.08 | Phoenix Contact |
| 25 | 1 | J6 | Header, 10-pin, 2X10, 0.10 spacing. | TSW-105-07-S-D-LL | Samtec |
| 26 | 1 | J7 | Header, 12-pin, 2X10, 0.10 spacing. | TSW-106-07-S-D-LL | Samtec |
| 27 | 3 | L1,L2,L7 | Ferrite Chip, EMI Supression, SMD, 600 Ohm @100MHz, 0.5A | HZ0805E601R-00 | Steward |
| 28 | 4 | L3,L4,L5,L6 | Inductor, 22uH, 2.0A, . 062 DCR | CT622LY-220K | Central Technologies |
|  |  | ALTERNATE | Inductor, 22uH, 3.5A, . 047 DCR | CTDO5022P-223 | Central Technologies |
|  |  | ALTERNATE | Inductor, 22uH, 2.6A, . 046 DCR | RL-5480-4-22 | Renco |
| 29 | 1 | L8 | Inductor, 220uH, 10\%, .64A, .68DCR | CT622LY-221K | Central Technologies |
| 30 | 2 | Q1, Q2 | Transistor, NPN, 330mW, 40V CEO | FMMT3904 | Zetex |
| 31 | 1 | R1 | Resistor, Chip, Thk Film, 75, 5\%, 1/10W, 200ppm | ERJ-6GEYJ750V | Panasonic |
| 32 | 1 | R2 | Potentiometer, 10k, 9mm Audio, Linear taper, Right angle | EVU-E2AF25B14 | Panasonic |
| 33 | 1 | R8 | Potentiometer, 10k, 9mm Audio, Linear taper, Right angle, Center Detent | EVU-E3AF25B14 | Panasonic |
| 34 | 3 | R3,R4,R5 | Resistor, Chip, Thk Film, 47k, 5\%, 1/10W, 200ppm | ERJ-6GEYJ473V | Panasonic |
| 35 | 18 | R6,R9,R10,R11,R13,R14, | Zero Ohm Jumper, SMD 0805 | ERJ-6GEYJ000V | Panasonic |
|  |  | R17,R19,R22,R23,R25,R27, |  |  |  |
|  |  | R29,R30,R33,R35,R36,R42 |  |  |  |
| 36 | 1 | R7 | Resistor, Chip, Thk Film, 4.99K, 1\%, 1/10W, 100ppm | ERJ-6ENF4991V | Panasonic |
| 37 | 3 | R12,R20,R45 | Resistor, Chip, Thk Film, 10K, 5\%, 1/10W, 200ppm | ERJ-6GEYJ103V | Panasonic |
| 38 | 2 | R15,R31 | Resistor, Chip, Thk Film, 20, 5\%, 1/4W, 200ppm | ERJ-14YJ200U | Panasonic |
| 39 | 4 | R16,R18,R32,R37 | Resistor, Chip, Thk Film, 6.2, 5\%, 1/4W, 200ppm | ERJ-14YJ6R2U | Panasonic |
| 40 | 1 | R24 | Resistor, Chip, Thk Film, 470, 5\%, 1/10W, 200ppm | ERJ-6GEYJ471V | Panasonic |
| 41 | 1 | R26 | Resistor, Chip, Thk Film, 1Meg, 5\%, 1/10W, 200ppm | ERJ-6GEYJ105V | Panasonic |
| 42 | 1 | R28 | Resistor, Chip, Thk Film, 12.1k, 1\%, 1/10W, 100ppm | ERJ-6ENF1212V | Panasonic |
| 43 | 1 | R34 | Resistor, Chip, Thk Film, 49.9, 1\%, 1/10W, 100ppm | ERJ-6ENF49R9V | Panasonic |
| 44 | 3 | R38,R39,R43 | Resistor, Chip, Thk Film, 300, 5\%, 1/10W, 200ppm | ERJ-6GEYJ301V | Panasonic |
| 45 | 2 | R40, R44 | Resistor, Chip, Thk Film, 18k, 5\%, 1/10W, 200ppm | ERJ-6GEYJ183V | Panasonic |
| 46 | 1 | R41 | Resistor, Chip, Thk Film, 2.2k, 5\%, 1/10W, 200ppm | ERJ-6GEYJ222V | Panasonic |
| 47 | 1 | R21 | Resistor, Chip, Thk Film, 10, 5\%, 1/4W, 200ppm | ERJ-14YJ100U | Panasonic |
| 48 | 1 | SW1 | DIP Switch, 4-position, Raised-rocker, sealed | 76SB04S | Grayhill |
| 49 | 1 | SW2 | Switch, Momentary Tact, SMD, 230gf | B3S-1002 | Omron |
| 50 | 1 | U1 | Digital Audio Interface Receiver IC | CS8415A-CS | Crystal/Cirrus logic |
| 51 | 1 | U2 | Microcontroller, 8-Bit, 8-Pin, w/ADC | PIC12C671-04/SM | Microchip |
| 52 | 1 | U3 | Toslink Light Receiving Unit | GP1F32R | Sharp |
| 53 | 1 | U4 | TinyLogic CMOS XOR gate | NC7SZ86M5 | Fairchild |
| 54 | 1 | U5 | DDX Digital Processing ASIC | DDX2000 | Apogee |
| 55 | 1 | U6 | DDX Power IC | DDX2060 | Apogee |
| 56 | 1 | U7 | Regulator, Linear, 3.3V, .5A | LM2937IMP-3.3 | NSC |
| 57 | 1 | U8 | Supervisor, 3.3V Econoreset | DS1233A-10/SM | Dallas |
| 58 | 1 | U9 | Switching Regulator, Step Down, 45V, 0.5A, Fixed +5V, 150KHz | LM2594M-5.0 | NSC |
| 59 | 1 | Y1 | Crystal, $11.2896 \mathrm{MHz}, 50 \mathrm{ppm}$, Fundamental Mode, SMD | MA-506-11.2896M-C2 | EPSON |
|  |  | ALTERNATE | Crystal, 12.288 MHz , 50 ppm , Fundamental Mode, SMD | MA-506-12.288M-C2 | EPSON |
| 60 | 1 | J8 | Header, 2 pin, 1x2, . 100 spacing, w/Locking ramp. | 22-01-2027 | Molex |

NOTE 1: The evaluation board is shipped using 1uF, 25 V capacitors due to PCB footprint. For applications up to $\mathbf{3 0 V}$, use 50 V rated capacitors.

## Typical Performance Characteristics at $\mathrm{Vcc}=\mathbf{2 8 V}$, 8 Ohm load.

Fig 4: Efficiency vs Output Power


Fig 6: THD+N vs Frequency


Fig 5: Frequency response


Fig 7: THD+N vs Outpwr at $1 \mathbf{K H z}$


## Typical Performance Characteristics at $\mathrm{Vcc}=\mathbf{2 4 V}$, 4 Ohm load.

Fig 8: THD +N vs Frequency


Typical Performance Characteristics at $\mathrm{Vcc}=\mathbf{2 8 V}$, 4 Ohm load, configured for Mono.

Fig 10: THD+N vs Frequency

Fig 9: THD+N vs Outpwr at $1 \mathbf{K H z}$ (w/ ANTICLIPPING DISABLED)


Fig 11: THD+N vs Outpwr at 1 KHz (w/ ANTICLIPPING DISABLED)


FIGURE 12-DDX EVALUATION AMPLIFIER ASSEMBLY DRAWING


Information furnished in this publication is believed to be accurate and reliable. However, Apogee Technology, Inc. assumes no responsibility for its use, or for any infringements of patents or other rights of third parties that may result form its use. Specifications in this publication are subject to change without notice. This publication supersedes and replaces all information previous supplied.

