MC14536B

Programmable Timer

The MC14536B programmable timer is a 24 -stage binary ripple counter with 16 stages selectable by a binary code. Provisions for an on-chip RC oscillator or an external clock are provided. An on-chip monostable circuit incorporating a pulse-type output has been included. By selecting the appropriate counter stage in conjunction with the appropriate input clock frequency, a variety of timing can be achieved.

- 24 Flip-Flop Stages - Will Count From 20 to 24
- Last 16 Stages Selectable By Four-Bit Select Code
- 8-Bypass Input Allows Bypassing of First Eight Stages
- Set and Reset Inputs
- Clock Inhibit and Oscillator Inhibit Inputs
- On-Chip RC Oscillator Provisions
- On-Chip Monostable Output Provisions
- Clock Conditioning Circuit Permits Operation With Very Long Rise and Fall Times
- Test Mode Allows Fast Test Sequence
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
BLOCK DIAGRAM

REV 4
11/98

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{S S}$)

Characteristic	Symbol	VDD Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{i n}=0 \text { or } V_{D D}$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \text { Input Voltage } \\ & \begin{array}{l} \text { (VO }=4.5 \text { or } 0.5 \mathrm{Vdc}) \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ \\ \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array} \end{aligned}$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	二	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
Output Drive Current $(\mathrm{VOH}=2.5 \mathrm{Vdc})$ Source $(\mathrm{VOH}=4.6 \mathrm{Vdc})$ Pins $4 \& 5$ $(\mathrm{VOH}=9.5 \mathrm{Vdc})$ $(\mathrm{V} \mathrm{OH}=13.5 \mathrm{Vdc})$ 	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	-	$\begin{gathered} -1.0 \\ -0.25 \\ -0.5 \\ -1.5 \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \end{gathered}$	-	mAdc
$(\mathrm{VOH}=2.5 \mathrm{Vdc})$ Source $(\mathrm{VOH}=4.6 \mathrm{Vdc})$ Pin 13 $(\mathrm{VOH}=9.5 \mathrm{Vdc})$ $(\mathrm{VOH}=13.5 \mathrm{Vdc})$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} \hline-1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} (\mathrm{VOL}=0.4 \mathrm{Vdc}) & \text { Sink } \\ \text { (VOL }=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	IOL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.010 \\ & 0.020 \\ & 0.030 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I} T=(1.50 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \\ & \mathrm{I}_{\mathrm{T}}=(2.30 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \\ & \mathrm{I}_{\mathrm{T}}=(3.55 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \end{aligned}$							$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
** The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\dagger To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.003$.

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	VDD	Min	Typ \#	Max	Unit
$\begin{aligned} & \text { Output Rise and Fall Time (Pin 13) } \\ & \text { t } \mathrm{TLH}, \mathrm{t} \mathrm{t} H \mathrm{~L}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t} \mathrm{THL}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t} \mathrm{t} H L=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
$\begin{array}{\|l} \text { Propagation Delay Time } \\ \text { Clock to Q1, 8-Bypass (Pin 6) High } \\ \text { tpLH, tpHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1715 \mathrm{~ns} \\ \text { tpLH, tPHL }=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+617 \mathrm{~ns} \\ \text { tpLH, tPHL }=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+425 \mathrm{~ns} \end{array}$	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 1800 \\ & 650 \\ & 450 \end{aligned}$	$\begin{aligned} & 3600 \\ & 1300 \\ & 1000 \end{aligned}$	ns
$\begin{aligned} & \hline \text { Clock to Q1, 8-Bypass (Pin 6) Low } \\ & \text { tpLH, tPHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3715 \mathrm{~ns} \\ & \text { tpLH, tPHL }=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1467 \mathrm{~ns} \\ & \text { tpLH, tPHL }=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1075 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 3.8 \\ & 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.0 \\ & 2.3 \end{aligned}$	$\mu \mathrm{s}$
```Clock to Q16 tPHL, tPLH = (1.7 ns/pF) CL + 6915 ns tPHL, tPLH = (0.66 ns/pF) CL + 2967 ns tPHL, tPLH = (0.5 ns/pF) CL + 2175 ns```	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 7.0 \\ & 3.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 14 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\mu \mathrm{s}$
$\begin{aligned} & \text { Reset to } Q_{n} \\ & \text { tPHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1415 \mathrm{~ns} \\ & \text { tpHL }=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+567 \mathrm{~ns} \\ & \text { tpHL }=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+425 \mathrm{~ns} \end{aligned}$	tPHL	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$-$	$\begin{aligned} & 1500 \\ & 600 \\ & 450 \end{aligned}$	$\begin{gathered} 3000 \\ 1200 \\ 900 \end{gathered}$	ns
Clock Pulse Width	twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \\ & 170 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 85 \end{gathered}$	-	ns
Clock Pulse Frequency (50\% Duty Cycle)	$\mathrm{f}_{\mathrm{Cl}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.2 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.5 \\ & 2.0 \end{aligned}$	MHz
Clock Rise and Fall Time	$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	No Limit			-
Reset Pulse Width	tWH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1000 \\ & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \end{aligned}$	-	ns

*The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}$ ). Unused outputs must be left open.

PIN ASSIGNMENT

SET 1 1•	16	$\mathrm{V}_{\mathrm{DD}}$
RESET [ 2	15	M MONO IN
IN 1 [ 3	14	] OSC INH
OUT 1 [ 4	13	$\square$ DECODE
OUT 2 [ 5	12	]
8-BYPASS [6	11	$\square \mathrm{C}$
CLOCK INH [ 7	10	B
$\mathrm{v}_{\text {SS }} \mathrm{C} 8$	9	1 A

## PIN DESCRIPTIONS

## INPUTS

SET (Pin 1) - A high on Set asynchronously forces Decode Out to a high level. This is accomplished by setting an output conditioning latch to a high level while at the same time resetting the 24 flip-flop stages. After Set goes low (inactive), the occurrence of the first negative clock transition on $\mathrm{IN}_{1}$ causes Decode Out to go low. The counter's flip-flop stages begin counting on the second negative clock transition of $\mathrm{IN}_{1}$. When Set is high, the on-chip RC oscillator is disabled. This allows for very low-power standby operation.

RESET (Pin 2) - A high on Reset asynchronously forces Decode Out to a low level; all 24 flip-flop stages are also reset to a low level. Like the Set input, Reset disables the on-chip RC oscillator for standby operation.
$\mathbf{I N}_{\mathbf{1}}$ (Pin 3) - The device's internal counters advance on the negative-going edge of this input. $\mathrm{IN}_{1}$ may be used as an external clock input or used in conjunction with $\mathrm{OUT}_{1}$ and $\mathrm{OUT}_{2}$ to form an RC oscillator. When an external clock is used, both $\mathrm{OUT}_{1}$ and $\mathrm{OUT}_{2}$ may be left unconnected or used to drive 1 LSTTL or several CMOS loads.

8-BYPASS (Pin 6) - A high on this input causes the first 8 flip-flop stages to be bypassed. This device essentially becomes a 16-stage counter with all 16 stages selectable. Selection is accomplished by the A, B, C, and D inputs. (See the truth tables.)

CLOCK INHIBIT (Pin 7) - A high on this input disconnects the first counter stage from the clocking source. This holds the present count and inhibits further counting. However, the clocking source may continue to run. Therefore, when Clock Inhibit is brought low, no oscillator start-up time is required. When Clock Inhibit is low, the counter will start counting on the occurrence of the first negative edge of the clocking source at $\mathrm{IN}_{1}$.

OSC INHIBIT (Pin 14) - A high level on this pin stops the RC oscillator which allows for very low-power standby operation. May also be used, in conjunction with an external clock, with essentially the same results as the Clock Inhibit input.

MONO-IN (Pin 15) - Used as the timing pin for the onchip monostable multivibrator. If the Mono-In input is connected to VSS, the monostable circuit is disabled, and Decode Out is directly connected to the selected Q output. The monostable circuit is enabled if a resistor is connected between Mono-In and VDD. This resistor and the device's internal capacitance will determine the minimum output pulse widths. With the addition of an external capacitor to $\mathrm{V}_{\mathrm{SS}}$, the pulse width range may be extended. For reliable operation the resistor value should be limited to the range of $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ and the capacitor value should be limited to a maximum of 1000 pf. (See figures $3,4,5$, and 10).

A, B, C, D (Pins 9, 10, 11, 12) - These inputs select the flip-flop stage to be connected to Decode Out. (See the truth tables.)

## OUTPUTS

OUT $_{1}$, OUT $_{2}$ (Pin 4,5) —Outputs used in conjunction with $\mathrm{IN}_{1}$ to form an RC oscillator. These outputs are buffered and may be used for $2^{0}$ frequency division of an external clock.

DECODE OUT (Pin 13) - Output function depends on configuration. When the monostable circuit is disabled, this output is a $50 \%$ duty cycle square wave during free run.

## TEST MODE

The test mode configuration divides the 24 flip-flop stages into three 8 -stage sections to facilitate a fast test sequence. The test mode is enabled when 8-Bypass, Set and Reset are at a high level. (See Figure 8.)

## TRUTH TABLES

Input					Stage Selected for Decode Out
8-Bypass	D	C	B	A	
0	0	0	0	0	9
0	0	0	0	1	10
0	0	0	1	0	11
0	0	0	1	1	12
0	0	1	0	0	13
0	0	1	0	1	14
0	0	1	1	0	15
0	0	1	1	1	16
0	1	0	0	0	17
0	1	0	0	1	18
0	1	0	1	0	19
0	1	0	1	1	20
0	1	1	0	0	21
0	1	1	0	1	22
0	1	1	1	0	23
0	1	1	1	1	24


Input					Stage Selected for Decode Out
8-Bypass	D	C	B	A	
1	0	0	0	0	1
1	0	0	0	1	2
1	0	0	1	0	3
1	0	0	1	1	4
1	0	1	0	0	5
1	0	1	0	1	6
1	0	1	1	0	7
1	0	1	1	1	8
1	1	0	0	0	9
1	1	0	0	1	10
1	1	0	1	0	11
1	1	0	1	1	12
1	1	1	0	0	13
1	1	1	0	1	14
1	1	1	1	0	15
1	1	1	1	1	16

FUNCTION TABLE

$\mathrm{In}_{1}$	Set	Reset	Clock Inh	$\begin{aligned} & \hline \text { OSC } \\ & \text { Inh } \end{aligned}$	Out 1	Out 2	Decode Out
-	0	0	0	0	J	乙	No Change
2	0	0	0	0	2	J	Advance to next state
X	1	0	0	0	0	1	1
X	0	1	0	0	0	1	0
X	0	0	1	0	-	-	No Change
X	0	0	0	1	0	1	No Change
0	0	0	0	X	0	1	No Change
1	0	0	0	ת	2	ノ	Advance to next state

X = Don't Care

LOGIC DIAGRAM



Figure 1. RC Oscillator Stability


Figure 2. RC Oscillator Frequency as a Function of RTC and C

MONOSTABLE CHARACTERISTICS
(For Circuit Diagram See Figure 10 In Application)


Figure 3. Typical $\mathrm{C}_{\mathrm{X}}$ versus Pulse Width $@$ VDD $=5.0$ V


Figure 4. Typical $\mathrm{C}_{\mathrm{x}}$ versus Pulse Width @ VD $=10$ V


Figure 5. Typical CX versus Pulse Width @ VDD $=15 \mathrm{~V}$


Figure 6. Power Dissipation Test Circuit and Waveform


Figure 7. Switching Time Test Circuit and Waveforms


Figure 8. Functional Test Circuit

FUNCTIONAL TEST SEQUENCE

Inputs				Outputs	Comments
$\mathbf{I n}_{1}$	Set	Reset	8-Bypass	Decade Out Q1 thru Q24	All 24 stages are in Reset mode.
1	0	1	1	0	
1	1	1	1	0	Counter is in three 8 stage sections in parallel mode.
0	1	1	1	0	First " 1 " to "0" transition of clock.
1 0 - -	1	1	1		255 " 1 " to "0" transitions are clocked in the counter.
0	1	1	1	1	The 255 "1" to "0" transition.
0	0	0	0	1	Counter converted back to 24 stages in series mode.   Set and Reset must be connected together and simultaneously go from "1" to "0".
1	0	0	0	1	$\mathrm{In}_{1}$ Switches to a "1".
0	0	0	0	0	Counter Ripples from an all " 1 " state to an all "0" state.



NOTE: When power is first applied to the device, Decode Out can be either at a high or low state. On the rising edge of a Set pulse the output goes high if initially at a low state. The output remains high if initially at a high state. Because Clock Inh is held high, the clock source on the input pin has no effect on the output. Once Clock Inh is taken low, the output goes low on the first negative clock transition. The output returns high depending on the 8-Bypass, $A, B, C$, and $D$ inputs, and the clock input period. A $2^{n}$ frequency division (where $n=$ the number of stages selected from the truth table) is obtainable at Decode Out. A $2^{0}$-divided output of $\mathrm{IN}_{1}$ can be obtained at $\mathrm{OUT}_{1}$ and $\mathrm{OUT}_{2}$.

Figure 9. Time Interval Configuration Using an External Clock, Set, and Clock Inhibit Functions
(Divide-by-2 Configured)


NOTE: When Power is first applied to the device with the Reset input going high, Decode Out initializes low. Bringing the Reset input low enables the chip's internal counters. After Reset goes low, the $2^{n} / 2$ negative transition of the clock input causes Decode Out to go high. Since the Mono-In input is being used, the output becomes monostable. The pulse width of the output is dependent on the external timing components. The second and all subsequent pulses occur at $2^{n} \times$ (the clock period) intervals where $\mathrm{n}=$ the number of stages selected from the truth table.

Figure 10. Time Interval Configuration Using an External Clock, Reset, and Output Monostable to Achieve a Pulse Output
(Divide-by-4 Configured)


NOTE: This circuit is designed to use the on-chip oscillation function. The oscillator frequency is determined by the external R and C components. When power is first applied to the device, Decode Out initializes to a high state. Because this output is tied directly to the Osc-Inh input, the oscillator is disabled. This puts the device in a low-current standby condition. The rising edge of the Reset pulse will cause the output to go low. This in turn causes Osc-Inh to go low. However, while Reset is high, the oscillator is still disabled (i.e.: standy condition). After Reset goes low, the output remains low for $2^{\mathrm{n}} / 2$ of the oscillator's period. After the part times out, the output again goes high.

Figure 11. Time Interval Configuration Using On-Chip RC Oscillator and Reset Input to Initiate Time Interval (Divide-by-2 Configured)



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{M}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

## How to reach us:

USA/EUROPE/ Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

## Customer Focus Center: 1-800-521-6274

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System - US \& Canada ONLY 1-800-774-1848
-http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

