

PRELIMINARY **MX98746**

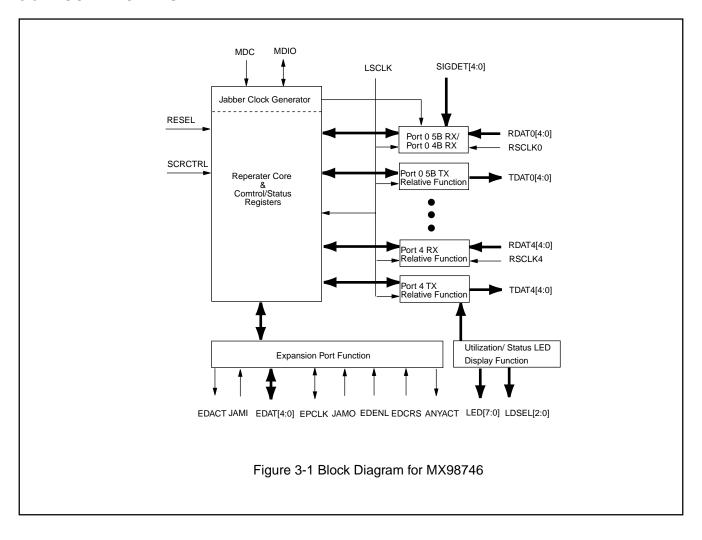
100 BASE-TX/FX 5-PORT CLASSII REPEATER CONTROLLER

1.0 FEATURES

- IEEE 802.3u D5 repeater and management compatible
- Support 5 TX/FX ports
- Support 8-scale utilization and collision rate LED display
- Asynchronous Expansion port clock supported for easily stackable application
- Separate jabber and partition state machines for each port
- On-chip elasticity buffer for PHY signal re-timing to the MX98746 clock source
- Contents of internal register loaded from EEPROM
- CMOS device features high integration and low power with a signle +5V supply
- •128-PIN PQFP

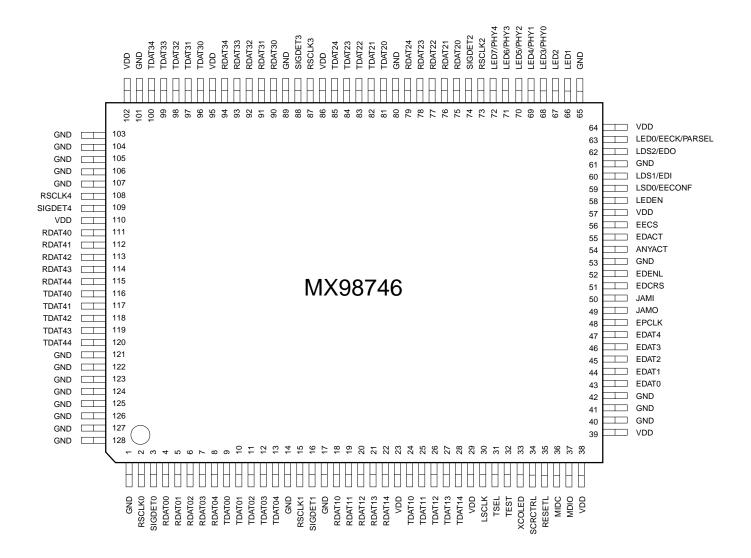
2.0 GENERAL DESCRIPTION

The MX98746, Second generation 100 Mb/s TX/FX Hub Controller, is designed specifically to meet the needs of today's high speed Fast Ethernet networking systems. The MX98746 is fully IEEE 802.3u D5 clause 27 repeater compatible. Difference from MX98741 and MX98745, MX98746 support 5 dedicated TX/FX ports.


All contents of internal registers are loaded from EEPROM in MX98746. If system application prefers default setting instead of using contents from EEPROM, EEPROM operation can be disabled by setting EECONF to low. This feature faciliates system modulization application.

8 scale of utilization and collision rate LED are also provided by MX98746. They are 1%, 3%, 5%, 10%, 20%, 40%, 60% and 80+% for network utilization, and 1%, 3%, 5%, 8%, 10%, 13%, 15% and 20+% for collision rate. The defination for utilization is Mbs Received/100 Mb within one second sampling period. Meanwhile, RX/LINK, Partition, Isolation and Collision status are also provided through LED display.

A great improvement in MX98746 (compared to MX98741) is that it also provides "asynchronous expansion port data transfer mode" to make stackable design more easier.



3.0 BLOCK DIAGRAMS

4.0 PIN CONFIGURATION

5.0 PIN DESCRIPTION

Table 5-1 Pin Description for MX98746

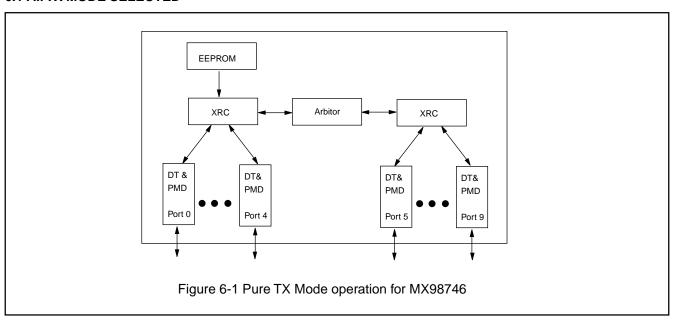
	A. MX Da	ata Transce	eiver Interface (MX98704 or MX98705), 61 pins
PAD#	Name	I/O	Description
9-13	TDAT[0:4][0:4]	O,	Transmit Data. These five outputs are 5B encoded transmit data
24-28		TTL	symbols, driven at the rising edge of LSCLK.
81-85			TDAT4 is the Most Significant Bit.
96-100			
116-120			
30	LSCLK	I,	Local Synchrnous Clock. This pin supplies the frequency reference to
		TTL	the MX98745 within same HUB. It should be driven by a crystal-con-
			trolled 25M clock source.
4-8	RDAT[0:4][0:4]	I,	Receive Data. These 5 bit parallel data symbol from transceiver are
18-22		TTL	latched by the rising edge of RSCLK of each port.
75-79			RDAT4 is the Most Significant Bit.
90-94			
111-115			
2	RSCLK[0:4]	I,	Recovered Symbol Clock. This is a 25 MHz clock, which is derived
15		TTL	from the clock synchroniztion PLL circuit.
73			
87			
108			
3	SIGDET[0:4]	I,	Signal Detect. This signal indicates that the received signal is above
16		TTL	the detection threshold and will be used for the link test state machine.
74			
88			
109			
			B. Expansion Port, 12 pins
49	JAMO	Ο,	Forced Jam Out. Active High. The OR'd forced jam signals controlled
		CMOS	by Carrier Integrity Monitor of each port. If collision occurs inside the
			XRC II (exclude JAMI), this pin is also asserted.
50	JAMI	I, TTL	Forced Jam Input. Active High. Asserted by external arbitor, and XRCII
			will generate JAM patterns to all its ports whenever this signal is
			validate more than 40 ns. This signal is filtered by LSCLK for 40ns
			internally.

PAD#	Name	I/O	Description
52	EDENL	I, Sche	Enable Expansion Data. Active Low. Asserted by an external arbitor.
			XRC II will not drive data onto EDAT until this pin is asserted. Assertion
			time less than 40ns will not be recognized by XRC II.
43-47	EDAT[0:4]	I/O,	Expansion Data. Bidirectional 5 bit-wide data. By default, EDAT is an
		TTL	input. An external arbitor coordinates multiple devices on EDAT.
48	EPCLK	I/O,	Expansion port Data Clock. This clock will be outputed by XRCII along
		TTL	with the EDAT[0:4]. Another module of XRCII should use this signal as
			expansion port data input clock.
54	ANYACT	O,	Any Activity. Active High. When XRCII tries to release data onto EDAT
		CMOS	this pin will be asserted by XRC II.
51	EDCRS	I, Sche	Expansion Data Carrier Sense. When this pin is asserted, XRC II will
			recognize that there is activity on expansion port data bus \ensuremath{EDAT} and
			perform corresponding activity within XRCII itself.
55	EDACT	O,	Expansion Data Activity. When XRCII detects that EDENL is asserted
		CMOS	by external arbitor, it will assert EDACT high. System application can
			use this signal to control the data bus flow of EDAT.
			C. Management, 2 pins
36	MDC	I,TTL	Management Data Clock. The timing reference for MDIO.
			The minumum high and times are 200 ns each.
37	MDIO	I/O,	Management Data Input/Output. A bi-directional signal.
	TTL		The selection of input/output direction is based on IEEE802.3u
			management functions (Section 22.2.4).
			D. Test/Miscellaneous, 5 pins
32	TEST	I	Test. Industrial test pin. Set to 0 for normal operation.
			When programmed to logic 1, XRC II is in test mode.
31	TSEL	I	Test Select. Used by industrial test. Internal Pull down.
			Set to 0 for normal operatioon.
33	XCOLED	O,	Collision LED. Active low. When there is collision within the XRC II,
		LED	XCOLED will be on for 80ms and off for 20ms.
34	SCRCTRL	I,TTL	Scrambler Control. Active High. When this pin is set to 0, All TX port
			will be set to descramble mode, i.e. contents of register #17 will be
			disabled. When this pin is set to 1, Each port's scrambler/descramble
			is controller by corresponding bit in register #17. Internally pullup.
35	RESETL	I, Sche	Reset. Active Low. Will be filtered by LSCLK within the MX98746.

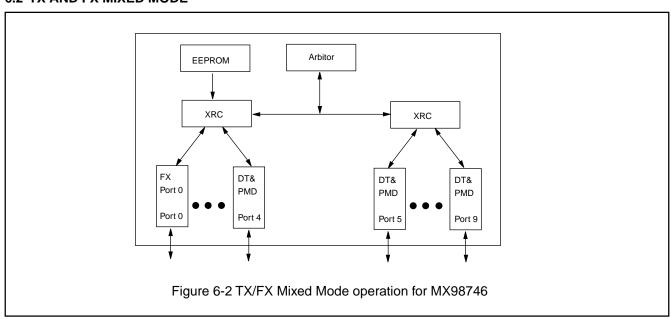
			ט כ Display/E	EPROM Inter	rface, 13 pin	IS		
PAD#	Name	I/O	Description	on				
58	LEDEN	Ο,	LED Outp	out Enable. W	hen LEDEN	I is asserted high, it means that		
		CMOS	varuous ir	nternal status	is shown on	LED[7:0] according to the value		
			LDS[2:0]					
62,	LDS2/EDO,	I/O,	LED Outp	out Select. LD	S0 is interna	ally pulldown and value on LDS0 v		
60,	LDS1/EDI,	TTL	be latched	d internally by	MX98746 a	at the rising edge of RESETL as t		
59	LDS0/EECONF		value of E	ECONF. Valu	ue on LDS1	will act as EEPROM Data Input		
			signal dur	ing EEPROM	l loading ope	eration (after power on reset and		
			EECONF	is set to 1) ar	nd LDS2 will	be data output from EEPROM.		
						peration will be disabled.		
			After pow	er on reset, Ll	DS[2:0] wor	k as the select pins of LED[7:0]		
			output. The following are corresponding definition					
			LDS2	LDS1	LDS	0		
			0	0	1	Link/Receive		
			0	1	0	Isolation		
			0	1	1	Partition		
			1	0	0	Utilization		
			1	0	1	Collision Rate		
63	LED0/EECK/	I/O,	LED0/EP	ROM Clock/P	artition Sele	ect. value on this pin will be latch		
	PARSEL	TTL	by MX987	746 at the risir	ng edge of F	RESET as the value of Partition		
			Select (PA	ARSEL).				
			When FFOONE is setted 4 this six will wreather FFDDOM start at					
			When EECONF is set to 1, this pin will work as EEPROM clock pin					
			output by MX98746 after power on reset.					
			When EEPROM operation is enabled, internal repeater function will					
			disable until contents in EEPROM is loaded into MX98746.					
			After EEP	ROM operation	on is comple	eted, this pin will indicate 1%		
			Network u	utilization and	1% collision	n rate according to the value on		
			LDS[2:0].					
66	LED1	I/O,	LED1. In	normal opera	ition (after p	ower on reset), this pin will displa		
		TTL	port 2's R	eceive/Link, F	Partition, Iso	lation status and indicates 3% N		
			work utiliz	ation and 3%	collision rate	according to the value on LDS[2:		
66	LED2	I/O,	LED2. In	normal opera	ition (after p	ower on reset), this pin will displa		
		TTL	port 3's R	eceive/Link, F	Partition, Iso	lation status and indicates 5% N		

			F. LED Display (Continued)
68	LED3/PHY0	I/O,	LED 3/Physical Address 0. Value on LED3 will be latched at the rising
		TTL	edge of RESET as the setting of Device physical address 0. If EECONF
			is set to 1, PHY0 will be overwritten by the contents of EEPROM.
			After EEPROM operation is completed (in case EECONF is set to 1),
			this pin will indicate 10% Network utilization and 8% collision rate
			according to the value on LDS[2:0]
69	LED4/ PHY1	I/O,	LED 4/Physical Address 1. Value on LED4 will be latched at the rising
		TTL	edge of RESETL as the physical address 1 of MX98746. If EECONF is
			set, Physical address will be overwritten by the value from EEPROM.
			After EEPROM operation is completed, this pin will display port 4's
			Receivee/Link, Partition, Isolation status and indicates 20% Network
			utilization and 10% collision rate according to the value on LDS[2:0].
70	LED5/PHY2	I/O,	LED 5/Physical Address 2. Value on LED5 will be latched at the rising
		TTL	edge of RESETL as the physical address 2 of MX98746. If EECONF is
			set, Physical address will be overwritten by the value from EEPROM.
			After EEPROM operation is completed, this pin will indicate 40%
			Network utilization and 13% collision rate according to the value on
			LDS[2:0].
			F. LED Display (Continued)
PAD#	Name	I/O	Description
71	LED6/PHY3	I/O,	LED 6/Physical Address 3. Value on LED6 will be latched at the rising
		TTL	edge of RESETL as the physical address 3 of MX98746. If EECONF is
			set, Physical address will be overwritten by the value from EEPROM.
			After EEPROM operation is completed, this pin will display port 0's
			Receivee/Link, Partition, Isolation status and indicates 60% Network
			utilization and 15% collision rate according to the value on LDS[2:0].
72	LED7/ PHY4	I/O,	LED 7/Physical Address 4. Value on LED7 will be latched at the rising
		TTL	edge of RESETL as the physical address 4 of MX98746. If EECONF is
			set, Physical address will be overwritten by the value from EEPROM.
			After EEPROM operation is completed, this pin will display port 1's
			Receivee/Link, Partition, Isolation status and indicates 80+% Network
			utilization and 20 of collision rate according to the value on LDC[2:0]
			utilization and 20+% collision rate according to the value on LDS[2:0].
56	EECS	O,	EEPROM Chip Select. Output by MX98746 when EECONF is set and

P/N:PM0478 REV. 1.1, JAN. 06, 1998



			G. Power/Ground Pins
PAD #	Name	I/O	Description
1,14,17,			
40, 41,			
42, 53,			
61, 65,			
80, 89,			
101,103,			
104, 105,	GND		Ground.
106, 107,			
121, 122,			
123, 124,			
125, 126,			
127, 128			
23, 29,			
38, 39,			
57, 64,	VDD		5V Power Supply.
86, 95,			
102, 110			



6.0 FUNCTIONAL AND OPERATION DESCRIPTION

6.1 All TX MODE SELECTED

6.2 TX AND FX MIXED MODE

6.3 INTERNAL REGISTERS

All the registers can be accessed through MII's MDC and MDIO. Although XRC II connects to multiple 100-TX PHY's, they are all identical. Each XRC has only one PHY address as defined by PHY[4:0] pins (which will be latched by the rising edge of RESETL, and will be overwritten by the contents of EEPROM whenever EECONF is set to 1). If multiple XRC's are on the same MDIO bus, each of them should have different PHY address. Other non-XRC PHY devices (e.g. T4) are also allowed to be managed with the same management interface as long as PHY address of each device is distinct.

Register 0 and 1 are Command and Status registers which specified in [1]. Additional registers provided by MX98746 is located from address 16 to 31 (decimal value). Port Control Registers are located from address #16 to address #20. These control registers include port reset control register (#16), Port Scremabler control register (#17), Port Enable Control Register (#18), Isolation Disable Control Register (#19) and Partition Disable Control Register (#20).

Port Status Registers are located from address #25 to address #29. These registers include Link Status Register (#25), Partition Status Register (#26), Elastic Buffer Status Register (#27), Jabber Status Register (#28) and Isolation Status Register (#29).

Register #31 is Configuration Register. Value latched at the rising edge of RESETL will be stored in this register. Value on this register will be overwritten by contents of EEPROM in case EECONF is set to 1.

A. Command Register (register #0) (R/W)

Table 6-1 Control Register Bit Definition

Bit(s)	Name	Description	R/W
0.15	Reset	1 : PHY reset. A 240ns reset pulse will be generated to reset	R/W
		XRC internal logic.	SC
		0 : normal operation.	
0.14	Loop Back	1 : enable loopback mode.	R/W
		0 : disable loopback mode.	
		The default setting is 0.	
0.13	Speed Selection	Forced to 1 and indicate 100 Mb/s.	R
		Write 0 to this bit has no effect.	
0.12	Auto-Negotiation Enable	Forced to 0 and indicate that Auto-Negotiation process is	R
		disable.	
		Write 1 to this bit has no effect.	
0.11	Power Down	1 : power down. COCLK and TXCLK for each port will be	R/W
		disabled. Clock for Management Block will keep running.	
		During Power down, all state machines will be reset to its	
		default state.	
		0 : normal operation.	
0.10	Isolate	1 : electrically Isolate PHY from MII	R/W
		0 : normal operation	
0.9	Restart	Auto-Negotiation Forced to 0 and indicate that	R
		Auto-Negotiation process is disable.	
		Write 1 to this bit has no effect.	
0.8	Duplex Mode	Forced to 0 and indicate that only Half Duplex is available.	R
		Write 1 to this bit has no effect.	
0.7	Collision Test	1 : enable COL signal test. The PHY will assert the COL	R/W
		signal within 5120 ns in response to the assertion of TXEN.	
		While this bit is set to one, the PHY will deassert the COL	
		signal within 40 ns in response to the deassertion of TXEN.	
		0 : normal operation.	
		Set to 0 after power on reset.	
0.6:0	Reserved	Value 0 will be read when one tries to read these bits.	R

B. Status Register (register #1) (R)

Table 6-2 Status Register Bit Definition

Bit(s)	Name	Description	R/W
1.15	100BASE-T4	Forced to 0 and indicates that XRC is not able to perform	R
		100BASE-T4.	
1.14	100BASE-X	Forced to 0 and indicates that XRC is not able to perform	R
	Full Duplex	100BASE-X Fill Duplex.	
1.13	100BASE-X	Forced to 1 and indicates that XRC is able to perform	R
	Half Duplex	100BASE-X Half Duplex.	
1.12	10 Mb/s Full Duplex	Forced to 0 and indicates that XRC is not able to perform	R
		10 Mb/s Full Duplex.	
1.11	10 Mb/s Half Duplex	Forced to 0 and indicates that XRC is not able to perform	R
		10 Mb/s Half Duplex.	
1.10:6	Reserved	Value 0 will be released by XRC when read.	R
1.5	Auto-Negotiation	Forced to 0.	R
	Complete		
1.4	Remote Fault	Forced to 0.	R
1.3	Auto-Negotiation	Forced to 0.	R
	Ability		
1.2	Link Status	1 : All ports are link up.	R
		0 : Any port is link fail. Will be set to 1 after this port is read.	
1.1	Jabber Detect	1 : Jabber condition in any port is detected.	R
		0 : No Jabber condition detected for all ports	
1.0	Extended Capability	Forced to 1.	R

C. Port Reset Register (register #16) (R/W)

Table 6-3 Port Reset Register Bit Definition

Bit(s)	Name	Description	R/W
16.15:8	Reserved	Ignored when read.	R
16.7	ResetP1	1 : reset Port 1's Logic.	R/W
		0 : not reset Port 1's Logic.	
		Power on low.	
16.6	ResetP0	1 : reset Port 0's Logic.	R/W
		0 : not reset Port 0's Logic.	
		Power on low.	
16.5	Reserved	Ignored when read	R
16.4	ResetP4	1 : reset Port 4's Logic.	R/W
		0 : not reset Port 4's Logic.	
		Power on low.	
16.3	Reserved	Ignored when read	R
16.2	ResetP3	1 : reset Port 3's Logic.	R/W
		0 : not reset Port 3's Logic.	
		Power on low.	
16.1	ResetP2	1 : reset Port 2's Logic.	R/W
		0 : not reset Port 2's Logic.	
		Power on low.	
16.0	Reserved	Ignored when read	R

Each bit will not clear to 0 automatically whenever it is set to 1. To ensure the MX98746 works properly, one should write 0 back to Port reset register after written 1 to corresponding bit.

P/N:PM0478 REV. 1.1, JAN. 06, 1998

D. Scrambler Control Register (register #17) (R/W)

Table 6-4 Scrambler Control Register Bit Definition

Bit(s)	Name	Description	R/W
17.15:8	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
17.7	ScrenP1	1 : Enable Scrambler/Descrambler at Port 1	R/W
		0 : Disable Scrambler/Descrambler at Port 1	
		The default value after power on is 1.	
17.6	ScrenP0	1 : Enable Scrambler/Descrambler at Port 0	R/W
		0 : Disable Scrambler/Descrambler at Port 0	
		The default value after power on is 1.	
17.5	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
17.4	ScrenP4	1 : Enable Scrambler/Descrambler at Port 4	R/W
		0 : Disable Scrambler/Descrambler at Port 4	
		The default value after power on is 1.	
17.3	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
17.2	ScrenP3	1 : Enable Scrambler/Descrambler at Port 3	R/W
		0 : Disable Scrambler/Descrambler at Port 3	
		The default value after power on is 1.	
17.1	ScrenP2	1 : Enable Scrambler/Descrambler at Port 2	R/W
		0 : Disable Scrambler/Descrambler at Port 2	
		The default value after power on is 1.	
17.0	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	

Note: When SCRCTRL is set to 0, contents of this register will be disabled.

E. Port Enable Control Register (register #18) (R/W) (Continued)

Table 6-5 Port Enable Control Register Bit Definition

Bit(s)	Name	Description	R/W
18.15:8	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
18.7	EnP1	1 : Enable RX/TX functions at Port 1.	R/W
		0 : Disable RX/TX functions at Port 1.	
		The default value after power on is 1.	
18.6	EnP0	1 : Enable RX/TX functions at Port 0.	R/W
		0 : Disable RX/TX functions at Port 0.	
		The default value after power on is 1.	
18.5	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
18.4	EnP4	1 : Enable RX/TX functions at Port 4.	R/W
		0 : Disable RX/TX functions at Port 4.	
		The default value after power on is 1.	
18.3	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
18.2	EnP3	1 : Enable RX/TX functions at Port 3.	R/W
		0 : Disable RX/TX functions at Port 3.	
		The default value after power on is 1.	
18.1	EnP2	1 : Enable RX/TX functions at Port 2.	R/W
		0 : Disable RX/TX functions at Port 2.	
		The default value after power on is 1.	
18.0	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	

F. Isolation Disable Register (register #19) (R/W)

Table 6-6 Isolation Disable Register Bit Definition

Bit(s)	Name	Description	R/W
19.15:8	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
19.7	ISODIS1	1 : Port 1 Isolation function is disabled	R/W
		0: Port 1 Isolation function is not disabled.	
		The default value is 0 after reset.	
19.6	ISODIS0	1 : Port 0 Isolation function is disabled	R/W
		0 : Port 0 Isolation function is not disabled.	
		The default value is 0 after reset.	
19.5	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
19.4	ISODIS4	1 : Port 4 Isolation function is disabled	R/W
		0 : Port 4 Isolation function is not disabled.	
		The default value is 0 after reset.	
19.3	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
19.2	ISODIS3	1 : Port 3 Isolation function is disabled	R/W
		0: Port 3 Isolation function is not disabled.	
		The default value is 0 after reset.	
19.1	ISODIS2	1 : Port 2 Isolation function is disabled	R/W
		0: Port 2 Isolation function is not disabled.	
		The default value is 0 after reset.	
19.0	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	

G. Partition Disable Register (register #20) (R/W)

Table 6-7 Partition Disable Register Bit Definition (Continued)

Bit(s)	Name	Description	R/W
20.15:8	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
20.7	PTNDIS1	1 : Port 1 Parition function is disbled.	R/W
		0 : Port 1 Partition function is not disabled.	
		The default value is 0 after reset.	
20.6	PTNDIS0	1 : Port 0 Parition function is disbled.	R/W
		0 : Port 0 Partition function is not disabled.	
		The default value is 0 after reset.	
20.5	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
20.4	PTNDIS4	1 : Port 4 Parition function is disbled.	R/W
		0 : Port 4 Partition function is not disabled.	
		The default value is 0 after reset.	
20.3	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	
20.2	PTNDIS3	1 : Port 3 Parition function is disbled.	R/W
		0 : Port 3 Partition function is not disabled.	
		The default value is 0 after reset.	
20.1	PTNDIS2	1 : Port 2 Parition function is disbled.	R/W
		0 : Port 2 Partition function is not disabled.	
		The default value is 0 after reset.	
20.0	Reserved	Write any value to these bits have no effect.	R/W
		Written value will be released onto MDIO whenever	
		Read Command is issued	

H. Link Status Register (register #25) (R)

Table 6-8 Link Status Register Bit Definition

Bit(s)	Name	Description	R/W
25.15:8	Reserved	Always 0.	R
25.7	LinkP1	1 : Link Status is OK at port 1	R
		0 : Link Status is Fail at Port 1	
		Status is updated at every LSCLK clock.	
25.6	LinkP0	1 : Link Status is OK at port 0	R
		0 : Link Status is Fail at Port 0	
		Status is updated at every LSCLK clock.	
25.5	Reserved	Ignored when read	R
25.4	LinkP4	1 : Link Status is OK at port 4	R
		0 : Link Status is Fail at Port 4	
		Status is updated at every LSCLK clock.	
25.3	Reserved	Ignored when read	R
25.2	LinkP3	1 : Link Status is OK at port 3	R
		0 : Link Status is Fail at Port 3	
		Status is updated at every LSCLK clock.	
25.1	LinkP2	1 : Link Status is OK at port 2	R
		0 : Link Status is Fail at Port 2	
		Status is updated at every LSCLK clock.	
25.0	Reserved	Ignored when read	R

I. Partition Status Register (register #26) (R)

Table 6-9 Partition Status Register Bit Definition

Bit(s)	Name	Description	R/W
26.15:8	Reserved	Always 0.	R
26.7	PartP1	1 : Port 1 has been partitioned	R
		0 : Port 1 has not been partitioned	
		Status is updated every 40 ns.	
26.6	PartP0	1 : Port 0 has been partitioned	R
		0 : Port 0 has not been partitioned	
		Status is updated every 40 ns.	
26.5	Reserved	Ignored when read	R
26.4	PartP4	1 : Port 4 has been partitioned	R
		0 : Port 4 has not been partitioned	
		Status is updated every 40 ns.	
26.3	Reserved	Ignored when read	R
26.2	PartP3	1 : Port 3 has been partitioned	R
		0 : Port 3 has not been partitioned	
		Status is updated every 40 ns.	
26.1	PartP2	1 : Port 2 has been partitioned	R
		0: Port 2 has not been partitioned	
		Status is updated every 40 ns.	
26.0	Reserved	Ignored when read	R

J. Elastic Buffer Over/Underflow Status Register (register #27) (R)

Table 6-10 Elastic Buffer Over/Underflow Status Register Bit Definition

Bit(s)	Name	Description	R/W
27.15:0	Reserved	Always 0.	R
27.7	EBOUF1	1 : Elastic Buffer Over/Underflow at Port 1	R
		0 : Normal Condition.	
		Clear to 0 after read.	
27.6	EBOUF0	1 : Elastic Buffer Over/Underflow at Port 0	R
		0 : Normal Condition.	
		Clear to 0 after read.	
27.5	Reserved	Ignored when read	R
27.4	EBOUF4	1 : Elastic Buffer Over/Underflow at Port 4	R
		0 : Normal Condition.	
		Clear to 0 after read.	
27.3	Reserved	Ignored when read	R
27.2	EBOUF3	1 : Elastic Buffer Over/Underflow at Port 3	R
		0 : Normal Condition.	
		Clear to 0 after read.	
27.1	EBOUF2	1 : Elastic Buffer Over/Underflow at Port 2	R
		0 : Normal Condition.	
		Clear to 0 after read.	
27.0	Reserved	Ignored when read	R

K. Jabber Status Register (register #28) (R)

Table 6-11 Jabber Status Register Bit Definition

Bit(s)	Name	Description	R/W
28.15:0	Reserved	Always 0.	R
28.7	JABP1	1 : Receive Jabber Active at Port 1	
		0 : No Jabber condition at Port 1	R
28.6	JABP0	1 : Receive Jabber Active at Port 0	
		0 : No Jabber condition at Port 0	R
28.5	Reserved	Ignored when read	R
28.4	JABP4	1 : Receive Jabber Active at Port 4	
		0 : No Jabber condition at Port 4	R
28.3	Reserved	Ignored when read	R
28.2	JABP3	1 : Receive Jabber Active at Port 3	
		0 : No Jabber condition at Port 3	R
28.1	JABP2	1 : Receive Jabber Active at Port 2	
		0 : No Jabber condition at Port 2	R
28.0	Reserved	Ignored when read	R

L. Isolation Status Register (register #29) (R)

Table 6-12 Isolation Status Register Bit Definition

Bit(s)	Name	Description	R/W
29.15:0	Reserved	Always 0.	R
29.7	ISO1	1 : Port Isolation is occuring at port 1,	
		0 : Port Isolation is not occuring at port 1.	R
29.6	ISO0	1 : Port Isolation is occuring at port 0,	
		0 : Port Isolation is not occuring at port 0.	R
29.5	Reserved	Ignored when read	R
29.4	ISO4	1 : Port Isolation is occuring at port 4,	
		0 : Port Isolation is not occuring at port 4.	R
29.3	Reserved	Ignored when read	R
29.2	ISO3	1 : Port Isolation is occuring at port 3,	
		0 : Port Isolation is not occuring at port 3.	R
29.1	ISO2	1 : Port Isolation is occuring at port 2,	
		0 : Port Isolation is not occuring at port 2.	R
29.0	Reserved	Ignored when read	R
		_	

M. Configuration Register (register #31) (R/W)

Table 6-13 Configuration Register Bit Definition

Bit(s)	Name	Description	R/W
31.15	Reserved	Reserved for further usage.	R/W
31.14	L40H80	1:Internal arbiter will qualify EDENL for more than 80 ns.	
		0:Internal arbiter will qualify EDENL for more than 40 ns.	
		Power on low.	R/W
31.13:12	2 Reserved	Reserved for further usage.	
31.11	EECF	Power on reset value of LDS0.	
		After power on reset, Write 1 to this bit will not make	
		EEPROM operation.	
		When EECF is low, then value on corresponding pins	
		(known as hardwire setting) will be latched by MX98746	
		and overwrite the default setting of MX98746.	R
31.10	Reserved	Force to High all the time.	R/W
31.9	MONITOR	1 : Set XRC II to monitor mode and monitor serial output	
		of internal state machine through LED70	
		0 : Put MX98746 in normal mode.	R
31.8	INTARB	0:Internal Arbitor function is disabled.	
		1:Internal Arbitor function is enabled	
		Power on low.	R/W
31.7	FLWSPEC	1 : Partition function meets IEEE 802.3u i.e. when two ports	
		collide more than 128 times, two ports will be partitoned by	
		MX98746 simultaneously.	
		0: Those ports which Receive after Transmit will be partitioned.	
		(Same as MX98741) i.e. ports encounter transmit collision will	
		be paritioned only.	
		Value on LED0 will be stored in this bit in case EECONF is 0.	R/W
31.6	Reserved	Reserved for further usage	
31.5	Reserved	Reserved for further usage	
31.4:0	PHY[4:0]	Physical address of MX98746.	
		When EECONF is set to 0 (Disabled), value on LED[7:3]	
		will be stored in these five bits at the rising edge of RESETL.	
		If EECONF is set to high, value from EEPROM will overwrite	
		the hardwire setting.	R/W

6.4 EEPROM Mapping

Word #	Bit 15 8	7 0
5	MSB of Register #31	LSB of Register #31
4	MSB of Register #20	LSB of Register #20
3	MSB of Register #19	LSB of Register #19
2	MSB of Register #18	LSB of Register #18
1	MSB of Register #17	LSB of Register #17
0	MSB of Register #16	LSB of Register #16

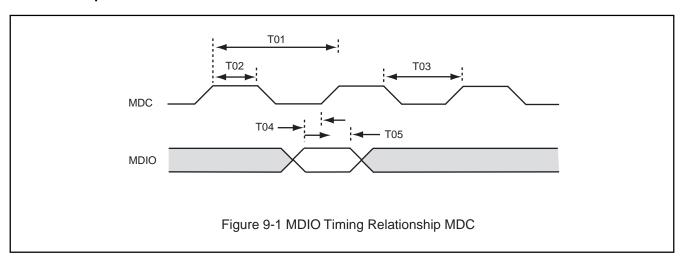
7.0 ABSOLUTE MAXIMUM RATINGS

Table 7-1 Absolute Maximum Rating for MX98746

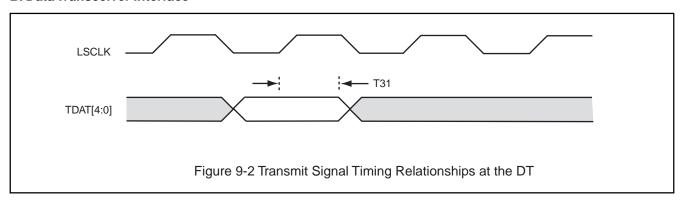
RATING	VALUE
Supply Voltage (VCC)	4.75V to 5.25V
DC Input Voltage (Vin)	-0.5V to VCC+0.5V
DC Output Voltage (Vout)	-0.5V to VCC+0.5V
Storage Temperature Range (TSTG)	-55 ℃ to 150 ℃
Operating Temperature Range	0 ℃ to 70 ℃
Power Dissipation (PD)	750 mW
ESD rating (Rzap=1.5K, Czap=100pF)	2000V

Notice: Stresses greater than those listed under ABSO-LUTE MAXIMUM RATINGS may cauase permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

8.0 DC Characteristics


Table 8-1 DC Characteristics for MX98746

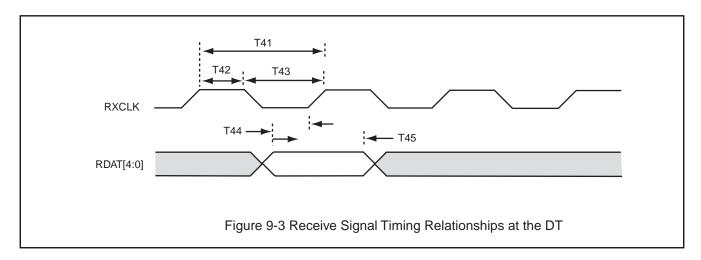
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
A. Supply	Current				
ICC	Average Active (TXing/RXing) Supply Current	X1 = 25MHz			
		VIN = Switching	-	150	mA
ICCIDLE	Average Idle Supply Current	X1 = 25MHz			
		VIN=VCC/GND	-	10	mΑ
IDD	Static IDD Current	X1=Undriven	-	600	uA
B. TTL Inp	uts, Outputs, Tri-States				
Vil	Maximum Low Level Input Voltage	GND = 0V	-	0.8	V
Vih	Minimum High Level Input Voltage		2.0	VCC+0.5	V
lin	Input Current	VI=VCC/GND	-1.0	1.0	uA
Voh	Minimum High Level Output Voltage	loh = -2mA/-4mA			
	(Others/MII/Expansion)	/-8mA	2.4	-	V
Vol	Maximum Low Level Output Voltage	IoI = 2mA/ 4mA			
	(Others/MII/Expansion)	/8mA	-	0.4	V
loz	Maximum TRI-STATE Output Leakage Current	VOUT=VCC/GND	-10.0	10.0	uA
C. CMOS I	nputs, Outputs				
Voh	Minimum High Level Output Voltage	loh = -20uA	VCC-0	.1 -	V
Vol	Maximum Low Level Output Voltage	lol = 20uA	-	0.1	V
Vil	Maximum Low Level Input Voltage		-	0.8	V
Vih	Minimum High Level Input Voltage		2.0	-	V
lin	Input Current	VI=VCC/GND	-1.0	1.0	uA


9.0 AC CHARACTERISTICS AND WAVEFORMS

A. Media Independent Interface

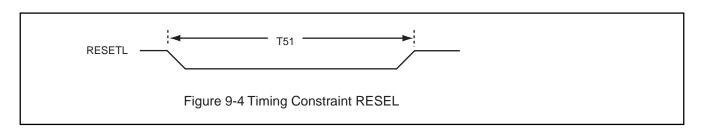
Symbol	Description	MIN.	MAX.	UNIT
T01	Period for MDC	400	-	ns
T02	High Time for MDC	160	-	ns
T03	Low Time for MDC	160	-	ns
T04	MDIO Setup to MDC rising edge (sourced by STA)	10	-	ns
T05a	MDIO Hold to MDC rising edge (sourced by STA)	10	-	ns
T05b	MDIO Hold to MDC rising edge (source by XRC)	18	25	ns

B. Data Transceiver Interface



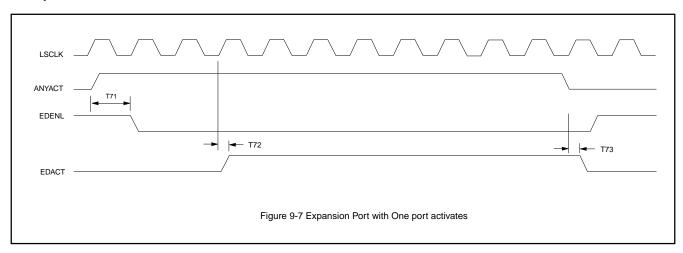
Symbol	Description	MIN.	MAX.	UNIT
T31	TDAT[4:0] to LSCLK Delay Time	10	15	ns

Note: Tested under 30pF loading.


P/N:PM0478 REV. 1.1, JAN. 06, 1998

Symbol	Description	MIN.	MAX.	UNIT
T41	RSCLK Period (Note 1)	40	40	ns
T42	RSCLK Pulse Width High	11	-	ns
T43	RSCLK Pulse Width Low Time	20	-	ns
T44	RDAT[4:0] Valid to RSCLK Rise	2	-	ns
T45	RSCLK Rise to RDAT[4:0] Invalid	4	-	ns

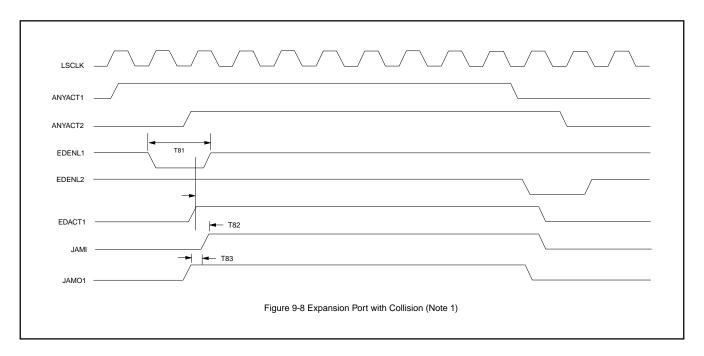
Note 1 : The accurate RSCLK frequency shall be 25 MHz +/- 50 ppm.


Symbol	Description	MIN.	MAX.	UNIT
T51	Pulse Width for RESETL	800	-	us

Note: RESETL must keep active low until LSCLK is stable more than 200 us.

P/N:PM0478 REV. 1.1, JAN. 06, 1998

C. Expansion Port Interface

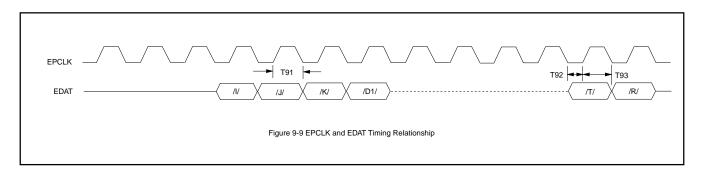

Symbol	Description	MIN.	MAX.	UNIT
T71	ANYACT asserted to EDENL asserted (Note 3)		80	ns
T72	LSCLK rising to EDACT asserted (Note 1, 2)		20	ns
T73	LSCLK rising to EDACT deassert		20	ns

Note 1 : EDENL will be filtered by 2 LSCLK clock within MX98746. Whenever MX98746 detects EDENL, it will assert EDACT at the rising edge of LSCLK

Note 2 : Expansion port data will be released onto EDAT[4:0] at the next LSCLK rising edge right after EDACT is asserted which is not shown in this figure.

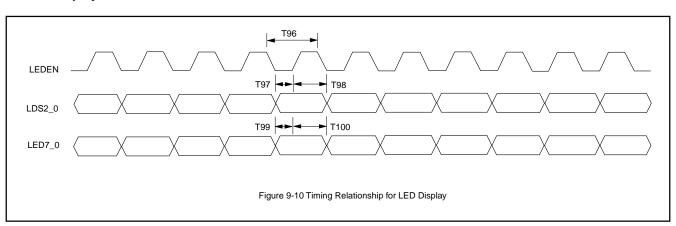
Note 3: ANYACT has not any timing relationship to LSCLK in MX98746. i.e. it is asynchronous to LSCLK.

Symbol	Description	MIN.	MAX.	UNIT
T81	Valid EDENL duration to make EDACT active	80		ns
T82	Collision Condition to JAMI asserted (Note 2)		10	ns
T83	JAMO asserted to JAMI asserted (Note 3)		10	ns


Note 1 : EDENL2 asserted after collision will not make EDACT2 assert in MX98746 due to MX98746 will mask activity from expansion port from cessation of collision to cessation of ANYACT2.

Note 2: Deassert timing is the same

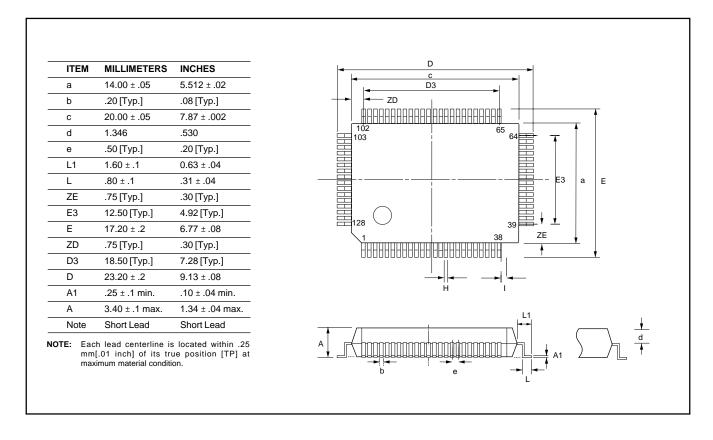
Note 3: Deassert timing is the same. Either T72 or T73 should cause JAMI assert


Note 4 : EDENL, JAMI and EDCRS (not shown in this timing) should be filtered by LSCLK to resolve asynchronous issue.

Symbol	Description	MIN.	MAX.	UNIT
T91	EPCLK to EDAT delay time			
	(EPCLK and EDAT outputed from MX98746)	12	16	ns
T92	EDAT Setup Time (Input to MX98746)	5	-	ns
T93	EDAT Hold Time (Input to MX98746)	5	-	ns

D. LED Display

Symbol	Description	MIN.	MAX.	UNIT
T96	LEDEN Period	9.9	10.1	ms
T97	LDS2_0 Setup Time	4.0	-	ms
T98	LDS2_0 Hold Time	4.9	-	ms
T99	LED7_0 Setup Time	4.0	-	ms
T100	LED7_0 Hold Time	4.9	-	ms


Note: Where LED7_0 definition relative to LDS2_0 configuration, please reference pin description of LDS2_0

P/N:PM0478 REV. 1.1, JAN. 06, 1998

11.0 PACKAGE INFORMATION

128-PIN PLASTIC QUAD FLAT PACK

MACRONIX INTERNATIONAL CO., LTD.

HEADQUARTERS:

TEL:+886-3-578-8888 FAX:+886-3-578-8887

EUROPE OFFICE:

TEL:+32-2-456-8020 FAX:+32-2-456-8021

JAPAN OFFICE:

TEL:+81-44-246-9100 FAX:+81-44-246-9105

SINGAPORE OFFICE:

TEL:+65-747-2309 FAX:+65-748-4090

TAIPEI OFFICE:

TEL:+886-3-509-3300 FAX:+886-3-509-2200

MACRONIX AMERICA, INC.

TEL:+1-408-453-8088 FAX:+1-408-453-8488

CHICAGO OFFICE:

TEL:+1-847-963-1900 FAX:+1-847-963-1909

http://www.macronix.com