

HIGH PERFORMANCE LOW-NOISE OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM5534 is a high performance low noise operational amplifier. This amplifier features popular pin-out, superior noise performance, and high output drive capability.

The amplifier also features guaranteed noise performance with substantially higher gain-bandwidth product, power bandwidth, and slew rate which far exceeds that of the NJM741 type amplifiers. The NJM5534 is internally compensated for a gain of three or higher and may be externally compensated for optimizing specific performance requirements of various applications such as unity-gain voltage followers, drivers for capacitive loads or fast setting.

The specially designed low noise input transistors allow the NJM5534 to be used in very low noise signal processing applications such as audio pre-amplifiers and servo error amplifiers.

■ PACKAGE OUTLINE

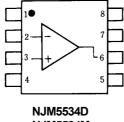
NJM5534D

NJM5534M

■ FEATURES

 Operating Voltage (±3V~±22V)

Single Circuit

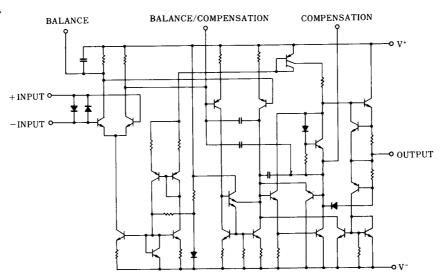

• With V_{IO} Trim Terminal

• Low Input Noise Voltage (3.3nV/√Hz typ.@ 1kHz)

 Power Bandwidth (200kHz typ.) Slew Rate (13V/µs typ.) Package Outline DIP8, DMP8

Bipolar Technology

■ PIN CONFIGURATION



NJM5534M

PIN FUNCTION 1.BALANCE 2.-INPUT 3.+INPUT 5.COMPENSATION 6.OUTPUT

7.V⁺ 8.BALANCE/COMPENSATION

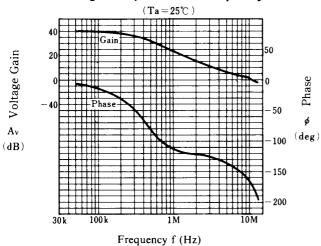
■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

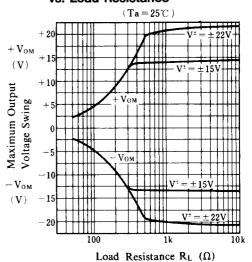
(Ta=25°C)

PARAMETER	SYMBOL	BOL RATINGS	
Supply Voltage	(V⁺N⁻)	± 22	V
Differential Input Voltage	V _{ID}	± 0.5	V
Input Voltage	V _{IC}	V ⁺ /V ⁻	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW
Operating Temperature Range	T _{opr}	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

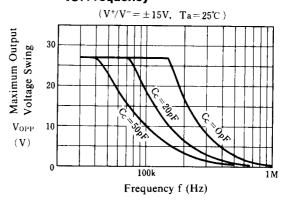

(Ta=25 $^{\circ}$ C,V † N $^{-}$ =±15V)

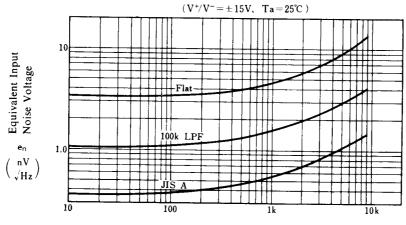
PARAMETER	SYMBOL	TEST CONDITION	NJM5534			UNIT
I AIVAIVIL I LIX	AWETER STWIBOL TEST CONDITION		MIN.	TYP.	MAX.	OIVII
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	0.5	4	mV
Input Offset Current	I _{IO}		-	20	300	nA
Input Bias Current	lΒ		-	500	1500	nA
Input Resistance	R _{IN}		30	100	-	kΩ
Large Signal Voltage Gain	A_V	R _L ≥2kΩ,V _O =±10V	88	100	-	dB
Maximum Output Voltage Swing	V _{OM}	R _L ≥600Ω	± 12	± 13	-	V
Input Common Mode Voltage Range	V_{ICM}		± 12	± 13	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	100	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	80	100	-	dB
Operating Current	Icc	R _L =∞	-	4	8	mA
Transient Response Rise Time	t _R	V_{IN} =50mV,R _L =600 Ω ,C _L =100pF,C _c =22pF	-	35	-	nsec
Overshoot		V_{IN} =50mV,R _L =600 Ω ,C _L =100pF,C _c =22pF	-	17	-	%
Slew Rate	SR	C _c =0	-	13	-	V/µs
Gain Bandwidth Product	GB	C _c =22pF,C _L =100pF	-	10	-	MHz
Power Bandwidth	W_{PG}	$V_0 = 20V_{P-P}, C_c = 0$	-	200	-	kHz
Equivalent Input Noise Voltage	V_{NI}	f=20Hz~20kHz	-	1.0	-	μVrms
Equivalent Input Noise Current	I _{NI}	f=20Hz~20kHz	-	25	-	pArms
Equivalent Input Noise Voltage 1	e _{n1}	f _O =30Hz	-	5.5	-	nV/√Hz
Equivalent Input Noise Voltage 2	e _{n2}	f _O =1kHz	-	3.3	-	nV/√Hz
Equivalent Input Noise Current 1	i _{n1}	f _O =30Hz	-	1.5	-	pA/√Hz
Equivalent Input Noise Current 2	i _{n2}	f _O =1kHz	-	0.4	-	pA/√Hz
Broadband Noise Figure	NF	f=10Hz~20kHz,R _S =5kΩ	-	0.9	-	dB


Note: JRC's general selected products D rank are also prepared for the noise standard ($R_S = 2.2 k \Omega, RIAA, V_N = 1.4 \mu V$ Max.)

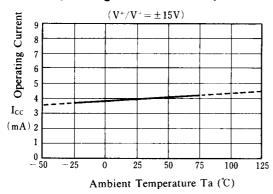
■ TYPICAL CHARACTERISTICS

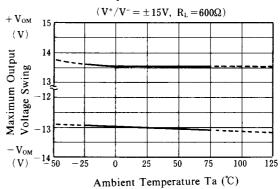
Voltage Gain, Phase vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance

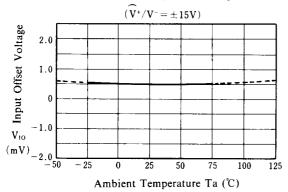

Maximum Output Voltage Swing vs. Frequency

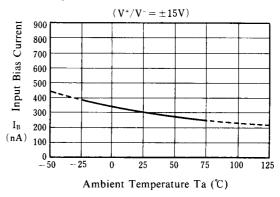
Maximum Output Voltage Swing vs. Frequency

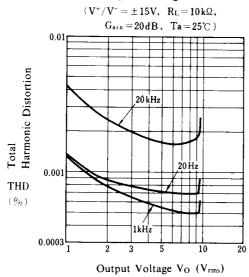

Equivalent Input Noise Voltage vs. Rs

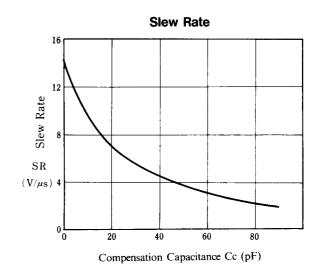

Source Resistance R_S (Ω)

■ TYPICAL CHARACTERISTICS


Operating Current vs. Temperature

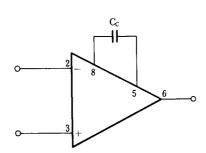

Maximum Output Voltage Swing vs. Temperature


Input Offset Voltage vs. Temperature



Input Bias Current vs. Temperature

Total Harmonic Distortion vs. Output Voltage



■ ADJUSTMENT METHOD

Offset Adjustment

V* | 22k | 100k | 8 | 6 | 6 | 6 |

Frequency Compensation

■ NOTICE

When used in voltage follower circuit, put a current limit resistor into non-inverting input terminal in order to avoid inside input diode destruction when the power supply is turned on. (ref.Fig.1)

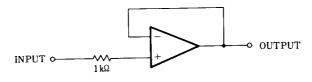


Fig.1

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.