8-Channel, 16/14-Bit, Serial Input, Voltage-Output DAC

Preliminary Technical Data

FEATURES

8-channel DAC in 52-LQFP and 56-LFCSP
Guaranteed monotonic to $16 / 14$ bits
Nominal output voltage range of -10 V to +10 V
Multiple output spans available
Temperature Monitoring Function
Channel Monitoring Multiplexer

GPIO Function

System calibration function allowing user-programmable offset and gain
Channel grouping and addressing features
Data error checking feature

SPI compatible serial interface
2.5 V to 5.5 V JEDEC-compliant digital levels

Power-on reset
Digital reset ($\overline{\text { RESET }}$)
Clear function to user-defined SIGGND ($\overline{\mathrm{CLR}}$ pin)
Simultaneous update of DAC outputs ($\overline{\text { LDAC }}$ pin)

APPLICATIONS

Instrumentation

Industrial Control System
PLC Analog I/O Cards
Level setting in automatic test equipment (ATE)
Variable optical attenuators (VOA)
Precision Medical Instruments

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
AD5362/AD5363—Protected by U.S. Patent No. 5,969,657; other patents pending

AD5362/AD5363

TABLE OF CONTENTS

General Description 3
Specifications 4
AC Characteristics. 5
Timing Characteristics 6
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions. 9
Terminology 11
Functional Description 12
DAC Architecture-General. 12
Channel Groups 12
A/ B Registers And Gain/Offset Adjustment 13
Offset DACs 13
Output Amplifier 13
Transfer Function 14
Reference Selection 14
Calibration 15
Reset Function 15
Clear Function 15
$\overline{\text { BUSY }}$ And $\overline{\text { LDAC }}$ Functions 15
$\overline{\mathrm{BIN}} / 2$ s Comp Pin 16
Temperature Sensor 16
Monitor Function 16
GPIO Pin 16
Power-Down Mode 16
Temperature Monitoring 16
Toggle Mode 16
Serial Interface 18
SPI Write Mode 18
Register Update Rates 18
SPI Readback Mode 19
Channel Addressing And Special Modes. 19
Special Function Mode 20
Power Supply Decoupling 21
Power Supply Sequencing 22
Interfacing Examples 22
Outline Dimensions 23
Ordering Guide 23

REVISION HISTORY

GENERAL DESCRIPTION

The AD5362/AD5363 contains 8, 16/14-bit DACs in a single, 56-lead, LFCSP or 52-lead LQFP package. It provides buffered voltage outputs with a span 4 times the reference voltage. The gain and offset of each DAC can be independently trimmed to remove errors. For even greater flexibility, the device is divided into two blocks of 8 DACs, and the output range of each block can be independently adjusted by an offset DAC.

The AD5362/AD5363 offers guaranteed operation over a wide supply range with $\mathrm{V}_{\text {ss }}$ from -4.5 V to -16.5 V and V_{DD} from +8 V to +16.5 V . The output amplifier headroom requirement is 1.4 V operating with a load current of 1 mA .

The AD5362/AD5363 has a high-speed serial interface, which is compatible with SPI ${ }^{\circ}$, QSPI ${ }^{\text {me }}$, MICROWIRE ${ }^{\text {me }}$, and DSP interface standards and can handle clock speeds of up to 50 MHz . All the outputs can be updated simultaneously by taking the $\overline{\mathrm{LDAC}}$ input low. Each channel has a programmable gain and an offset adjust register.

Each DAC output is amplified and buffered on-chip with respect to an external SIGGND input. The DAC outputs can also be switched to SIGGND via the $\overline{\mathrm{CLR}}$ pin

Table 1. High Channel Count Bipolar DACs

Model	Resoluti on	Nominal Output Span	Output Channels	Linearity Error (LSB)	Package Description	Package Option
AD5360BCPZ	16 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	16	± 4	56-Lead LFCSP	CP-56
AD5360BSTZ	16 Bits	$4 \times V_{\text {REF }}(20 \mathrm{~V})$	16	± 4	52-Lead LQFP	ST-52
AD5361BCPZ	14 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	16	± 1	56-Lead LFCSP	CP-56
AD5361BSTZ	14 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	16	± 1	52-Lead LQFP	ST-52
AD5362BCPZ	16 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	8	± 4	56-Lead LFCSP	CP-56
AD5362BSTZ	16 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	8	± 4	52-Lead LQFP	ST-52
AD5363BCPZ	14 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	8	± 1	56-Lead LFCSP	CP-56
AD5363BSTZ	14 Bits	$4 \times \mathrm{V}_{\text {REF }}(20 \mathrm{~V})$	8	± 1	52-Lead LQFP	ST-52
AD5370BCPZ	16 Bits	$4 \times \mathrm{V}_{\text {REF }}(12 \mathrm{~V})$	40	± 4	64-Lead LFCSP	CP-64
AD5370BSTZ	16 Bits	$4 \times \mathrm{V}_{\text {REF }}(12 \mathrm{~V})$	40	± 4	64-Lead LQFP	ST-64
AD5371BCPZ	14 Bits	$4 \times \mathrm{V}_{\text {REF }}(12 \mathrm{~V})$	40	± 1	100-Ball CSPBGA	BC-100-2
AD5371BSTZ	14 Bits	$4 \times \mathrm{V}_{\text {ref }}(12 \mathrm{~V})$	40	± 1	80-Lead LQFP	ST-80
AD5372BCPZ	16 Bits	$4 \times \mathrm{V}_{\text {REF }}(12 \mathrm{~V})$	32	± 4	56-Lead LFCSP	CP-56
AD5372BSTZ	16 Bits	$4 \times \mathrm{V}_{\text {ReF }}(12 \mathrm{~V})$	32	± 4	64-Lead LQFP	ST-64
AD5373BCPZ	14 Bits	$4 \times \mathrm{V}_{\text {ReF }}(12 \mathrm{~V})$	32	± 1	56-Lead LFCSP	CP-56
AD5373BSTZ	14 Bits	$4 \times \mathrm{V}_{\text {REF }}(12 \mathrm{~V})$	32	± 1	64-Lead LQFP	ST-64

SPECIFICATIONS

DV $\mathrm{CC}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=8 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-4.5 \mathrm{~V}$ to $-16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{SIGGND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=$ Open Circuit; Gain (m), Offset(c) and DAC Offset registers at default value; all specifications $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 2. Performance Specifications

Parameter	B Version ${ }^{1}$	Unit	Test Conditions/Comments ${ }^{2}$
ACCURACY Resolution Relative Accuracy Differential Nonlinearity Offset Error Gain Error Offset Error ${ }^{2}$ Gain Error ${ }^{2}$ VOUT Temperature Coefficient DC Crosstalk ${ }^{2}$	$\begin{aligned} & 16 \\ & 14 \\ & \pm 4 \\ & \pm 1 \\ & \pm 1 \\ & \pm 20 \\ & \pm 20 \\ & 100 \\ & 100 \\ & 5 \end{aligned}$	Bits Bits LSB max LSB max LSB max mV max mV max $\mu \mathrm{V}$ max $\mu \mathrm{V}$ max ppm FSR/ ${ }^{\circ} \mathrm{C}$ typ mV max	AD5362 AD5363 AD5362 AD5363 Guaranteed monotonic by design over temperature Prior to calibration Prior to calibration After to calibration After to calibration Includes linearity, offset, and gain drift. Typically $100 \mu \mathrm{~V}$.
REFERENCE INPUTS (VREF1, VREF2) ${ }^{2}$ $V_{\text {REF }}$ DC Input Impedance $V_{\text {ReF }}$ Input Current $V_{\text {REF }}$ Range	$\begin{aligned} & 1 \\ & \pm 10 \\ & 3 / 5 \end{aligned}$	$\mathrm{M} \Omega$ min $\mu \mathrm{A}$ max \checkmark min/max	Typically $100 \mathrm{M} \Omega$. Per input. Typically $\pm 30 \mathrm{nA}$. $\pm 2 \%$ for specified operation.
SIGGND INPUT (SIGGND0 TO SIGGND4)² DC Input Impedance Input Range	$\begin{aligned} & 55 \\ & \pm 0.5 \end{aligned}$	$\mathrm{k} \Omega$ min V min/max	Typically $60 \mathrm{k} \Omega$.
OUTPUT CHARACTERISTICS² Output Voltage Range Short Circuit Current Load Current Capacitive Load DC Output Impedance	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2 \\ & \mathrm{~V}_{\mathrm{DD}}-2 \\ & 5 \\ & \pm 1 \\ & 2200 \\ & 1 \end{aligned}$	\vee min V max mA max mA max pF max Ω max	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~mA} . \\ & \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~mA} . \end{aligned}$
MONITOR PIN (MON_OUT) Output Impedance Three State Leakage Current Continuous Current Limit	$\begin{aligned} & 500 \\ & 100 \\ & 2 \end{aligned}$	Ω typ nA typ mA max	
DIGITAL INPUTS Input High Voltage Input Low Voltage Input Current (with pull-up/pulldown) Input Current (no pull-up/pull-down) Input Capacitance ${ }^{2}$	$\begin{aligned} & 1.7 \\ & 2.0 \\ & 0.8 \\ & \pm 8 \\ & \\ & \pm 1 \\ & 10 \end{aligned}$	V min V min V max $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max pF max	JEDEC compliant. $10 \mathrm{~V}_{\mathrm{cc}}=2.5 \mathrm{~V}$ to 3.6 V . $10 \mathrm{~V}_{\mathrm{cc}}=3.6 \mathrm{~V}$ to 5.5 V . $1 O V_{\mathrm{cc}}=2.5 \mathrm{~V}$ to 5.5 V . CLR and RESET pin only. All other digital input pins.
DIGITAL OUTPUTS (SDO) Output Low Voltage Output High Voltage (SDO) High Impedance Leakage Current High Impedance Output Capacitance ${ }^{2}$	$\begin{aligned} & 0.5 \\ & \text { DV }_{\text {cc }}-0.5 \\ & -5 \\ & 10 \end{aligned}$	\checkmark max V min $\mu \mathrm{A}$ max pF typ	Sinking $200 \mu \mathrm{~A}$. Sourcing $200 \mu \mathrm{~A}$. SDO only.

Parameter	B Version ${ }^{1}$	Unit	Test Conditions/Comments ${ }^{2}$
POWER REQUIREMENTS			
DV ${ }_{\text {cc }}$	2.3/5.5	\checkmark min/max	
V ${ }_{\text {D }}$	8/16.5	\checkmark min/max	
Vss	-4.5/-16.5	\checkmark min/max	
Power Supply Sensitivity ${ }^{2}$			
Δ Full Scale/ $\Delta \mathrm{V}_{\mathrm{DD}}$	-75	dB typ	
Δ Full Scale/ $\Delta \mathrm{V}_{\text {ss }}$	-75	dB typ	
Δ Full Scale/ Δ Vcc	-90	dB typ	
Dlcc	2	mA max	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$.
IDD	5	mA max	Outputs unloaded.
Iss	5	mA max	Outputs unloaded.
Power Dissipation			
Power Dissipation Unloaded (P)	350	mW	
Junction Temperature ${ }^{3}$	130	${ }^{\circ} \mathrm{C}$ max	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\text {Total }} \times \theta_{J}$.

${ }^{1}$ Temperature range for B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical specifications are at $25^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design and characterization, not production tested.
${ }^{3}$ Where θ, represents the package thermal impedance.

AC CHARACTERISTICS

$D V_{C C}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{SIGGND}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$;
Gain (m), Offset(c) and DAC Offset registers at default value; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 3. AC Characteristics

Parameter	B Version	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE ${ }^{1}$			
Output Voltage Settling Time	20	$\mu \mathrm{styp}$	Full-scale change
	30	$\mu \mathrm{s}$ max	DAC latch contents alternately loaded with all 0 s and all 1 s .
Slew Rate	1	V/us typ	
Digital-to-Analog Glitch Energy	20	nV-s typ	
Glitch Impulse Peak Amplitude	10	$m \mathrm{~V}$ max	
Channel-to-Channel Isolation	100	dB typ	$\mathrm{V}_{\text {REF }}(+)=2 \mathrm{~V}$ p-p, 1 kHz.
DAC-to-DAC Crosstalk	40	nV-s typ	Between DACs in the same group.
	10	nV-s typ	Between DACs from different groups.
Digital Crosstalk	0.1	nV-s typ	
Digital Feedthrough	1	nV-s typ	Effect of input bus activity on DAC output under test.
Output Noise Spectral Density @ 10 kHz	250	$\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$.

TIMING CHARACTERISTICS

DV $\mathrm{CC}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=8 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-4.5 \mathrm{~V}$ to -16.5 V ; $\mathrm{V}_{\mathrm{Ref}}=3 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{SIGGND}=0 \mathrm{~V}$;
$\mathrm{R}_{\mathrm{L}}=$ Open Circuit; Gain (m), Offset(c) and DAC Offset registers at default value; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
SPI INTERFACE (Figure 4 and Figure 5)

Parameter $1,2,3$	Limit at Tmin, Tmax	Unit	Description
t_{1}	20	ns min	SCLK Cycle Time.
t_{2}	8	$n \mathrm{nmin}$	SCLK High Time.
t_{3}	8	$n s$ min	SCLK Low Time.
t_{4}	10	ns min	
t_{5}	15	ns min	Minimum $\overline{\text { SYNC High Time. }}$
t_{6}	5	$n \mathrm{nmin}$	24th SCLK Falling Edge to $\overline{\text { SYNC }}$ Rising Edge.
t_{7}	5	ns min	Data Setup Time.
t_{8}	4.5	ns min	Data Hold Time.
ta^{3}	30	ns max	$\overline{\text { SYNC }}$ Rising Edge to $\overline{\text { BUSY }}$ Falling Edge.
t_{10}	480	ns max	
t_{11}	480	ns max	Single-Channel Update Cycle Time
t_{12}	20	$n \mathrm{nmin}$	24th SCLK Falling Edge to $\overline{\text { LDAC Falling Edge. }}$
t_{13}	20	ns min	$\overline{\text { LDAC }}$ Pulse Width Low.
t_{14}	150	ns typ	$\overline{\text { BUSY }}$ Rising Edge to DAC Output Response Time.
t_{15}	0	ns min	$\overline{\text { BUSY }}$ Rising Edge to $\overline{\text { LDAC Falling Edge. }}$
t_{16}	100	ns min	
t_{17}	20/30	$\mu \mathrm{styp} /$ max	DAC Output Settling Time.
t_{18}	350	ns max	$\overline{\mathrm{CLR}} / \overline{\text { RESET }}$ Pulse Activation Time.
t_{19}	10	$n s$ min	$\overline{\text { RESET Pulse Width Low. }}$
t_{20}	120	$\mu \mathrm{s}$ max	$\overline{\text { RESET }}$ Time Indicated by $\overline{\text { BUSY }}$ Low.
t_{21}	250	$n s \min$	Minimum $\overline{\text { SYNC }}$ High Time in Readback Mode.
$\mathrm{t}_{22}{ }^{5}$	25	ns max	SCLK Rising Edge to SDO Valid.

${ }^{1}$ Guaranteed by design and characterization, not production tested
${ }^{2}$ All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}(10 \%$ to 90% of $\mathrm{V} \subset \mathrm{c})$ and timed from a voltage level of 1.2 V .
${ }^{3}$ See Figure 4 and Figure 5.
${ }^{4}$ This is measured with the load circuit of Figure 2
${ }^{5}$ This is measured with the load circuit of Figure 3.

Figure 2. Load Circuit for $\overline{B U S Y}$ Timing

Figure 3. Load Circuit for SDO Timing Diagram

${ }^{1} \overline{\text { LDAC }}$ ACTIVE DURING $\overline{\text { BUSY }}$ 2 LDAC ACTIVE AFTER BUSY

5371-0004B
Figure 4. SPI Write Timing

Figure 5. SPI Read Timing

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Transient currents of up to 100 mA do not cause SCR latch-up.

Table 4. Absolute Maximum Ratings

Parameter	Rating
$V_{\text {DD }}$ to AGND	-0.3 V to +17 V
$V_{\text {ss }}$ to AGND	-17 V to +0.3 V
DV ${ }_{\text {cc }}$ to DGND	-0.3 V to +7 V
Digital Inputs to DGND	-0.3 V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Digital Outputs to DGND	-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {ReF }} 0, \mathrm{~V}_{\text {refi }}$ to AGND	-0.3 V to +5.5 V
VOUT0-VOUT7 to AGND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
SIGGND to AGND	$\pm 1 \mathrm{~V}$
AGND to DGND	-0.3 V to +0.3 V
Operating Temperature Range (T_{A}) Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{T}_{\text {, max }}$)	$150^{\circ} \mathrm{C}$
Reflow Soldering	
Peak Temperature	$230^{\circ} \mathrm{C}$
Time at Peak Temperature	10 s to 40 s

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 6. 56 Lead LFCSP Pin Configuration

Figure 7. 52 Lead LQFP Pin Configuration

Table 5. Pin Function Descriptions

Pin Name	Function
DV ${ }_{\text {cc }}$	Logic Power Supply; 2.3 V to 5.5 V . These pins should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
$\mathrm{V}_{\text {ss }}$	Negative Analog Power Supply; -11.4 V to -16.5 V for specified performance. These pins should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
VDD	Positive Analog Power Supply; +11.4 V to +16.5 V for specified performance. These pins should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
AGND	Ground for All Analog Circuitry. All AGND pins should be connected to the AGND plane.
DGND	Ground for All Digital Circuitry. All DGND pins should be connected to the DGND plane.
SIGGND0	Reference Ground for DACs 0 to 3. VOUT0 to VOUT3 are referenced to this voltage.
SIGGND1	Reference Ground for DACs 4 to 7. VOUT4 to VOUT7 are referenced to this voltage.
$\mathrm{V}_{\text {REF }} 0$	Reference Input for DACs 0 to 3. This voltage is referred to AGND.
$\mathrm{V}_{\text {REF }} 1$	Reference Input for DACs 4 to 7. This voltage is referred to AGND.
VOUT0 to VOUT15	DAC Outputs. Buffered analog outputs for each of the 16 DAC channels. Each analog output is capable of driving an output load of $10 \mathrm{k} \Omega$ to ground. Typical output impedance of these amplifiers is 0.5Ω.
$\overline{\text { SYNC }}$	Active Low or $\overline{\text { SYNC }}$ Input for SPI Interface. This is the frame synchronization signal for the SPI serial interface. See SPI timing diagrams and descriptions for more details.
SCLK	Serial Clock Input for SPI Interface. See SPI timing diagrams and descriptions for more details.
SDI	Serial Data Input for SPI Interface. See SPI timing diagrams and descriptions for more details.
SDO	Serial Data Output for SPI Interface. See SPI timing diagrams and descriptions for more details.
$\overline{\text { LDAC }}$	Load DAC Logic Input (Active Low). See the \bar{B} USY and $\overline{\text { LDAC }}$ FUNCTIONS section for more information.
$\overline{\overline{B U S Y}}$	Digital Input/Open-Drain Output. See the $\overline{B U S Y}$ and $\overline{\overline{L D A C}}$ FUNCTIONS section for more information
$\overline{\text { RESET }}$	Asynchronous Digital Reset Input
$\overline{\mathrm{CLR}}$	Asynchronous clear input (level sensitive, active low). See the Clear Function section for more information
$\overline{\text { PEC }}$	Packet Error Check output. This is an open-drain output with a $50 \mathrm{k} \Omega$ pullup, that goes low if the packet error check fails.
TEMP_OUT	Provides an output voltage proportional to chip temperature. This is typically 1.5 V at 25 C with an output variation of 5 mV / C.
MON_OUT	Analog multiplexer output. Any DAC output or the MON_IN0 or the MON_IN1 input can be switched to this output.
MON_INO, MON_IN1	Analog multiplexer inputs, which can be switched to MON_OUT.

Pin Name	Function
GPIO	Digital I/O pin. This pin can be configured as an input or output that can be read or programmed high or low via the serial interface. When configured as an input it has a weak pulldown.
$\overline{\text { BIN/2SCOMP }}$	Digital input, sets the DAC coding. $0=$ offset binary, $1=2$'s complement. This input has a weak pulldown.
EXPOSED PADDLE	The Lead Free Chip Scale Package (LFCSP) has an exposed paddle on the underside. This should be connected to $\mathrm{V}_{s s}$

TERMINOLOGY

Relative Accuracy
Relative accuracy, or endpoint linearity, is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero-scale error and full-scale error and is expressed in least significant bits (LSB).

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB maximum ensures monotonicity.

Zero-Scale Error

Zero-scale error is the error in the DAC output voltage when all 0 s are loaded into the DAC register.
Zero-scale error is a measure of the difference between VOUT (actual) and VOUT (ideal) expressed in mV . Zero-scale error is mainly due to offsets in the output amplifier.

Full-Scale Error

Full-scale error is the error in DAC output voltage when all 1s are loaded into the DAC register.
Full-scale error is a measure of the difference between VOUT (actual) and VOUT (ideal) expressed in mV . It does not include zero-scale error.
Gain Error Gain error is the difference between full-scale error and zero-scale error. It is expressed in mV .

$$
\text { Gain Error }=\text { Full-Scale Error }- \text { Zero-Scale Error }
$$

VOUT Temperature Coefficient

This includes output error contributions from linearity, offset, and gain drift.

DC Output Impedance

DC output impedance is the effective output source resistance. It is dominated by package lead resistance.

DC Crosstalk

The DAC outputs are buffered by op amps that share common $V_{D D}$ and $V_{S S}$ Vpower supplies. If the dc load current changes in one channel (due to an update), this can result in a further dc change in one or more channel outputs. This effect is more significant at high load currents and reduces as the load currents are reduced. With high impedance loads, the effect is virtually immeasurable. Multiple VDD and $\mathrm{V}_{\text {sS }}$ terminals are provided to minimize dc crosstalk.
Output Voltage Settling Time
The amount of time it takes for the output of a DAC to settle to a specified level for a full-scale input change.

Digital-to-Analog Glitch Energy

The amount of energy injected into the analog output at the major code transition. It is specified as the area of the glitch in nV -s. It is measured by toggling the DAC register data between $0 \times 1 F F F$ and 0×2000.

Channel-to-Channel Isolation

Channel-to-channel isolation refers to the proportion of input signal from one DAC's reference input that appears at the output of another DAC operating from another reference. It is expressed in dB and measured at midscale.

DAC-to-DAC Crosstalk

DAC-to-DAC crosstalk is the glitch impulse that appears at the output of one converter due to both the digital change and subsequent analog output change at another converter. It is specified in nV -s.

Digital Crosstalk

The glitch impulse transferred to the output of one converter due to a change in the DAC register code of another converter is defined as the digital crosstalk and is specified in nV -s.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs can be capacitively coupled both across and through the device to show up as noise on the VOUT pins. It can also be coupled along the supply and ground lines. This noise is digital feedthrough.

Output Noise Spectral Density

Output noise spectral density is a measure of internally generated random noise. Random noise is characterized as a spectral density (voltage per $\sqrt{ } \mathrm{Hz}$). It is measured by loading all DACs to midscale and measuring noise at the output. It is measured in $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$

AD5362/AD5363

FUNCTIONAL DESCRIPTION

DAC ARCHITECTURE—GENERAL

The AD5362/AD5363 contains 8 DAC channels and 8 output amplifiers in a single package. The architecture of a single DAC channel consists of a 16-bit resistor-string DAC in the case of the AD5362 and a 14-bit DAC in the case of the AD5363, followed by an output buffer amplifier. The resistor-string section is simply a string of resistors, each of value R, from $V_{\text {REF }}$ to AGND. This type of architecture guarantees DAC monotonicity. The 16(14)-bit binary digital code loaded to the DAC register determines at which node on the string the voltage is tapped off before being fed into the output amplifier. The output amplifier multiplies
the DAC out voltage by 4 . The output span is 12 V with a 3 V reference and 20 V with a 5 V reference.

CHANNEL GROUPS

The 16 DAC channels of the AD5362/AD5363 are arranged into two groups of 8 channels. The eight DACs of Group 0 derive their reference voltage from VREF0, and those of Group 1 from VREF1

Table 6. AD5362(AD5363) Registers

Register Name	Word Length (Bits)	Description
X1A (group)(channel)	16(14)	Input data register A, one for each DAC channel.
X1B (group) (channel)	16(14)	Input data register B, one for each DAC channel.
M (group) (channel)	16(14)	Gain trim registers, one for each DAC channel.
C (group) (channel)	16(14)	Offset trim registers, one for each DAC channel.
X2A (group)(channel)	16(14)	Output data register A, one for each DAC channel. These registers store the final, calibrated DAC data after gain and offset trimming. They are not readable, nor directly writable.
X2B (group) (channel)	16(14)	Output data register B, one for each DAC channel. These registers store the final, calibrated DAC data after gain and offset trimming. They are not readable, nor directly writable.
DAC (group) (channel)		Data registers from which the DACs take their final input data. The DAC registers are updated from the X2A or X2B registers. They are not readable, nor directly writable.
OFS0	14	Offset DAC 0 data register, sets offset for Group 0 .
OFS1	14	Offset DAC 1 data register, sets offset for Group 1.
Control	8	Bit $4=$ Overtemperature indicator. $1=$ chip temperature $>130^{\circ} \mathrm{C}$. Bit $3=$ PEC error flag. $1=$ PEC error. Cleared on reading control register. Bit $2=\overline{\mathrm{A}} / \mathrm{B} .0=$ global selection of X1A input data registers. $1=\mathrm{X} 1 \mathrm{~B}$ registers. Bit $1=$ Soft Power Down. $0=$ soft power up. $1=$ soft power down Bit $0=$ Enable Temp Shutdown. $0=$ disable temp shutdown. $1=$ enable.
Monitor	6	Bit $5=$ Monitor enable. $0=$ off. $1=$ on. Bit $4=0$, DAC selected by bits 3 to 0 . Bits $3-0=$ DAC channel $0000=0$ to $1111=15$. Bit $4=1$, MON_IN pin selected by bit 0 . Bit $0=$ MON_IN select. $0=$ MON_IN0. $1=$ MON_IN1.
GPIO	2	Bit $1=$ GPIO configuration. $0=$ input. $1=$ output. Bit $0=$ GPIO data. Stores state of GPIO pin when input. Drives GPIO pin when output.

A/ B REGISTERS AND GAIN/OFFSET ADJUSTMENT

Each DAC channel has seven data registers. The actual DAC data word can be written to either the X 1 A or X 1 B input register, depending on the setting of the $\overline{\mathrm{A}} / \mathrm{B}$ bit in the Control Register. If the \bar{A} / B bit is 0 , data will be written to the X1A register. If the $\overline{\mathrm{A}} / \mathrm{B}$ bit is 1 , data will be written to the X1B register. Note that this single bit is a global control and affects every DAC channel in the device. It is not possible to set up the device on a per-channel basis so that some writes are to X1A registers and some writes are to X1B registers.

Figure 8. Data Registers Associated With Each DAC Channel
Each DAC channel also has a gain (M) and offset (C) register, which allow trimming out of the gain and offset errors of the entire signal chain. Data from the X1A register is operated on by a digital multiplier and adder controlled by the contents of the M and C registers. The calibrated DAC data is then stored in the X2A register. Similarly, data from the X1B register is operated on by the multiplier and adder and stored in the X2B register.

Although a multiplier and adder symbol are shown for each channel, there is only one multiplier and one adder in the device, which are shared between all channels. This has implications for the update speed when several channels are updated at once, as described later.

Each time data is written to the X1A register, or to the M or C register with the $\overline{\mathrm{A}} / \mathrm{B}$ control bit set to 0 , the X2A data is recalculated and the X2A register is automatically updated. Similarly, X2B is updated each time data is written to X1B, or to M or C with \bar{A} / B set to 1 . The X2A and X2B registers are not readable, nor directly writable by the user.

Data output from the X 2 A and X 2 B registers is routed to the final DAC register by a multiplexer. Whether each individual DAC takes its data from the X2A or X2B register is controlled by an 8 -bit A/B Select Register associated with each group of 8 DACs. If a bit in this register is 0 , the DAC takes its data from the X2A register; if 1 the DAC takes its data from the X2B register (bit 0 controls DAC 0 through bit 7 controls DAC 7).

Note that, since there are 8 bits in 2 registers, it is possible to set up, on a per-channel basis, whether each DAC takes its data
from the X 2 A or X 2 B register. A global command is also provided that sets all bits in the A/B Select Registers to 0 or to 1 .

All DACs in the AD5362/AD5363 can be updated simultaneously by taking $\overline{\text { LDAC }}$ low, when each DAC register will be updated from either its X2A or X2B register, depending on the setting of the A / B select registers. The DAC register is not readable, nor directly writable by the user.

OFFSET DACS

In addition to the gain and offset trim for each DAC, there are two 14-bit Offset DACs, one for Group 0, and one for Group 1. These allow the output range of all DACs connected to them to be offset. Thus, subject to the limitations of headroom, it is possible to set the output range of Group 0 , and/or Group 1 to be unipolar positive, unipolar negative, or bipolar, either symmetrical or asymmetrical about zero volts.

OUTPUT AMPLIFIER

As the output amplifiers can swing to 1.4 V below the positive supply and 1.4 V above the negative supply, this limits how much the output can be offset for a given reference voltage. For example, it is not possible to have a unipolar output range of 20 V , since the maximum supply voltage is $\pm 16.5 \mathrm{~V}$.

Figure 9. Output Amplifier and Offset DAC
Figure 9 shows details of a DAC output amplifier and its connections to the Offset DAC. On power up, S1 is open, disconnecting the amplifier from the output. S 3 is closed, so the output is pulled to SIGGND. S2 is also closed to prevent the output amplifier being open-loop. If $\overline{\mathrm{CLR}}$ is low at power-up, the output will remain in this condition until $\overline{C L R}$ is taken high. The DAC registers can be programmed, and the outputs will assume the programmed values when $\overline{C L R}$ is taken high. Even if $\overline{\mathrm{CLR}}$ is high at power-up, the output will remain in the above condition until $\mathrm{V}_{\mathrm{DD}}>6 \mathrm{~V}$ and $\mathrm{V}_{\text {SS }}<-4 \mathrm{~V}$ and the initialization sequence has finished. The outputs will then go to their poweron default value.

TRANSFER FUNCTION

From the foregoing, it can be seen that the output voltage of a DAC in the AD5362/AD5363 depends on the value in the input register, the value of the M and C registers, and the offset from the Offset DAC. The transfer function is given by:

AD5362

Code applied to DAC from X1A or X1B register:-
DAC_CODE $=$ INPUT_CODE $\times(\mathrm{m}+1) / 2^{16}+\mathrm{c}-2^{15}$
DAC output voltage:-
$\mathrm{V}_{\text {out }}=4 \times \mathrm{V}_{\text {ReF }} \times(\mathrm{DAC}$-CODE - OFFSET_CODE $\times 4) / 2^{16}$
$+V_{\text {siggnd }}$

Notes

Gain $=4$.
For 12 V span $\mathrm{V}_{\text {ref }}=3.0 \mathrm{~V}$.
For 20 V span $\mathrm{V}_{\text {ref }}=5.0 \mathrm{~V}$.
X1A, X1B default code $=32768$
$\mathrm{m}=$ code in gain register; default m code $=2^{16}-1$.
$\mathrm{c}=$ code in offset register; default c code $=2^{15}$.
OFFSET_CODE is the 14-bit code written to the offset DAC register. As this DAC is a 14 bit device, the code must by multiplied by 4 or left-shift twice to make the transfer function correct, since the X, M and C registers are 16-bit. The default value for the Offset DAC is 8192 (0×2000)

AD5363

Code applied to DAC from X1A or X1B register:-
DAC_CODE $=$ INPUT_CODE $\times(\mathrm{m}+1) / 2^{14}+\mathrm{c}-2^{13}$
DAC output voltage:-
Vout $=4 \times$ Vref $\times($ DAC_CODE - OFFSET_CODE $) / 2^{14}+V_{\text {SIGGND }}$
Notes
Gain $=4$.
For 12 V span $\mathrm{V}_{\text {Ref }}=3.0 \mathrm{~V}$.
For 20 V span $\mathrm{V}_{\text {ref }}=5.0 \mathrm{~V}$.
X1A, X1B default code $=8192$
$\mathrm{m}=$ code in gain register; default m code $=2^{14}-1$.
$\mathrm{c}=$ code in offset register; default c code $=2^{13}$.
OFFSET_CODE is the code loaded to the offset DAC. The default value for the Offset DAC is 8192 (0x2000)

REFERENCE SELECTION

The AD5362/AD5363 has two reference input pins. The voltage applied to the reference pins determines the output voltage span on VOUT0 to VOUT7. VREF0 determines the voltage span for VOUT0 to VOUT3 and VREF1 determines the voltage span for VOUT4to VOUT7. The reference voltage applied to each VREF pin can be different, if required, allowing each group of 4 channels to have a different voltage span. The output voltage range can be adjusted further by programming the offset and gain registers for each channel as well as programming the offset DAC. If the offset and gain features are not used (i.e. the
m and c registers are left at their default values) the required reference levels can be calculated as follows:

$$
V R E F=\left(V O U T_{\max }-V O U T_{\min }\right) / 4
$$

If the offset and gain features of the AD5362AD5363are used, then the required output range is slightly different. The chosen output range should take into account the system offset and gain errors that need to be trimmed out. Therefore, the chosen output range should be larger than the actual, required range.

The required reference levels can be calculated as follows:

1. Identify the nominal output range on VOUT.
2. Identify the maximum offset span and the maximum gain required on the full output signal range.
3. Calculate the new maximum output range on VOUT including the expected maximum offset and gain errors.
4. Choose the new required $\mathrm{VOUT}_{\text {max }}$ and $\mathrm{VOUT}_{\text {min }}$, keeping the VOUT limits centered on the nominal values. Note that $V_{\text {DD }}$ and $V_{\text {ss }}$ must provide sufficient headroom.
5. Calculate the value of VREF as follows:

$$
V R E F=(V O U T M A X-V O U T M I N) / 4
$$

Reference Selection Example

Nominal Output Range $=20 \mathrm{~V}(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$
Offset Error $= \pm 100 \mathrm{mV}$
Gain Error $= \pm 3 \%$
SIGGND $=\mathrm{AGND}=0 \mathrm{~V}$

1) Gain Error $= \pm 3 \%$
\Rightarrow Maximum Positive Gain Error $=+3 \%$
\Rightarrow Output Range incl. Gain Error $=20+0.03(20)=20.6 \mathrm{~V}$
2) Offset Error $= \pm 100 \mathrm{mV}$
=> Maximum Offset Error Span $=2(100 \mathrm{mV})=0.2 \mathrm{~V}$
=> Output Range including Gain Error and Offset Error $=$ $20.6 \mathrm{~V}+0.2 \mathrm{~V}=20.8 \mathrm{~V}$
3) VREF Calculation

Actual Output Range $=20.6 \mathrm{~V}$, that is -10.3 V to +10.3 V
(centered);
$V R E F=(10.3 \mathrm{~V}+10.3 \mathrm{~V}) / 4=5.15 \mathrm{~V}$

If the solution yields an inconvenient reference level, the user can adopt one of the following approaches:

1. Use a resistor divider to divide down a convenient, higher reference level to the required level.
2. Select a convenient reference level above VREF and
modify the Gain and Offset registers to digitally downsize the reference. In this way the user can use almost any convenient reference level but may reduce the performance by overcompaction of the transfer function.
3. Use a combination of these two approaches

CALIBRATION

The user can perform a system calibration by overwriting the default values in the m and c registers for any individual DAC channels as follows:

- Calculate the nominal offset and gain coefficients for the new output range (see previous example)
- Calculate the new m and c values for each channel based on the specified offset and gain errors

Calibration Example

Nominal Offset Coefficient $=8192$
Nominal Gain Coefficient $=20 / 20.6 \times 16383=15906$

Example 1: Gain Error = 3\%, Offset Error $=100 \mathrm{mV}$

1) Gain Error (3\%) Calibration: $15906 \times 1.03=16383$
=> Load Code "0b0011 111111111111 " to m register
2) Offset Error (100mV) Calibration:

LSB Size $=20.6 / 16384=1.257 \mathrm{mV}$;
Offset Coefficient for100mV Offset $=100 / 1.257=80$ LSBs
=> Load Code "0b1000 000001010000 " to c register
For the AD5362 the 16-bit nominal gain and offset values should be used.

RESET FUNCTION

When the RESET pin is taken low, the DAC buffers are disconnected and the DAC outputs VOUT0 to VOUT7 are tied to their associated SIGGND signals via a $10 \mathrm{k} \Omega$ resistor. On the rising edge of $\overline{\mathrm{RESET}}$ the AD5362/AD5363 state machine initiates a reset sequence to reset the X, M and C registers to their default values. This sequence typically takes 300μ s and the user should not write to the part during this time. When the reset sequence is complete, and provided that $\overline{\mathrm{CLR}}$ is high, the DAC output will be at a potential specified by the default register settings which will be equivalent to SIGGGND. The DAC outputs will remain at SIGGND until the X, M or C registers are updated and $\overline{\mathrm{LDAC}}$ is taken low.

CLEAR FUNCTION

$\overline{\mathrm{CLR}}$ is an active low input which should be high for normal operation. The $\overline{\mathrm{CLR}}$ pin has in internal $500 \mathrm{k} \Omega$ pull-down resistor. When $\overline{\mathrm{CLR}}$ is low, the input to each of the DAC output buffer stages, VOUT0 to VOUT7, is switched to the externally set potential on the relevant SIGGND pin. While $\overline{\mathrm{CLR}}$ is low, all
$\overline{\mathrm{LDAC}}$ pulses are ignored. When $\overline{\mathrm{CLR}}$ is taken high again, the DAC outputs remain cleared until $\overline{\mathrm{LDAC}}$ is taken low. The contents of input registers and DAC registers 0 to 7 are not affected by taking $\overline{\mathrm{CLR}}$ low. To prevent glitches appearing on the outputs $\overline{\mathrm{CLR}}$ should be brought low whenever the output span is adjusted by writing to the offset DAC.

$\overline{\text { BUSY }}$ AND $\overline{\text { LDAC }}$ FUNCTIONS

The value of an X 2 (A or B) register is calculated each time the user writes new data to the corresponding $\mathrm{X} 1, \mathrm{C}$, or M registers. During the calculation of X2, the $\overline{\mathrm{BUSY}}$ output goes low. While $\overline{\mathrm{BUSY}}$ is low, the user can new data to the $\mathrm{X} 1, \mathrm{M}$, or C registers, provided the first stage of the calculation is complete (see the Register Update Rates section for more details).
The $\overline{\mathrm{BUSY}}$ pin is bidirectional and has a $50 \mathrm{k} \Omega$ internal pullup resistor. Where multiple AD5362 or AD5363 devices may be used in one system the BUSY pins can be tied together. This is useful where it is required that no DAC in any device is updated until all other DACs are ready. When each device has finished updating the X 2 (A or B) registers it will release the $\overline{\mathrm{BUSY}}$ pin. If another device hasn't finished updating its X 2 registers it will hold $\overline{\text { BUSY }}$ low, thus delaying the effect of $\overline{\text { LDAC }}$ going low.
The DAC outputs are updated by taking the $\overline{\mathrm{LDAC}}$ input low. If $\overline{\mathrm{LDAC}}$ goes low while $\overline{\mathrm{BUSY}}$ is active, the $\overline{\mathrm{LDAC}}$ event is stored and the DAC outputs update immediately after BUSY goes high. A user can also hold the $\overline{\mathrm{LDAC}}$ input permanently low. In this case, the DAC outputs update immediately after $\overline{\text { BUSY }}$ goes high.

As described later, the AD5362/AD5363 has flexible addressing that allows writing of data to a single channel, all channels in a group, or all channels in the device. This means that several register values may need to be calculated and updated. As there is only one multiplier shared between 8 channels, this task must be done sequentially, so the length of the BUSY pulse will vary according to the number of channels being updated.
Table 7. $\overline{\text { BUSY }}$ Pulse Widths

Action	BUSY Pulse Width ($\boldsymbol{\mu}$ max)
Loading X1A, X1B, C, or M to 1 channel	1.25
Loading X1A, X1B, C, or M to 2 channels	1.75
Loading X1A, X1B, C, or M to 8 channels	4.75
$\overline{\text { BUSY }}$ Pulse Width $=(($ Number of Channels +1$) \times 500 \mathrm{~ns})+250 \mathrm{~ns}$	

The AD5362/AD5363 contains an extra feature whereby a DAC register is not updated unless its X2A or X2B register has been written to since the last time $\overline{\mathrm{LDAC}}$ was brought low. Normally, when $\overline{\text { LDAC }}$ is brought low, the DAC registers are filled with the contents of the X2A or X2B registers, depending on the setting of the A / B Select Registers. However the AD5362/AD5363 updates the DAC register only if the X2 data has changed, thereby removing unnecessary digital crosstalk.

AD5362/AD5363

$\overline{B I N} / 2 S$ COMP PIN

The $\overline{\mathrm{BIN}} / 2$ SCOMP pin determines if the input data is interpreted as offset binary or 2's complement. If this pin is low, then the data is binary. If it is 1 , the data is interpreted as 2 's complement. This affects only the X, C, and Offset DAC registers. The M register data and all control and command data is interpreted as straight binary.

TEMPERATURE SENSOR

The on-chip temperature sensor provides a voltage output at the TEMP_OUT pin that is linearly proportional to the Centigrade temperature scale. The typical accuracy of the temperature sensor is $\pm 1^{\circ} \mathrm{C}$ at $+25^{\circ} \mathrm{C}$ and $\pm 5^{\circ} \mathrm{C}$ over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range. Its nominal output voltage is 1.5 V at $+25^{\circ} \mathrm{C}$, varying at $5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, giving a typical output range of 1.175 V to 1.9 V over the full temperature range. Its low output impedance, low self heating, and linear output simplify interfacing to temperature control circuitry and A/D converters.

MONITOR FUNCTION

The AD5362/AD5363 contains a channel monitor function that consists of an analog multiplexer addressed via the serial interface, allowing any channel output to be routed to this pin for monitoring using an external ADC. In addition, two monitor inputs, MON_IN0 and MON_IN1 are provided, which can also be routed to MON_OUT. The monitor function is controlled by the Monitor Register, which allows the monitor output to be enabled or disabled, and selection of a DAC channel or one of the monitor pins. When disabled, the monitor output is high impedance, so several monitor outputs may be connected in parallel and only one enabled at a time. Table 8 shows the control register settings relevant to the monitor function.

Table 8. Control Register Monitor Functions

F5	F4	F3	F2	F1	F0	
0	X	X	X	X	X	MON_OUT Disabled
1	X	X	X	X	X	MON_OUT Enabled
1	0	0	0	0	X	MON_OUT = VOUTO
1	0	0	0	0	1	MON_OUT = VOUT1
1	0	0	1	1	1	MON_OUT = VOUT7
1	1	0	0	0	0	MON_OUT = MON_INO
1	1	0	0	0	1	MON_OUT = MON_IN1

The multiplexer is implemented as a series of analog switches.
Since this could conceivably cause a large amount of current to flow from the input of the multiplexer, i.e. VOUTx or MON_INx to the output of the multiplexer, MON_OUT, care should taken to ensure that whatever is connected to the MON_OUT pin is of high enough impedance to prevent the Continuous Current Limit specification from being exceeded.

GPIO PIN

The AD5362/AD5363 has a general-purpose I/O pin, GPIO. This can be configured as an input or an output and read back or programmed (when configured as an output) via the serial interface. Typical applications for this pin include monitoring the status of a logic signal, limit switch, or controlling an external multiplexer. The GPIO pin is configured by writing to the GPIO register, which has the special function code of 0b001101 (see Table 11 and Table 13). When Bit F1 is set the GPIO pin will be an output and F0 will determine whether the pin is high or low. The GPIO pin can be set as an input by writing 0 to both F1 and F0. The status of the GPIO pin can be determined by initiating a read operation using the appropriate bits in Table 14. The status of the pin will be indicated by the LSB of the register read.

POWER-DOWN MODE

The AD5362/AD5363 can be powered down by setting Bit 0 in the control register. This will turn off the DACs thus reducing the current consumption. The DAC outputs will be connected to their respective SIGGND potentials. The power-down mode doesn't change the contents of the registers and the DACs will return to their previous voltage when the power-down bit is cleared.

TEMPERATURE MONITORING

The AD5362/AD5363 can be programmed to power down the DACs if the temperature on the die exceeds $130^{\circ} \mathrm{C}$. Setting Bit 1 in the control register (see Table 13) will enable this function. If the die temperature exceeds $130^{\circ} \mathrm{C}$ the AD5362/AD5363 will enter a temperature power-down mode, which is equivalent to setting the power-down bit in the control register. To indicate that the AD5362/AD5363 has entered temperature shutdown mode Bit 4 of the control register is set. The AD5362/AD5363 will remain in temperature shutdown mode, even if the die temperature falls, until Bit 1 in the control register is cleared.

TOGGLE MODE

The AD5362/AD5363 has two X2 registers per channel, X2A and X2B, which can be used to switch the DAC output between two levels with ease. This approach greatly reduces the overhead required by a micro-processor which would otherwise have to write to each channel individually. When the user writes to either the $\mathrm{X} 1 \mathrm{~A}, \mathrm{X} 2 \mathrm{~A}, \mathrm{M}$ or C registers the calculation engine will take a certain amount of time to calculate the appropriate X2A or X2B values. If the application only requires that the DAC output switch between two levels, such as a data generator, any method which reduces the amount of calculation time encountered is advantageous. For the data generator example the user need only set the high and low levels for each channel once, by writing to the X1A and X1B registers. The values of X2A and X2B will be calculated and stored in their respective registers. The calculation delay therefore only happens during the setup phase, i.e. when programming the initial values. To
toggle a DAC output between the two levels it is only required to write to the relevant A/B Select Register to set the MUX2 register bit. Furthermore, since there are 4 MUX2 control bits per register it is possible to update four channels with a single write. Table 12 shows the bits that correspond to each DAC output.

AD5362/AD5363

SERIAL INTERFACE

The AD5362/AD5363 contains an SPI-compatible interface operating at clock frequencies up to 50 MHz . To minimize both the power consumption of the device and on-chip digital noise, the interface powers up fully only when the device is being written to, that is, on the falling edge of $\overline{S Y N C}$. The serial interface is 2.5 V LVTTL compatible when operating from a 2.3 V to 3.6 V DVCC supply. It is controlled by four pins, as follows.

$\overline{\text { SYNC }}$

Frame synchronization input.

SDI

Serial data input pin.

SCLK

Clocks data in and out of the device.

SPI WRITE MODE

The AD5362/AD5363 allows writing of data via the serial interface to every register directly accessible to the serial interface, which is all registers except the X2A and X2B registers and the DAC registers. The X 2 A and X 2 B registers are update when writing to the $\mathrm{X} 1 \mathrm{~A}, \mathrm{X} 1 \mathrm{~B}, \mathrm{M}$ and C registers, and the DAC registers are updated by $\overline{\mathrm{LDAC}}$.

The serial word (see Tables 7 and 8) is 24 bits long. 16(14) of these bits are data bits, five bits are address bits, and two bits are mode bits that determine what is done with the data.

The serial interface works with both a continuous and a burst (gated) serial clock. Serial data applied to SDI is clocked into the AD5362/AD5363 by clock pulses applied to SCLK. The first falling edge of $\overline{S Y N C}$ starts the write cycle. At least 24 falling clock edges must be applied to SCLK to clock in 24 bits of data, before $\overline{S Y N C}$ is taken high again. If $\overline{S Y N C}$ is taken high before the 24th falling clock edge, the write operation will be aborted.

If a continuous clock is used, and PEC mode isn't used, $\overline{\text { SYNC }}$ must be taken high before the 25th falling clock edge. This inhibits the clock within the AD5362/AD5363. If more than 24 falling clock edges are applied before $\overline{\mathrm{SYNC}}$ is taken high again, the input data will be corrupted. If an externally gated clock of exactly 24 pulses is used, $\overline{\text { SYNC }}$ may be taken high any time after the 24th falling clock edge.

The input register addressed is updated on the rising edge of $\overline{\text { SYNC. In order for another serial transfer to take place, } \overline{\text { SYNC }}}$ must be taken low again.

REGISTER UPDATE RATES

As mentioned previously the value of the $\mathrm{X} 2(\mathrm{~A}$ or B$)$ register is calculated each time the user writes new data to the corresponding X1, C or M registers. The calculation is performed by a three stage process. The first two stages take

500 ns each and the third stage takes 250 ns . When the writes to one of the $\mathrm{X} 1, \mathrm{C}$ or M registers is complete the calculation process begins. If the write operation involves the update of a single DAC channel the user is free to write to another register provided that the write operation doesn't finish until the first stage calculation is complete, i.e. 500 ns after the completion of the first write operation. If a group of channels is being updated by a single write operation the first stage calculation will be repeated for each channel, taking 500 ns per channel. In this case the user should not complete the next write operation until this time has elapsed.

PACKET ERROR CHECKING

To verify that data has been received correctly in noisy environments, the AD5362/AD5363 offers the option of error checking based on an 8-bit (CRC-8) cyclic redundancy check. The device controlling the AD5362/AD5363 should generate an 8 -bit frame check sequence using the polynomial $C(x)=x^{8}+x^{2}$ $+x^{1}+1$. This is added to the end of the data word, and 32 data bits are sent to the AD5362/AD5363 before taking SYNC high. If the AD5362/AD5363 sees a 32 -bit data frame, it will perform the error check when SYNC goes high. If the check is valid,
then the data will be written to the selected register. If the error check fails, the Packet Error Check output ($\overline{\mathrm{PEC}}$) will go low and bit 3 of the Control Register is set. After reading this register, this error flag is cleared automatically and $\overline{\mathrm{PEC}}$ goes high again.

24-BIT DATA TRANSFER WITH ERROR CHECKING
5360-0010

Figure 10. SPI Write With and Without Error Checking

Table 7. AD5362 Serial Word Bit Assignation

I 23	I 22	I 21	I 20	I 19	I 18	I 17	I 16	I 15	I 14	I 13	I 12	I 11	I 10	I 9	I 8	I 7	I 6	I	I 4	I 3	I 2	I 1	I 0
M 1	M0	A5	A4	A3	A 2	A 1	A 0	D 15	D 14	D 13	D 12	D 11	D 10	D 9	D 8	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Table 8. AD5363 Serial Word Bit Assignation

I 23	I 22	I 21	I 20	I 19	I 18	I 17	I 16	I 15	I 14	I 13	I 12	I 11	I 10	I 9	I 8	I 7	I 6	I	I	I	$\mathrm{I} 3^{\prime}$	I 2	$\mathrm{I} 1^{*}$	$\mathrm{I} 0^{*}$
M 1	M 0	A 5	A 4	A 3	A 2	A 1	A 0	D 13	D 12	D 11	D 10	D 9	D 8	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	0	0	

M1 and M0 are mode bits.
A5 is an unused address bit and must always be written as 0 .
A 4 to A0 are address bits.
D15 to D0 are data bits.
*In the AD5363, bits I1 and IO only used in Special Function Mode

SPI READBACK MODE

The AD5362/AD5363 allows data readback via the serial interface from every register directly accessible to the serial interface, which is all registers except the X2A, X2B and DAC registers. In order to read back a register, it is first necessary to tell the AD5362/AD5363 which register is to be read. This is achieved by writing to the device a word whose first two bits are the special function code 00 . The remaining bits then determine if the operation is a readback, and the register which is to be read back, or if it is a write to of the special function registers such as the control register.
After the special function write has been performed, if it is a readback command then data from the selected register will be clocked out of the SDO pin during the next SPI operation. The SDO pin is normally three-state but becomes driven as soon as a read command has been issued. The pin will remain driven until the registers data has been clocked out. See Figure 5 for the read timing diagram.

CHANNEL ADDRESSING AND SPECIAL MODES

If the mode bits are not 00 , then the data word D15 to D0 is written to the device. Address bits A4 to A0 determine which channel or channels is/are written to, while the mode bits
determine to which register ($\mathrm{X} 1 \mathrm{~A}, \mathrm{X} 1 \mathrm{~B}, \mathrm{C}$ or M) the data is written, as shown in Table 7. If data is to be written to the X1A or X1B register, the setting of the $\overline{\mathrm{A}} / \mathrm{B}$ bit in the Control Register determines which $(0 \rightarrow \mathrm{X} 1 \mathrm{~A}, 1 \rightarrow \mathrm{X} 1 \mathrm{~B})$.
Table 9. Mode Bits

M1	M0	Action
1	1	Write DAC input data $(\mathrm{X} 1 \mathrm{~A}$ or X 1 B$)$ register, depending on Control Register $\overline{\mathrm{A}} / \mathrm{B}$ bit.
1	0	Write DAC offset (C) register
0	1	Write DAC gain (M) register 0

The AD5362/AD5363 has very flexible addressing that allows writing of data to a single channel, all channels in a group, the same channel in groups 0 and 1 , or all channels in the device. Table 11 shows all these address modes.

AD5362/AD5363

Table 10.Group and Channel Addressing
This table shows which groups(s) and which channel(s) is/are addressed for every combination of address bits A4 to A0.

		ADDRESS BITS A4 TO A3			
		00	01	10	11
ADDRESS BITS A2 TO A0	000	All groups, all channels	Group 0, channel 0	Group 1, channel 0	Unused
	001	Group 0, all channels	Group 0, channel 1	Group 1, channel 1	Unused
	010	Group 1, all channels	Group 0, channel 2	Group 1, channel 2	Unused
	011	Unused	Group 0, channel 3	Group 1, channel 3	Unused
	100	Unused	Unused	Unused	Unused
	101	Unused	Unused	Unused	Unused
	110	Unused	Unused	Unused	Unused
	111	Unused	Unused	Unused	Unused

SPECIAL FUNCTION MODE

If the mode bits are 00 , then the special function mode is selected, as shown in Table 12. Bits I21 to I16 of the serial data word select the special function, while the remaining bits are
data required for execution of the special function, for example the channel address for data readback.

The codes for the special functions are shown in Table 13. Table 14 shows the addresses for data readback.

Table 11. Special Function Mode

123	122	121	120	119	118	117	116	115	114	113	112	111	110	19	18	17	16	15	14	13	12	11	10
0	0	S5	S4	S3	S2	S1	S0	F15	F14	F13	F12	F11	F10	F9	F8	F7	F6	F5	F4	F3	F2	F1	F0

Table 12. DACs Select by A/B Select Registers

A/B Select Register	Bits								
	F7	F6	F5	F4	F3	F2	F1	F0	
0	Not Used	Not Used	Not Used	Not Used	VOUT3	VOUT2	VOUT1	VOUT0	
1	Not Used	Not Used	Not Used	Not Used	VOUT7	VOUT6	VOUT5	VOUT4	

Table 13. Special Function Codes

SPECIAL FUNCTION CODE						DATA	ACTION
S5	S4	S3	S2	S1	S0	F15-F0	
0	0	0	0	0	0	0000000000000000	NOP
0	0	0	0	0	1	XXXX XXXX XXX[F4:F0]	Write control register F4 $=1 \rightarrow$ Over-temperature; F4 $=0 \rightarrow$ Temp OK F3 $=1 \rightarrow$ PEC error; F3 $=0 \rightarrow$ PEC OK F2 $=1 \rightarrow$ Select B Register for input; F2 $=0 \rightarrow$ Select A Register for input F1 $=1 \rightarrow$ Enable temperature shutdown; F1 $=0 \rightarrow$ Disable temperature shutdown F0 $=1 \rightarrow$ Soft power down; F0 $=0 \rightarrow$ Soft power up
0	0	0	0	1	0	[F13:F0]	Write data in F13:F0 to OFS0 register
0	0	0	0	1	1	[F13:F0]	Write data in F13:F0 to OFS1 register
0	0	0	1	0	1	See Table 14	Select register for readback
0	0	0	1	1	0	XXXX XXXX XXXX [F3:F0]	Write data in F3:F0 to A/B Select Register 0 (Group 0)
0	0	0	1	1	1	XXXX XXXX XXXX [F3:F0]	Write data in F3:F0 to A/B Select Register 1 (Group 1)
0	0	1	1	0	0	XXXX XXXX XX[F5:F0]	F5 $=1 \rightarrow$ Monitor enable; F5 $=0 \rightarrow$ Monitor disable F4 $=1 \rightarrow$ Monitor input pin selected by F0 ($0=$ MON_IN0, $1=$ MON_IN1) F4 $=0 \rightarrow$ Monitor DAC channel selected by F3:F0 (0000 = channel $0 \rightarrow 0111=$ channel 7)
0	0	1	1	0	1	XXXX XXXX XXXX XX[F1:F0]	GPIO configure and write F1 $=1 \rightarrow$ GPIO is output. Data to output is written to F0 F1 $=0 \rightarrow$ GPIO is input. Data can be read from F0 on readback

Note. When writing to the offset registers, the 14-bit data is right justified (bits F15 and F14 are don't care). When writing to the X, M or C registers of the AD5363, the 14-bit data is left-justified (bits 1 and 0 of the data word are don't care).

Table 14. Address Codes for Data Readback

F15	F14	F13	F12	F11	F10	F9	F8	F7	REGISTER READ ${ }^{1}$
0	0	0	Bits F12 to F7 select channel to be read back, from Channel $0=000000$ to Channel $7=000111$						X1A Register
0	0	1							X2B Register
0	1	0							C Register
0	1	1							M Register
1	0	0	0	0	0	0	0	1	Control Register
1	0	0	0	0	0	0	1	0	OFS0 Data Register
1	0	0	0	0	0	0	1	1	OFS1 Data Register
1	0	0	0	0	0	1	1	0	A/B Select Register 0
1	0	0	0	0	0	1	1	1	A/B Select Register 1
1	0	0	0	0	1	0	1	1	GPIO read (data in F0) ${ }^{2}$

${ }^{1}$ F6 to F0 are don't care for data readback functions except for GPIO read.
${ }^{2}$ F6 to F0 should be 0 for GPIO read

POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5362/AD5363 is mounted should be designed so
that the analog and digital sections are separated and confined to certain areas of the board. If the AD5362/AD5363 is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device. For supplies with multiple pins ($\mathrm{V}_{\mathrm{Ss}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$), it

AD5362/AD5363

is recommended to tie these pins together and to decouple each supply once.

The AD5362/AD5363 should have ample supply decoupling of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on each supply located as close to the package as possible, ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and effective series inductance (ESI), such as the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching.

Digital lines running under the device should be avoided, because these couple noise onto the device. The analog ground plane should be allowed to run under the AD5362/AD5363 to avoid noise coupling. The power supply lines of the AD5362/AD5363 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching digital signals should be shielded with digital ground to avoid radiating noise to other parts of the board, and should never be run near the reference inputs. It is essential to minimize noise on all $V_{\text {ref }}$ lines.

Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is by far the best, but not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground plane, while signal traces are placed on the solder side.

As is the case for all thin packages, care must be taken to avoid flexing the package and to avoid a point load on the surface of this package during the assembly process.

POWER SUPPLY SEQUENCING

When the supplies are connected to the AD5362/AD5363 it is important that the AGND and DGND pins are connected to the relevant ground plane before the positive or negative supplies are applied. In most applications this is not an issue as the ground pins for the power supplies will be connected to the ground pins of the AD5362/AD5363 via ground planes. Where the AD5362/AD5363 is to be used in a hot-swap card care should be taken to ensure that the ground pins are connected to the supply grounds before the positive or negative supplies are connected. This is required to prevent currents flowing in directions other than towards an analog or digital ground.

INTERFACING EXAMPLES

The SPI interface of the AD5362 and AD5363 are designed to allow the parts to be easily connected to industry standard DSPs and micro-controllers. Figure 10 shows how the AD5362/AD5363 could be connected to the Analog Devices Blackfin ${ }^{\text {TM }}$ DSP. The Blackfin has an integrated SPI port which can be connected directly to the SPI pins of the AD5362 or AD5363 and programmable I/O pins which can be used to set or read the state of the digital input or output pins associated with the interface.

Figure 10. Interfacing to a Blackfin DSP
The Analog Devices ADSP-21065L is a floating point DSP with two serial ports (SPORTS). Figure 11 shows how one SPORT can be used to control the AD5362 or AD5363. In this example the Transmit Frame Synchronization (TFS) pin is connected to the Receive Frame Synchronization (RFS) pin. Similarly the transmit and receive clocks (TCLK and RCLK) are also connected together. The user can write to the AD5362 or AD5363 by writing to the transmit register. A read operation can be accomplished by first writing to the AD5362/AD5363 to tell the part that a read operation is required. A second write operation with a NOP instruction will cause the data to be read from the AD5362/AD5363. The DSPs receive interrupt can be used to indicate when the read operation is complete.

Figure 11. Interfacing to a ADSP-21065L DSP

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026BCC
Figure 12.52 Lead LQFP Package
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD5362BCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$56-$ Lead LFCSP	CP-56
AD5362BSTZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$52-$ Lead LQFP	ST-52
AD5363BCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$56-$ Lead LFCSP	CP-56
AD5363BSTZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$52-$ Lead LQFP	ST-52

