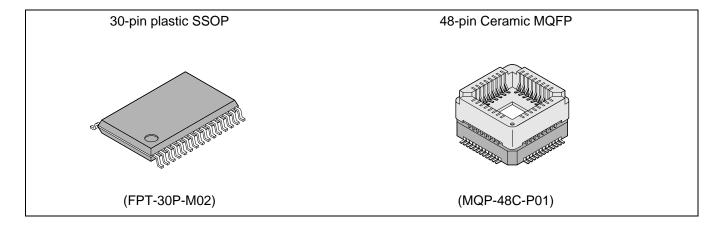
DS07-12541-1E

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89930A Series

MB89935A/P935A/PV930A


■ DESCRIPTION

The MB89930A series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such, timers, a serial interface, an A/D converter and an external interrupt.

■ FEATURES

- MB89600 Series CPU core
- · Maximum memory space: 64 Kbytes
- Minimum execution time: 0.4 μs/10 MHz
- Interrupt processing time: 3.6 μs/10 MHz
- I/O ports: max. 21channels
- · 21-bit timebase timer
- 8-bit PWM timer
- 8/16-bit capture timer/counter
- 10-bit A/D converter: 8 channels
- UART
- 8-bit serial I/O
- External interrupt 1: 3 channels
- External interrupt 2: 8 channels
- Wild Register: 2 bytes

■ PACKAGE (Continued)

(Continued)

- Low-power consumption modes (sleep mode, and stop mode)
- SSOP-30 and MQFP-48 package
- CMOS Technology

■ PRODUCT LINEUP

Part number	MB89935A	MB89P935A	MB89PV930A		
Parameter Classification	Mass production product (mask ROM product)	One-time PROM product (for small-scale production)	Piggyback/evaluation product (for development)		
ROM size	16 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal PROM)	32 K × 8 bits (external EPROM)		
RAM size		512 × 8 bits			
CPU functions		s: 136 8 bits 1 to 3 bytes 1, 8, 16 bits me: 0.4 µs to 6.4 µs(10 MHz) me: 3.6 µs to 57.6 µs(10 MHz)			
Ports		I/O ports (CMOS): 21 (also serts are also an N-ch open-drain			
21-bit time base timer	21-bit Interrupt cycle:	0.82, 3.3, 26.2, or 419.4 ms	with 10-MHz main clock		
Watching timer	Reset generation	cycle: 419.4 ms minimum wit	h 10-MHz main clock		
8-bit PWM timer	8-bit interval timer operation (square output capable, operating clock cycle: 0.4 μs , 3.2 μs ,6.4 μs ,25.6 μs) 8-bit resolution PWM operation (conversion cycle: 102.4μs to 26.84s) Count clock selectable between 8-bit and 16-bit timer/counter outputs				
8/16-bit capture, timer/counter	8-bit capture timer/counter x 1 channel + 8-bit timer or 16-bit capture timer/counter x 1 channel Capable of event count operation and square wave output using external clock input with 8-bit timer 0 or 16-bit counter				
UART	Tra	Transfer data length: 6/7/8 bits Transfer rate: 300 to 9600 bps/10 MHz			
8-bit Serial I/O	8 bits LSB first/MSB first selectable One clock selectable from four operation clocks (one external shift clock, three internal shift clocks: 0.8 μs, 6.4 μs, 25.6 μs)				
12-bit PPG timer	Output fre	equency: Pulse width and cyc	le selectable		
External interrupt 1 (wake-up function)	3 channels (Interrupt vector, request flag, request output enabled) Edge selectable (Rising edge, falling edge, or both edges) Also available for resetting stop/sleep mode (Edge detectable even in stop mode)				
External interrupt 2 (wake-up function)	1 channel with 8 inputs (Independent L-level interrupt and input enable) Also available for resetting stop/sleep mode (Level detectable even in stop mode)				
10-bit A/D converter		10-bit precision x 8 channels n function (Conversion time : / 8/16-bit timer/counter output	15.2 μs/10 MHz)		

(Continued)

Part number Parameter	MB89935A	MB89P935A	MB89PV930A		
Wild Register		8-bit x 2			
Standby mode	Sleep mode, and Stop mode				
*Power supply Voltage	2.2 V to 5.5 V	3.0 V to 5.5 V	2.7 V to 5.5 V		

^{*:} The minimum operating voltage varies with the operating frequency, the function, and the connected ICE.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89935A	MB89P935A	MB89PV930A
FPT-30P-M02	0	0	×*
MQP-48C-P01	×	×	0

^{○ :} Available ×: Not available

Part number: 48QF-30SOP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403

■ DIFFERENCES AMONG PRODUCTS

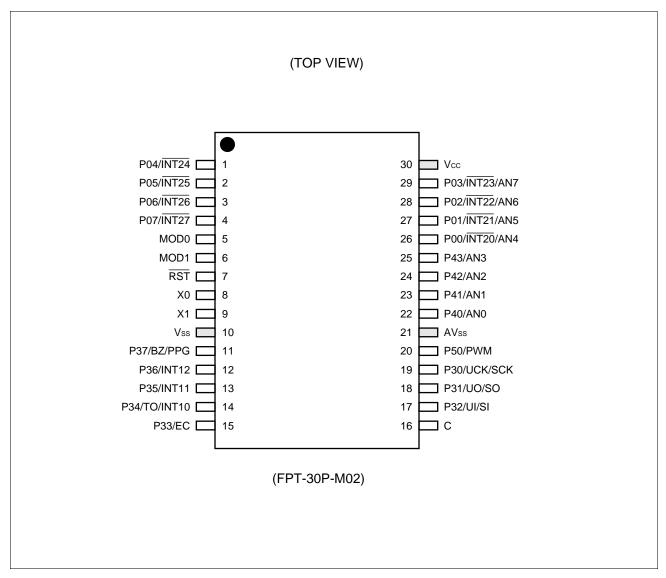
1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used.

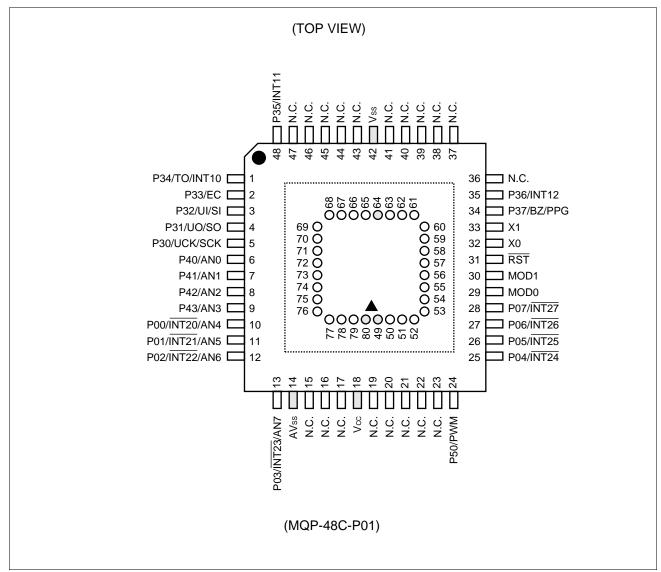
2. Current Consumption

In the case of the MB89PV930A, add the current consumed by the EPROM which is connected to the top socket.

3. Mask Options


Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "

MASK OPTIONS" Take particular care on the following points:


Options are fixed on the MB89PV930A and MB89P935A.

^{*:} Adapter for 48-pin to 30-pin conversion (manufactured by Sun Hayato Co., Ltd.)

■ PIN ASSIGNMENT

(Continued)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
49	V _{PP}	57	N.C.	65	O4	73	OE
50	A12	58	A2	66	O5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	07	76	A9
53	A5	61	O1	69	O8	77	A8
54	A4	62	O2	70	CE	78	A13
55	А3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

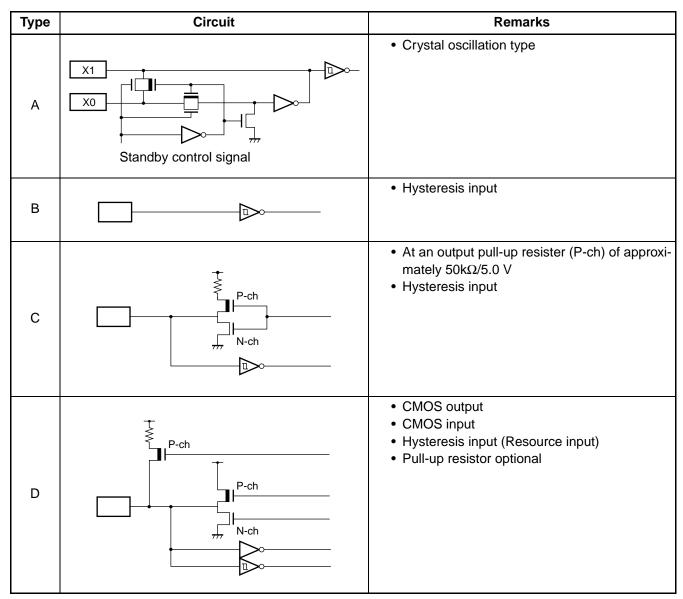
N.C.: Internally connected. Do not use.

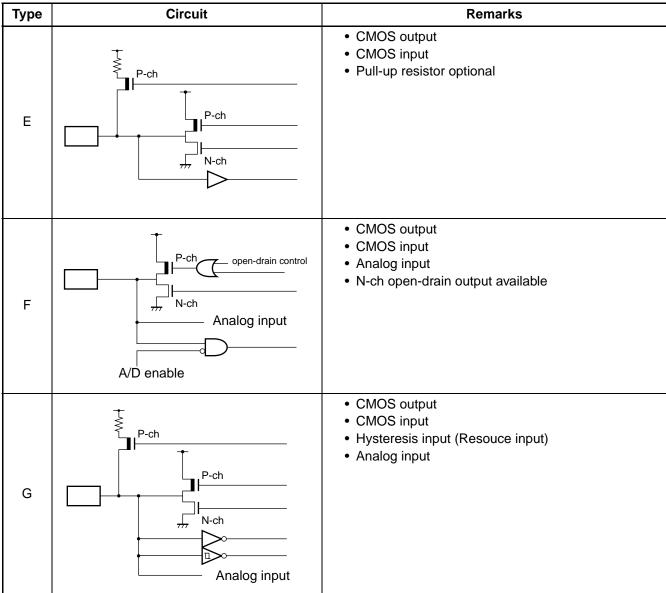
■ PIN DESCRIPTION

Pin	No.		Circuit	
SSOP*1	MQFP*2	Pin name	type	Function
8	32	X0	А	Pins for connecting the crystal resonator for the main clock. To
9	33	X1	A.	use an eternal clock, input the signal to X0 and leave X1 open.
5	29	MOD0	В	Memory access mode setting input pins.
6	30	MOD1	ם	Connect the pin directly to Vss.
7	31	RST	С	Reset I/O pin. This pin serves as an N-channel open-drain output with pull-up resistor and a hysteresis input as well. The pin outputs the "L" signal (optionally) in response to an internal reset request. Also, it initializes the internal circuit upon input of the "L" signal.
26 to 29	10 to 13	P00/INT20/AN4 to P03/INT23/AN7	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as an A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
1 to 4	25 to 28	P04/INT24 to P07/INT27	D	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2. The input of external interrupt 2 is a hysteresis input.
19	5	P30/UCK/SCK	D	General-purpose CMOS I/O ports. This pin also serves as the clock I/O pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
18	4	P31/UO/SO	E	General-purpose CMOS I/O ports. This pin also serves as the data output pin for the UART or 8-bit serial I/O.
17	3	P32/UI/SI	D	General-purpose CMOS I/O ports. This pin also serves as the data input pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
15	2	P33/EC	D	General-purpose CMOS I/O ports. This pin also serves as the external clock input pin for the 8/16-bit capture timer/counter. The resource is a hysteresis input.
14	1	P34/TO/INT10	D	General-purpose CMOS I/O ports. This pin also serves as the output pin for the 8/16-bit capture timer/counter or as the input pin for external interrupt 1. The resource is a hysteresis input.
13, 12	48,35	P35/INT11, P36/INT12	D	General-purpose CMOS I/O ports. These pins also serve as the input pin for external interrupt 1. The resource is a hysteresis input.
11	34	P37/BZ/PPG	E	General-purpose CMOS I/O ports. This pin also serves as the buzzer output pin or the 12-bit programmable pulse generator output.

^{*1:} FPT-30P-M02 *2: MQP-48C-P01

Pin	No.	Din name	Circuit	Function
SSOP*1	MQFP*2	Pin name	type	Function
20	24	P50/PWM	E	General-purpose CMOS I/O ports. This pin also serves as the 8-bit PWM output pin. The pin is a hysteresis input.
22 to 25	6 to 9	P40/AN0 to P43/AN3	F	General-purpose CMOS I/O ports. These pins can also be used as N-channel open-drain ports. The pins also serve as A/D converter analog input pins.
30	18	Vcc	_	Power supply pin
10	42	Vss	_	Power (GND) pin
21	14	AVss	_	Power supply pin for the A-D converter. Apply equal potential to this pin and the Vss pin.
16	_	С	_	Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about 0.1µF.


^{*1:} FPT-30P-M02


^{*2:} MQP-48C-P01

■ EXTERNAL EPROM PIN DESCRIPTION (MB89PV930A only)

Pin No.	Pin name	I/O	Function
49	V _{PP}	0	"H" level output pin
50 51 52 53 54 55 58 59 60	A12 A7 A6 A5 A4 A3 A2 A1	0	Address output pins
61 62 63	O1 O2 O3	I	Data input pins
64	Vss	0	Power supply (GND) pin
65 66 67 68 69	O4 O5 O6 O7 O8	I	Data input pins
70	CE	0	ROM chip enable pin Outputs "H" during standby.
71	A10	0	Address output pin
73	OE	0	ROM output enable pin Outputs "L" at all times.
75 76 77 78 79	A11 A9 A8 A13 A14	0	Address output pins
80	Vcc	0	EPROM power supply pin
56 57 72 74	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor of at least 2 kilohms between the pin and the power supply.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

5. Treatment of Power Supply Pins on Microcontrollers with A/D Converters

Connect to be AVss = Vss even if the A/D converters are not in use.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

7. About the Wild Register Function

No wild register can be debugged on the MB89PV930A. For the operation check, test the MB89P935A installed on a target system.

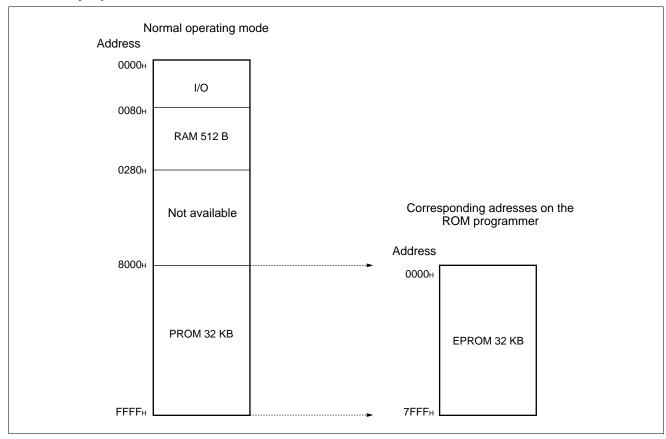
8. Program Execution in RAM

When the MB89PV930A is used, no program can be executed in RAM.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

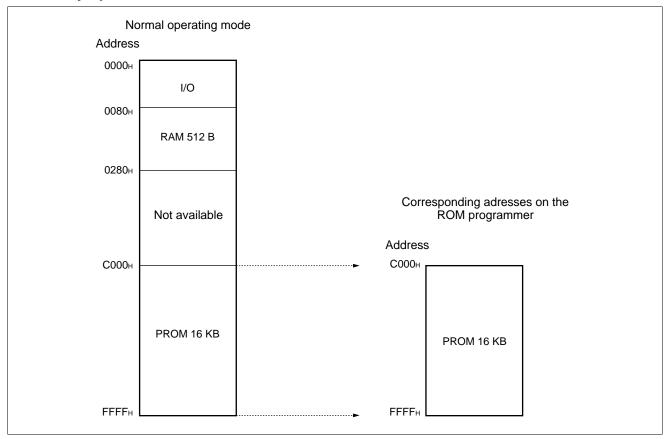

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Compatible socket part number	
LCC-32	ROM-32LC-28DP-S	

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

3. Memory Space.



4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0000h to 7FFFh.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

■ PROGRAMMING TO THE OTPROM WITH MB89P935A

1. Memory Space

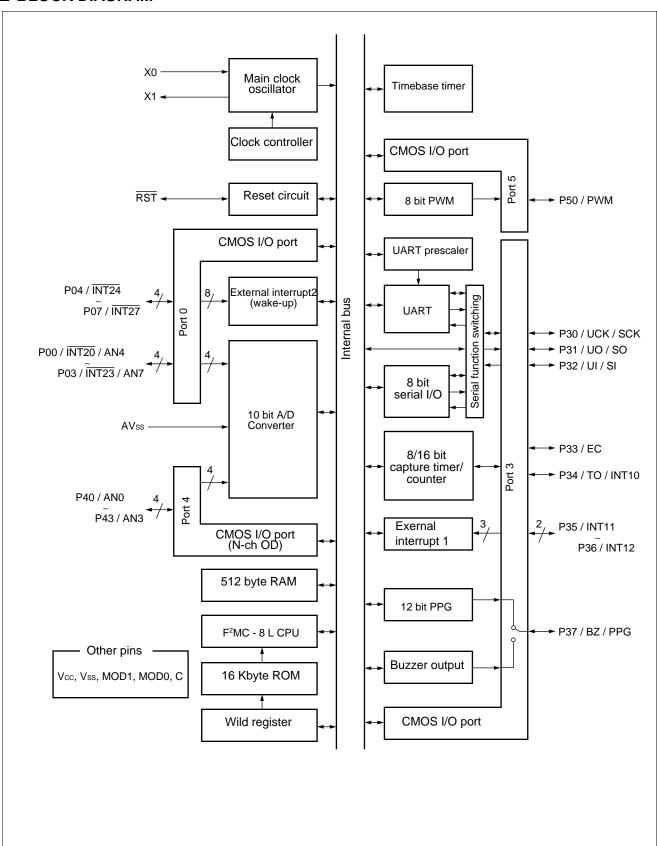
2. Programming to the OTPROM

To program to the OTPROM using an EPROM programmer AF200 (manufacturer: Yokogawa Digital Computer Corp.) .

Inquiry: Yokogawa Digital Computer Corp.: TEL (81) -42-333-6224

Note: Programming to the OTPROM with MB89P935A is serial programming mode only.

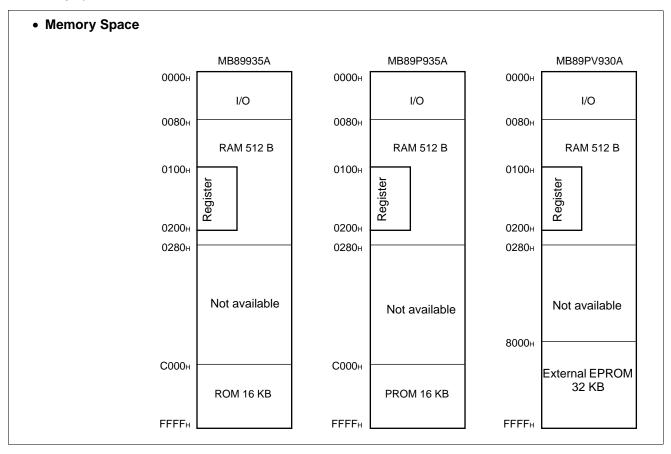
3. Programming Adaptor for OTPROM


To program to the OTPROM using an EPROM programmer AF200, use the programming adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Adaptor socket: ROM3-FPT30M02-8L

Inquiry: Sun Hayato Co., Ltd.: TEL (81) -3-3986-0403

FAX (81) -3-5396-9106


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89930A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89930A series is structured as illustrated below.

2. Registers

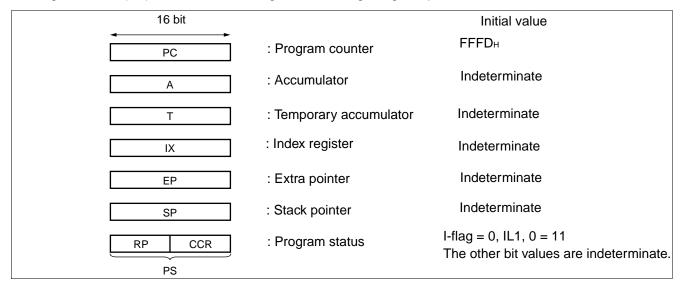
The MB89930A series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

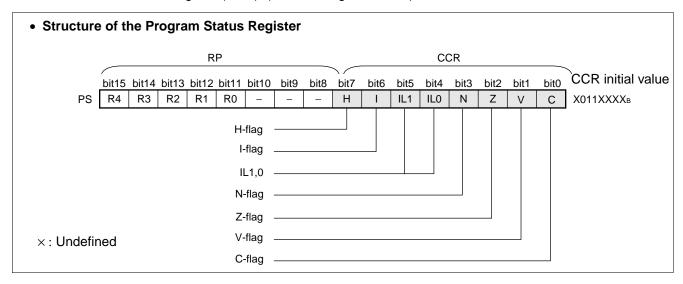
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

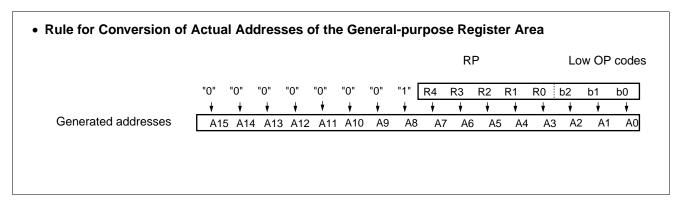
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag:Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

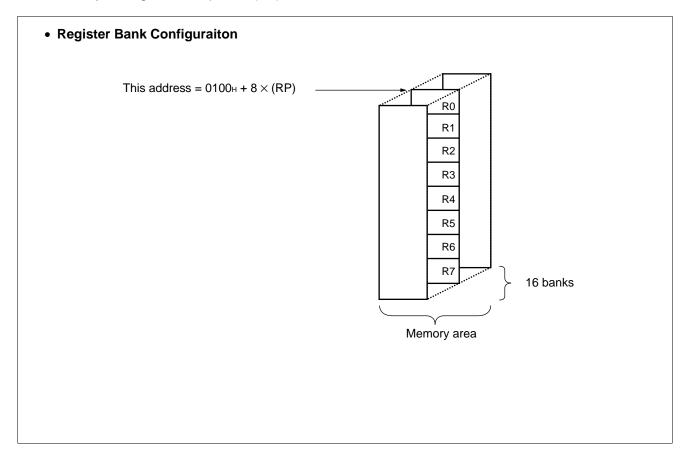
I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

IL1, 0:Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	1	†
1	0	2	
1	1	3	Low = no interrupt

N-flag:Set to '1' if the MSB becomes to '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag:Set to '1' when an arithmetic operation results in 0. Cleared otherwise.


V-flag:Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.

C-flag:Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89930A series. The bank currently in use is indicated by the register bank pointer (RP)..

■ I/O MAP

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	$\times \times $
0001н	DDR0	Port 0 data direction register	W	0 0 0 0 0 0 0
0002н to 00006н		Vacancy		
0007н	SYCC	System clock control register	R/W	1 MM1 0 0
0008н	STBC	Standby control register	R/W	00010
0009н	WDTC	Watchdog timer control register	W	0 X X X X
000Ан	TBTC	Timebase timer control register	R/W	00000
000Вн		Vacancy		
000Сн	PDR3	Port 3 data register	R/W	XXXXXXX
000Дн	DDR3	Port 3 data direction register	W	0 0 0 0 0 0 0
000Ен	RSFR	Reset flag register	R	X X X X
000Fн	PDR4	Port 4 data register	R/W	X X X X
0010н	DDR4	Port 4 data direction register	R/W	0 0 0 0
0011н	OUT4	Port 4 output format register	R/W	0 0 0 0
0012н	PDR5	Port 5 data register	R/W	X
0013н	DDR5	Port 5 data direction register	R/W	0
0014н	RCR21	12-bit PPG control register 1	R/W	0 0 0 0 0 0 0
0015н	RCR22	12-bit PPG control register 2	R/W	0 0 0 0 0 0
0016н	RCR23	12-bit PPG control register 3	R/W	0 - 0 0 0 0 0 0
0017н	RCR24	12-bit PPG control register 4	R/W	0 0 0 0 0 0
0018н	BZCR	Buzzer register	R/W	0 0 0
0019н	TCCR	Capture control register	R/W	0 0 0 0 0 0 0
001Ан	TCR1	Timer 1 control register	R/W	0 0 0 0 0 0 0
001Вн	TCR0	Timer 0 control register	R/W	0 0 0 0 0 0 0
001Сн	TDR1	Timer 1 data register	R/W	$X \times X \times X \times X \times X$
001 Dн	TDR0	Timer 0 data register	R/W	$X \times X \times X \times X \times X$
001Ен	TCPH	Capture data register H	R	$X \times X \times X \times X \times X$
001Fн	TCPL	Capture data register L	R	$X \times X \times X \times X \times X$
0020н	TCR2	Timer output control register	R/W	0 0
0021н		Vacancy	•	
0022н	CNTR	PWM control register	R/W	0 - 0 0 0 0 0 0
0023н	COMR	PWM compare register	W	$\times \times \times \times \times \times \times \times$
00024н	EIC1	External interrupt 1 Control register 1	R/W	0 0 0 0 0 0 0

(Continued)

Address	Register name	Register description	Read/write	Initial value
0025н	EIC2	External interrupt 1 Control register 2	R/W	0 0 0 0
0026н		Veceney		
0027н		Vacancy		
0028н	SMC	Serial mode control register	R/W	0 0 0 0 0 - 0 0
0029н	SRC	Serial rate control register	R/W	0 1 1 0 0 0
002Ан	SSD	Serial status and data register	R/W	0 0 1 0 0 - 1 X
002B	SIDR	Serial input data register	R	XXXXXXX
002Вн	SODR	Serial output data register	W	11111111
002Сн	UPC	Clock division selection register	R/W	0 0 1 0
002Dн to 0002Fн		Vacancy		
0030н	ADC1	A/D converter control register 1	R/W	- 0 0 0 0 0 0 0
0031н	ADC2	A/D converter control register 2	R/W	- 0 0 0 0 0 0 1
0032н	ADDH	A/D converter data register H	R/W	X X
0033н	ADDL	A/D converter data register L	R/W	XXXXXXX
0034н	ADEN	A/D enable register	R/W	00000000
0035н		Vacancy		•
0036н	EIE2	External interrupt 2 control register1	R/W	0 0 0 0 0 0 0 0
0037н	EIF2	External interrupt 2 control register2	R/W	0
0038н		Vacancy		•
0039н	SMR	Serial mode register	R/W	0 0 0 0 0 0 0 0
003Ан	SDR	Serial data register	R/W	XXXXXXX
003Вн	SSEL	Serial function switching register	R/W	0
003Cн to 003Fн		Vacancy		
0040н	WRARH1	Upper-address setting register 1	R/W	XXXXXXX
0041н	WRARL1	Lower-address setting register 1	R/W	XXXXXXX
0042н	WRDR1	Data setting register 1	R/W	XXXXXXX
0043н	WRARH2	Upper-address setting register 2	R/W	XXXXXXX
0044н	WRARL2	Lower-address setting register 2	R/W	XXXXXXX
0045н	WRDR2	Data setting register 2	R/W	XXXXXXX
0046н	WREN	Wild-register enable register	R/W	X X X X X X O O
0047н	WROR	Wild-register data test register	R/W	0 0
0048н to 006Fн		Vacancy	•	
0070н	PUL0	Port-0 pull-up setting register	R/W	00000000

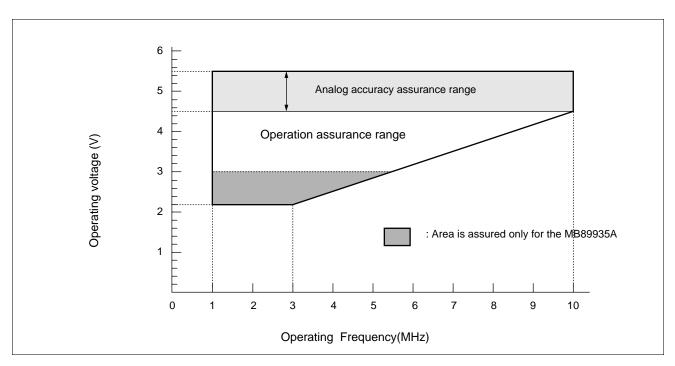
(Continued)

Address	Register name	Register description	Read/write	Initial value
0071н	PUL3	Port-3 pull-up setting register	R/W	0 0 0 0 0 0 0
0072н	PUL5	Port-5 pull-up setting register	R/W	0
0073н to 007Ан		Vacancy		
007Вн	ILR1	Interrupt level setting register1	W	11111111
007Сн	ILR2	Interrupt level setting register2	W	1 1 1 1 1 1 1 1
007Dн	ILR3	Interrupt level setting register3	W	11111111
007Ен	ILR4	Interrupt level setting register4	W	11111111
007Fн	ITR	Interrupt test register	Not available	0 0

^{-:} Unused, X: Undefined, M: Set using the mask option

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS


1. Absolute Maximum Ratings

Porometer	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Offic	Remarks
Power supply voltage	Vcc	Vss-0.3	Vss + 6.0	V	
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	
Output voltage	Vo	Vss-0.3	Vcc + 6.0	V	
"I" lovel maximum autout aurrent	lol1	_	20	mA	Pins P40 to P43
"L" level maximum output current	l _{OL2}	_	10	mA	Pins excluding P40 to P43
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating rate)
"L" level total maximum output current	\sum loL	_	100	mA	
"H" level maximum output current	Іон	_	-10	mA	
"H" level average output current	Іонач	_	-2	mA	Average value (operating current × operating rate)
"H" level total maximum output current	∑Іон	_	-50	mA	
Power consumption	Pd	_	200	mW	
Operating temperature	Ta	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

Parameter	Symbol	Va	alue	Unit	Remarks
Parameter	Syllibol	Min.	Max.	Oilit	Remarks
Power supply voltage	Vcc	2.2	5.5	V	Normal operation assurance range MB89935A
		1.5	6.0	V	Retains the RAMstate in stop mode
"H" level input voltage	VIH	0.7 Vcc	Vcc + 0.3	V	P00 to P07, P30 to P37, P40 to P43, P50, UI/SI
Tr level input voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	MOD0/1, RST, EC, INT20 to INT27, UCK/SCK, INT10 to INT12
"L" level input voltage	VıL	Vss - 0.3	0.3 Vcc	V	P00 to P07, P30 to P37, P40 to P43, P50, UI/SI
L level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	MOD0/1, RST, EC, INT20 to INT27, UCK/SCK, INT10 to INT12
Open-drain output pin application voltage	VD	Vss - 0.3	Vcc + 0.3	V	P40 to P43
Operating temperature	Та	-40	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

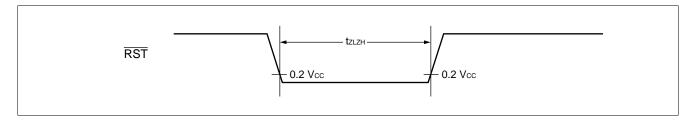
Always use semiconductor devices within their recommended operating conditionranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc = 5.0 V \pm 10 %, AVss = Vss = 0.0 V, FcH = 10 MHz(External clock), Ta = -40° C to $+85^{\circ}$ C)

Danamatan			Di	0	-	Value	•	I Inc!4	Damanla
Parameter	Symbol		Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input	VIH	P30	to P07, to P37, P40 to P43, , UI/SI	_	0.7 Vcc		Vcc + 0.3	V	
voltage	V _{IHS}	UCK INT2	,MOD0/1, K/SCK, EC, 0 to INT27, 10 to INT12	_	0.8 Vcc	ı	Vcc + 0.3	>	
"I " lovel input	Vıl	P30	to P07, to P37, P40 to P43, , UI/SI	_	Vss - 0.3		0.3 Vcc	٧	
voltage	" level input		(/SCK, EC, 20 to INT27,	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin application voltage	VD	P40	to P43	_	Vss-0.3	_	Vcc + 0.3	V	
"H" level output voltage	Vон		to P07, P30 to P37, to P43, P50	Iон = −4.0 mA	2.4	_	_	V	
"L" level output voltage	V _{OL1}		to P07, P30 to P37, RST	loL = 4.0 mA	_		0.4	V	
output voltage	V _{OL2}	P40	to P43	IoL = 12.0 mA	_	_	0.4	V	
Input leakage current	lu		to P07, P30 to P37, to P43, P50 , D0/1	0.45 V < Vı < Vcc	_		±5	μΑ	Without pull-up resistor
Pull-up resistance	Rpull		to P07, P30 to P37, to P43, P50	Vı = 0.0 V	25	50	100	Ω	
			Normal operation	When A/D		8	12	mΑ	MB89935A
	lcc		mode	converter stops		6	9	mA	MB89P935A
	icc		(External clock, highest gear speed)	When A/D		10	15	mA	MB89935A
Power supply			mgnesi gear speed)	converter starts	_	8	12	mA	MB89P935A
current		Vcc	Sleep mode	When A/D		4	6	mA	MB89935A
Iccs		(External clock, highest gear speed)	converter stops	_	3	5	mA	MB89P935A	
			Stop mode	When A/D			1	μΑ	MB89935A
	Іссн		Ta = +25°C (External clock)	converter stops	_		10	μΑ	MB89P935A
Input capacitance	Cin	Othe	er than AVss, Vcc, Vss	_	_	10	_	pF	MB89P935A

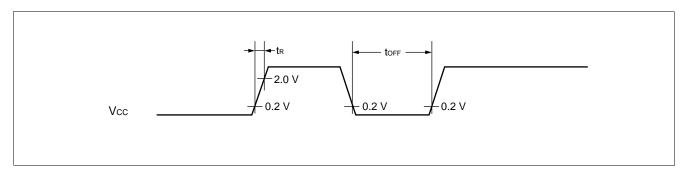

4. AC Characteristics

(1) Reset Timing

$$(AVss = Vss = 0.0 V, Ta = -40^{\circ}C to +85^{\circ}C)$$

Parameter	Symbol	Symbol Condition		ne	Unit	Remarks
	Syllibol	Condition	Min.	Max.	Oilit	Nemarks
RST "L" pulse width	t zlzh	_	16 t HCYL	_	ns	

they: 1 oscillating clock cycle time

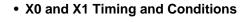


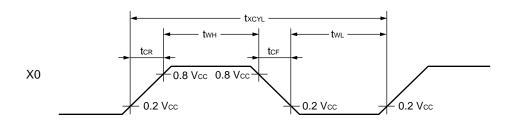
Note: When the power-on reset option is not on, leave the external reset on until oscillation becomes stable.

(2) Power-on Reset

$$(AVss = Vss = 0.0 V, Ta = -40^{\circ}C to +85^{\circ}C)$$

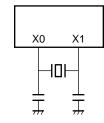
Parameter	Symbol	Condition	Value		Unit	Remarks	
rarameter	Syllibol	Condition	Min.	Max.	Oilit	iveillai ks	
Power supply rising time	t R			50	ms		
Power supply cutoff time	t off		1	_	ms	Due to repeated operations	

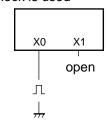



Note: The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation settling time.

(3) Clock Timing

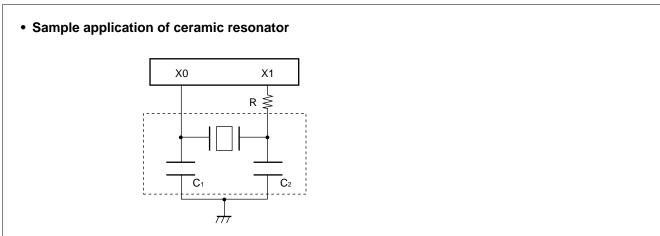
$$(AVss = Vss = 0.0 V, Ta = -40^{\circ}C to +85^{\circ}C)$$


Donomotor	Symbol	Condition	Va	lue	l lmi4	Remarks	
Parameter	Symbol	Condition	Min.	Max.	Unit	Remarks	
Clock frequency	Fсн		1	10	MHz		
Clock cycle time	txcyL		100	1000	ns		
Input clock pulse width	twn twL	_	20	_	ns		
Input clock rising/falling time	tcr tcr		_	10	ns		



• Main Clock Conditions

When a crystal or ceramic resonator is used


When an exernal clock is used

(4) Instruction Cycle.

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Гсн, 8/Гсн, 16/Гсн, 64/Гсн		$t_{\text{INST}} = 0.4 \ \mu \text{s}$ when operating at FcH = 10 MHz (4/FcH)

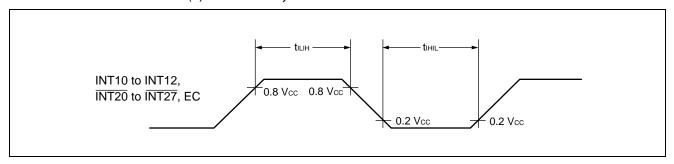
(5) Recommended Resonator Manufactures

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁	C ₂	R
	CSTS0400MG06	4.00	Built-in	Built-in	330 Ω
	CSTCC4.00MG0H6	4.00	Built-in	Built-in	330 Ω
Murata	CSTS0800MG06	8.00	Built-in	Built-in	Not required
Mfg. Co., Ltd.	CSTCC8.00MG0H6	8.00	Built-in	Built-in	Not required
	CST10.0MTW	10.00	Built-in	Built-in	Not required
	CSTCC10.0MG0H6	10.00	Built-in	Built-in	Not required

Inquiry: Murata Mfg. Co., Ltd.

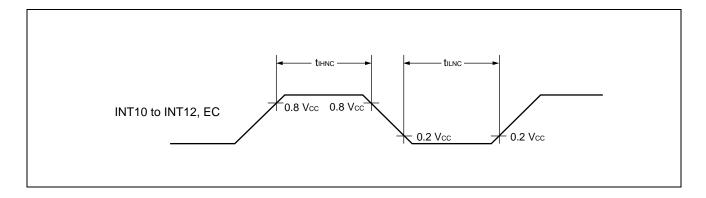
• Murata Electronics North America, Inc. : TEL1-404-436-1300

• Murata Europe Management GmbH: TEL 49-911-66870


• Murata Electronics Singapore (Pte.) : TEL 65-758-4233

(6) Peripheral Input Timing

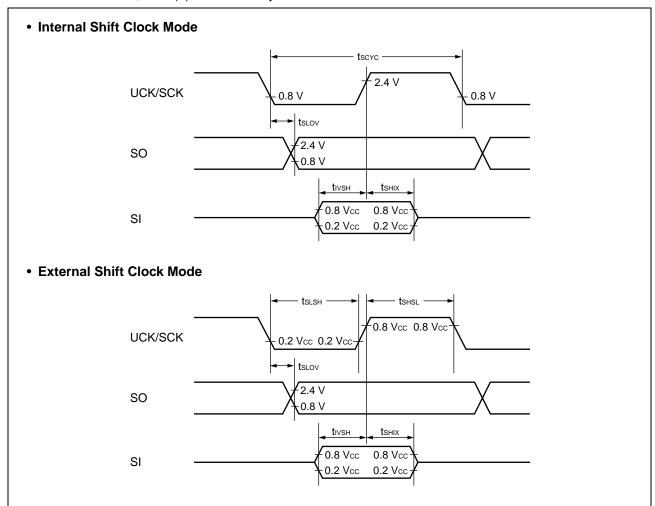
 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ Ta} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C})$


Parameter	Symbol	Pin name	Va	lue	Unit	Remarks
	Symbol	riii iiaiiie	Min.	Max.		Remarks
Peripheral input "H" pulse width	tılıн	INT10 to INT12,	2 tinst*		μs	
Peripheral input "L" pulse width	tıнıL	INT20 to INT27, EC	2 tinst*	_	μs	

*: For information on tinst see "(4) Instruction Cycle".

 $(Vcc = 5 V \pm 10\%, AVss = Vss = 0.0 V, Ta = -40 °C to +85 °C)$

Parameter	Symbol	Pin name		Value	Unit	Remarks	
Parameter	Symbol	riii iiaiiie	Min.	Тур.	Max.		ixemarks
Peripheral input "H" noise limit	t ihnc	INT10 to INT12, EC	7	15	23	ns	
Peripheral input "L" noise limit	tilnc	INTIO TO INTIZ, EC	7	15	23	ns	



(7) UART, Serial I/O Timing

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ Ta} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Syllibol	Pili liaille	Condition	Min.	Max.	Ullit	Remarks
Serial clock cycle time	tscyc	UCK/SCK		2 tinst*	_	μs	
$UCK/SCK\!\!\downarrow \to SO$ time	t sLov	UCK/SCK, SO	Internal shift clock mode	-200	200	ns	
Valid SI → UCK/SCK↑	t ıvsH	UCK/SCK, SI		1/2 tinst*	_	μs	
$UCK/SCK \uparrow \to Valid \; SI \; hold \; time$	t shix	UCK/SCK, SI		1/2 tinst*	_	μs	
Serial clock "H" pulse width	t shsl	UCK/SCK		t INST*	_	μs	
Serial clock "L" pulse width	t slsh	UCK/SCK	External	t INST*	_	μs	
$UCK/SCK\!\!\downarrow \to SO$ time	t sLov	UCK/SCK, SO	shift clock	0	200	ns	
Valid SI → UCK/SCK	t ıvsh	UCK/SCK, SI	mode	1/2 tinst*	_	μs	
$UCK/SCK \uparrow \to Valid \; SI \; hold \; time$	t shix	UCK/SCK, SI		1/2 t INST*	—	μs	

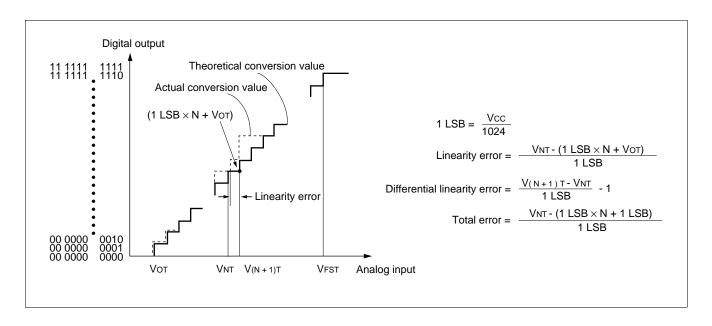
*: For information on t_{inst}, see "(4) Instruction Cycle".

5. A/D Converter

(1) A/D Converter Electrical Characteristics

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ Ta} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol		Value		Unit	Remarks
Farameter	Symbol	Min.	Тур.	Max.	Offic	Remarks
Resolution		_	_	10	bit	
Total error		-5.0	_	+5.0	LSB	
Linearity error		-3.0		+3.0	LSB	
Differential linearity error		-2.5		+2.5	LSB	
Zero transition voltage	Vот	AVss – 3.5 LSB	AVss + 0.5 LSB	AVss + 4.5 LSB	V	
Full-scale transition voltage	V _{FST}	Vcc – 6.5 LSB	Vcc – 1.5 LSB	Vcc + 2.0 LSB	V	
A/D mode conversion time		_		38 t _{INST} *	μs	
Analog port input current	Iain	_	_	10	μΑ	
Analog input voltage range		0	_	Vcc	V	

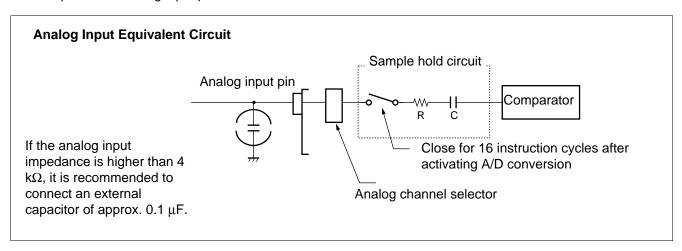

^{*} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

(2) A/D Converter Glossary

Resolution

Analog changes that are identifiable with the A/D converter When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

- Linearity error (unit: LSB)
 - The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics
- Differential linearity error (unit: LSB)
 - The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error (unit: LSB)
 - The difference between theoretical and actual conversion values

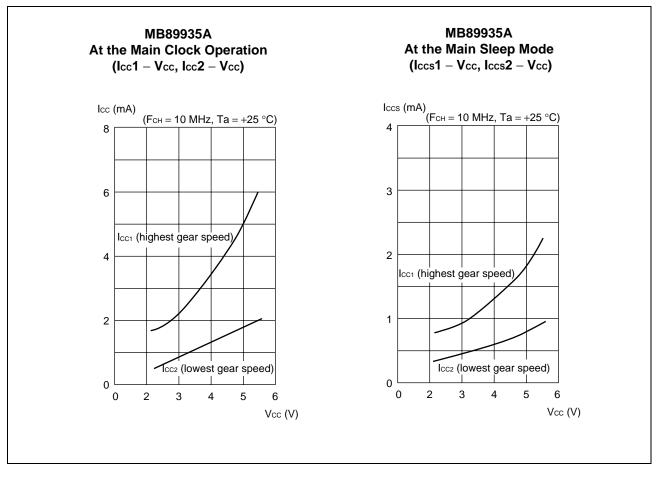

(3) Notes on Using A/D Converter

Input impedance of the analog input pins

The A/D converter used for the MB89930A series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for 16 instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $4 \text{ k}\Omega$).

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu F$ for the analog input pin.



• Error

The smaller the | Vcc - AVss |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS

• Power Supply Current (MB89935A : External Clock Mode)

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
Α	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: The number of instructions #: The number of bytes Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH prior to the instruction executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to $4F \leftarrow$ This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	$(dir) \leftarrow d8$	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @FP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV @ £1,#d0	4	2	$(Ri) \leftarrow d8$	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow do$ $(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$					D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D5
INOVW WIX +OII,A	5			_	_	_		D6
MOV/M over A	_	2	$((IX) + off + 1) \leftarrow (AL)$					D4
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	-	_	_		D7
MOVW EP,A	2	1	(EP) ← (A)	_	_			E3
MOVW A,#d16	3	3	(A) ← d16	AL	AH	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
1.40\(0.41.4\)	_	_	$(AL) \leftarrow ((IX) + off + 1)$					0.4
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	(A) ← (EP)	_	_	dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	_	_			E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	1	(SP) ← (A)	_	_	_		E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	_	_	dH		F1
MOV @A,T	3	1	$((A)) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$((A)) \leftarrow (TH),((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	(IX) ← d16	_	_	_		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70
MOVW PS,A	2	1	$(PS) \leftarrow (A)$	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b ← 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): b ← 0	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dΗ		F5
MOVW A,PC	2	1	$(A) \leftarrow (PC)$	_	_	dΗ		F0
	_		() · ()			~		

Note During byte transfer to A, $T \leftarrow A$ is restricted to low bytes.

Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	<u> </u>	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	- -	++++	37
SUBCW A	2	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A INC Ri	4	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32 C8 to CF
INC KI INCW EP	3	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 10 CF
INCW EF	3	1	(EP) ← (EP) + 1	_	_	_		C3 C2
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	dH		C2 C0
DEC Ri	4	1	$(A) \leftarrow (A) + 1$ $(Ri) \leftarrow (Ri) - 1$	_	_	uп _	++	D8 to DF
DECW EP	3	1	$(EP) \leftarrow (EP) - 1$	_	_	_	+++-	D8 10 DF
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$		_	_		D3 D2
DECW A	3	1	$(A) \leftarrow (A) - 1$ $(A) \leftarrow (A) - 1$		_	dH		D2
MULU A	19	1	$(A) \leftarrow (A) - 1$ $(A) \leftarrow (AL) \times (TL)$		_	dH		01
DIVU A	21	1	$(A) \leftarrow (AL) \wedge (TL)$ $(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (1) \land (AL), \text{NIOD} \rightarrow (1)$ $(A) \leftarrow (A) \land (T)$	- -	_	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \lor (T)$ $(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	53
CMP A	2	i	(TL) – (AL)	_	_	_	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	$rac{1}{rac}}}}}} } } } } } } } } } } } } } } } }$	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	-	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \forall d8$	_	_	_	++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ (\ (EP)\)$	_	_	_	++R-	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (\ (IX) + off)$	_	-	-	+ + R –	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	_	_	_	+ + R –	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \land (TL)$	_	-	-	+ + R –	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	_	_	_	+ + R –	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	+ + R –	65

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	_	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	++R-	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	++R-	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	++R-	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	++R-	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R-	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	++R-	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	$(SP) \leftarrow (SP) - 1$	-	-	-		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If Z = 1 then PC ← PC + rel	-	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If C = 1 then PC ← PC + rel	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC ← PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

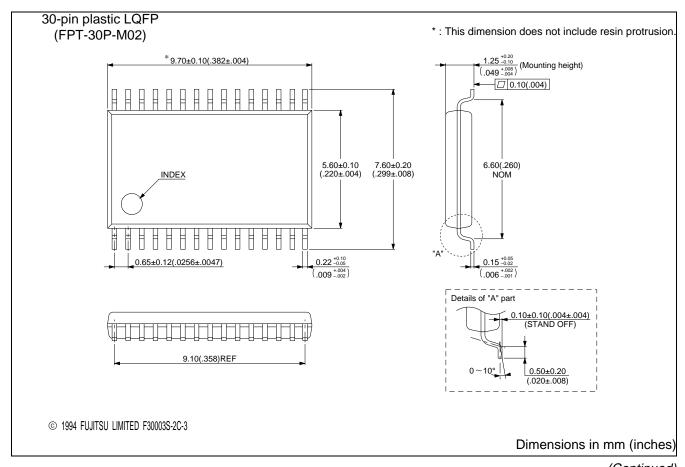
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dH		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

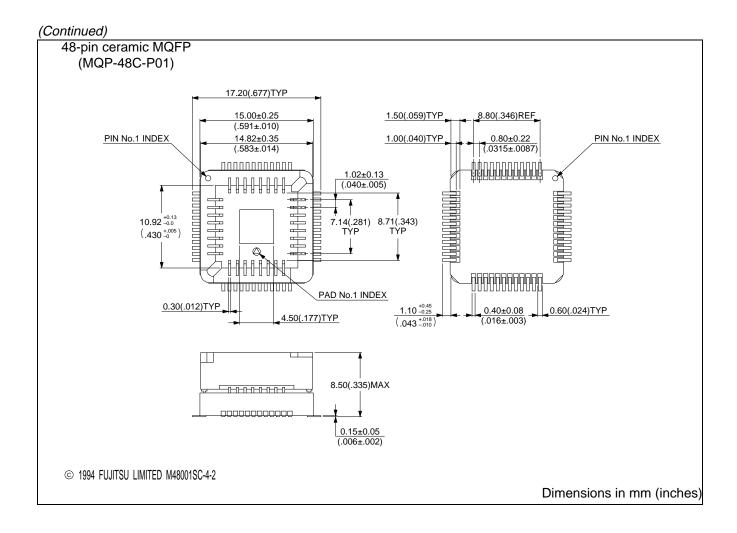
■ INSTRUCTION MAP

11431	RUC	HON	WAP													
ш	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
ш	@ A	⋖	⋖	A	9	9	9	9	9	#	#2	#3	4	£	9#	2#
	A JMP	MOVW SP,	MOVW IX,	MOVW EP,	Σ	2	Σ	٧	CALLV	CALLV	CALLV	CALLV 3	CALLV	CALLV	CALLV	CALLV
۵	DECW	DECW SP	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
υ	INCW A	INCW SP	NCW X	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX+d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
æ	BBC lin: 0, rel	BBC linel	BBC l	BBC dir: 3,rel	BBC I	BBC I	BBC I	BBC I	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
<	CLRB dir: 0	CLRB I	CLRB dir: 2	CLRB I	CLRB dir: 4	CLRB I	CLRB I	CLRB I	SETB I	SETB I	SETB I	SETB l	SETB I	SETB I	SETB I	SETB I
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP,#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
œ	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP;#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND A	ANDW A	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR A	XORW A	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
က	RETI	CALL addr16	SUBC A	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
-	SWAP	DIVU	CMP	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	NOP	WULU A	ROLC A	RORC A	MOV A,#d8	MOV A,dir	MOV A,@IX+d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
H /	0	1	2	3	4	2	9	2	8	6	٧	В	ပ	٥	ш	F
	_	_		_	_	_		_	_					_		

■ MASK OPTIONS

	Part number	Part number MB89935A MB89P935A				
No	Specifying procedure	Specify when order- ing masking	Setting not possible			
1	Selection of initial value of main clock oscillation settling time* (with FcH = 10 MHz) 01: 2 ¹⁴ /FcH (Approx.1.63 ms) 10: 2 ¹⁷ /FcH (Approx.13.1 ms) 11: 2 ¹⁸ /FcH (Approx.26.2 ms)	Selectable	Fixed to 2 ¹⁸ /F _{CH} (Approx. 26.2 ms)	Fixed to 2 ¹⁸ /FcH (Approx. 26.2 ms)		
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Available	Available		
3	Reset pin output With reset output Without reset output	Selectable	With reset output	With reset output		


Fcн: Main clock oscillation frequency


■ ORDERING INFORMATION

Part number	Package	Remarks
MB89935APFV MB89P935APF	30-pin Plastic SSOP (FPT-30P-M02)	
MB89PV930ACF	48-pin Ceramic MQFP (MQP-48C-P01)	

^{*:} Initial value to which the oscillation settling time bit (SYCC: WT1, WT0) in the system clock control register is set

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan

Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9910

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.