

TYPICAL PERFORMANCE

SPECIFICATION

Parameter	Min	Тур	Max	Units
Center Frequency ¹	139.8	140	140.2	MHz
Insertion Loss		8.3	9.5	dB
1 dB Bandwidth	9.6	9.92		MHz
3 dB Bandwidth	10.5	10.9		MHz
35 dB Bandwidth		14.0	15	MHz
Passband Ripple ²		0.25	1	dB
Phase Deviation from Linear ²		3	6	deg
Group Delay Variation ²		30	100	ns
Absolute Delay		1.0		us
Ultimate Rejection (30-350 MHz)	40			dB
Substrate Material	YZ Lithium Niobate			
Temperature Coefficient of Frequency (Tc) ³		-94		ppm/°C
Ambient Temperature		25		°C
Source and Load Impedance		50		Ω

Notes: 1. Average of lower & upper 3 dB frequencies.

2. Evaluated over 80% of the 3 dB bandwidth.

3. Typical change of filter frequency response with temperature is $\Delta f/f_{ref} = (T-T_{ref})^*Tc ppm$.

PACKAGE AND SUGGESTED PCB FOOTPRINT

PACKAGE INFORMATION

SUGGESTED PCB FOOTPRINT

PIN CONFIGURATION		
11	INPUT	
12	INPUT RETURN	
5	OUTPUT	
6	OUTPUT RETURN	
ALL OTHERS	GROUND	

NOTES:

DIMENSIONS SHOWN ARE NOMINAL IN MILLIMETERS. ALL TOLERANCES ARE ±0.15MM EXCEPT OVERALL LENGTH AND WIDTH

Package Material: Body: Al_2O_3 ceramic Lid: *Kovar, Ni* plated Terminations: Au plating 1 µm min, over a 1.3-8.9 µm *Ni* plating

MARKING

Rev X7 22-Mar-05 Page 2 of 4

Integrated Circuit Systems • Surface Acoustic Wave Products 324 Clark Street, Worcester, MA 01606, USA • Phone 508-852-5400 • Fax 508-852-8456 <u>www.icst.com</u>

MATCHING CIRCUIT

Component values in 50 Ω :	Ls1 = 68 nH	Ls2 = 100 nH
(Minimum $Q = 40$)	Cp1 = 15 pF	Cp2 = 10 pF

Notes:

1. Optimum values may differ from these when using a different fixture or board layout. The values shown here are intended as a guide only.

MAXIMUM RATINGS

Parameter	Min	Max	Units
Storage Temperature Range	-45	+85	°C
Maximum Input Power Level		15	dBm
D. C. Voltage between Each Terminal		15	V

PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS

Parameter	Qualification Conditions
Life Testing	High temperature bake at +85 °C for 168 hours.
Temperature Cycling	MIL-STD 883, Method 1010:
	-40 °C to +85 °C, 10 cycles, 10 minutes dwell at
	temperature extremes
Vibration	MIL-STD-202, Method 201A:
	10 to 55 Hz, double amplitude of 0.06" for 2 hours in each
	axis.
Mechanical Shock	MIL-STD-883, Method 2002, Test Condition B:
	1500 g, 3 impacts each axis
Solder Heat Resistance and Reflow Condition	Peak temperature 240+/-5 °C for 10 seconds.
	Pre-heat: 150-170 °C for 60 to 90 seconds.
	Peak dwell: over 200 °C for 23 to 26 seconds.
	Handling: Class 1 per MIL-STD-1686
	Reflow Profile is shown at the bottom of this table.
Lead Integrity	MIL-STD 883 Method 2004, Condition D
	8 oz for 30 seconds.
Solderability	MIL-STD-883 Method 2003:
	245 °C +/-5 °C; 95% coverage; no steam aging
Hermeticity	MIL-STD 883 Method 1014:
	Condition A2 and Condition C (no bomb)
ESD Classification	Class I per MIL-STD-883 Method 3015
Brocoutiona	Do not subject devices to ultrasonic cleaning, which may
	cause deterioration and destruction of the device.

Rev X7 22-Mar-05 Page 4 of 4

Integrated Circuit Systems • Surface Acoustic Wave Products 324 Clark Street, Worcester, MA 01606, USA • Phone 508-852-5400 • Fax 508-852-8456 www.icst.com