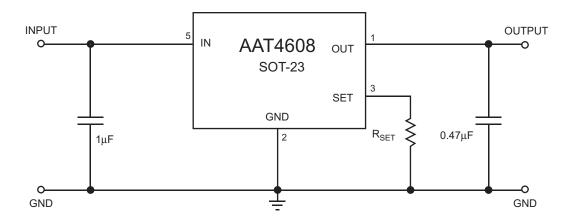


SmartSwitch™

General Description

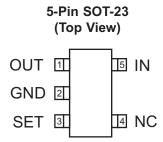
The AAT4608 SmartSwitch™ is a member of AnalogicTech's Application Specific Power MOSFET™ (ASPM™) product family. It is a Current Limited P-channel MOSFET power switch designed for high-side load-switching applications. This switch operates with inputs ranging from 2.7V to 5.5V, making it ideal for both 3V and 5V systems. An integrated current-limiting circuit protects the input supply against large currents which may cause the supply to fall out of regulation. The AAT4608 is also protected from thermal overload which limits power dissipation and junction temperatures. It can be used to control loads that require up to 1 A. Current limit threshold is programmed with a resistor from SET to ground. The quiescent supply current is typically a low 15µA max.

The AAT4608 is available in a 5 pin SOT-23 specified over -40 to 85°C.


Features

- 2.7V to 5.5V Input voltage range
- Programmable over current threshold
- · Fast transient response:
- <1µs response to short circuit
- Low quiescent current
 - 15µA typical
 - 1µA max with Switch off
- 160mΩ typical R_{DS(ON)}
- Undervoltage Lockout
- Thermal shutdown
- Temp range -40 to 85°C
- 4kV ESD Rating
- 5 pin SOT-23 package

Applications


- · Peripheral ports
- Notebook computers
- Personal communication devices
- Hot swap supplies

Typical Application

Pin Configuration

Pin Descriptions

Pin #	Symbol	Function		
1	OUT	P-channel MOSFET drain. Connect 0.47µF capacitor from OUT to GND.		
2	GND	Ground connection		
3	SET	Current-Limit Set Input. A resistor from SET to ground sets the current limit for the switch.		
4	NC	No internal connection.		
5	IN	P-channel MOSFET source. Connect 1µF capacitor from IN to GND.		

2 4608.2001.10.0.9

Current Limited Load Switch in SOT-23 Package

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Symbol	Description	Value	Units
V _{IN}	IN to GND	-0.3 to 6	V
V _{SET,} V _{OUT}	SET, OUT to GND	-0.3 to V _{IN} +0.3	V
I _{MAX}	Maximum Continuous Switch Current	2	А
T_J	Operating Junction Temperature Range	-40 to 150	°C
T _{LEAD}	Maximum Soldering Temperature (at Leads)	300	°C
V _{ESD}	ESD Rating ¹ - HBM	4000	V

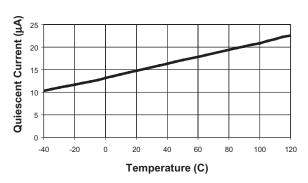
Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any one time.

Note 1: Human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin.

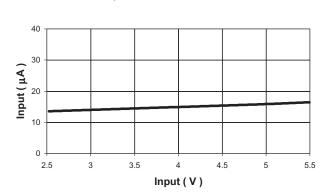
Thermal Characteristics

Symbol	Description	Value	Units
Θ_{JA}	Thermal Resistance ²	150	°C/W
P _D	Power Dissipation ²	667	mW

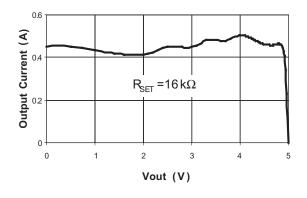
Note 2: Mounted on a demo board.

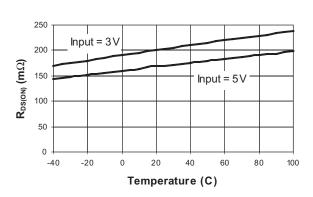

$\frac{\textbf{Electrical Characteristics}}{\text{are at T}_{A}=25^{\circ}\text{C})} \text{ (V}_{IN} = 5\text{V}, \text{ T}_{A} = -40 \text{ to } 85^{\circ}\text{C unless otherwise noted.}$ Typical values

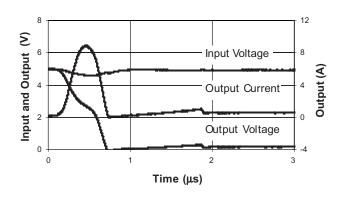
Symbol	Description	Conditions	Min	Тур	Max	Units
V _{IN}	Operation Voltage		2.7		5.5	V
IQ	Quiescent Current	$V_{IN} = 5V$, $I_{OUT} = 0$		15	30	μΑ
V_{UVLO}	Undervoltage Lockout	Rising edge, 1% hysteresis,	2.0	2.3	2.7	V
		V _{IN} =5.0V		160	180	mΩ
R _{DS(ON)}	On-Resistance	V _{IN} =4.5V		165		mΩ
, ,		V _{IN} =3.0V		195	230	mΩ
I _{LIM}	Current Limit	$R_{SET} = 6.8k\Omega$	0.5	1	2.0	Α
I _{LIM(MIN)}	Minimum Current Limit			150		mA
T _{RESP}	Current Limit Response Time	V _{IN} =5V		0.8		μs

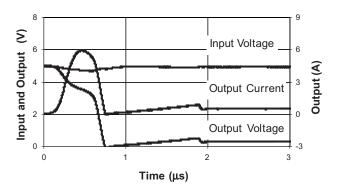


$\frac{\textbf{Typical Characteristics}}{(\text{Unless otherwise noted, V}_{\text{IN}} = 5\text{V}, T_{\text{A}} = 25^{\circ}\text{C})}$

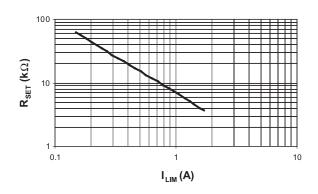

Quiescent Current vs. Temperature

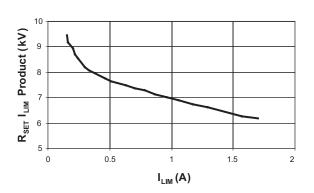

Quiescent Current


Output Current vs V_{OUT}


R_{DS(ON)} vs. Temperature

Short Circuit through 0.3Ω

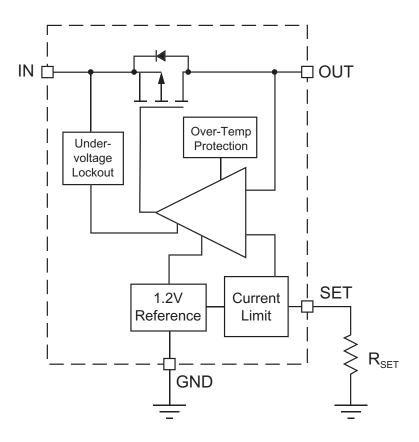

Short Circuit through 0.6Ω



(Unless otherwise noted, V_{IN} = 5V, T_A = 25°C)

R_{SET} vs I_{LIM}

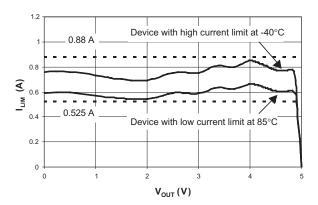
 R_{SET} coefficent vs I_{LIM}



Current Limit v. Temperature

Functional Block Diagram

6 4608.2001.10.0.9

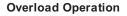


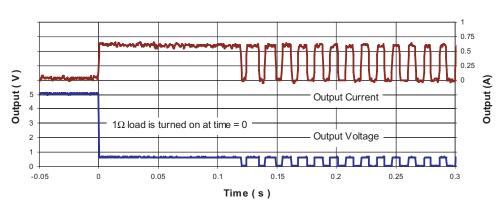
Applications Information

Setting Current Limit

In most applications, the variation in I_{IIM} must be taken into account when determining R_{SFT} The I_{LIM} variation is due to processing variations from part to part, as well as variations in the voltages at IN (pin 5) and OUT (pin 3), plus the operating temperature. See charts "Current Limit vs. Temperature", and "Output Current vs. V_{OUT}". Together these three factors add up to a ±25% tolerance (see I_{I IM} specification in Electrical Characteristics section). In the figure below, a cold device with a statistically higher current limit, and a hot device with a statistically lower current limit, both with R_{SFT} equal to 10.5k Ω are shown. While the chart, "R_{SET} vs. I_{LIM}" indicates an I_{LIM} of 0.7A with an R_{SFT} of 10.5k Ω , this figure shows that the actual current limit will be at least 0.525A, and no greater than 0.880A.

Current Limit Using 10.5 $k\Omega$


To determine R_{SET} , start with the maximum current drawn by the load, and multiply it by 1.33. (typical_I_IIM = minimum_I_IIM / 0.75) This is the typical current limit value. Next, refer to " R_{SET} vs. I_{LIM} " and find the R_{SET} that corresponds to the typical current limit value. Choose the largest resistor available


that is less than or equal to it. For greater precision, the value of R_{SET} may also be calculated using the I_{LIM} R_{SET} product found in the chart " R_{SET} coefficient vs. I_{LIM} ". The maximum current is derived by multiplying the typical current for the chosen R_{SET} in the chart by 1.25. A few standard resistor values are listed in the table "Current Limit R_{SET} Values".

Current Limit R_{SET} Values

R_{SET} (k Ω)	Current Limit typ (mA)	Device will not current limit below: (mA)	Device always current limits below: (mA)
40.2	200	150	250
30.9	250	188	313
24.9	300	225	375
22.1	350	263	438
19.6	400	300	500
17.8	450	338	563
16.2	500	375	625
14.7	550	413	688
13.0	600	450	750
10.5	700	525	875
8.87	800	600	1000
7.50	900	675	1125
6.81	1000	750	1250
6.04	1100	825	1375
5.49	1200	900	1500
4.99	1300	975	1625
4.64	1400	1050	1750

Example: A USB port requires 0.5A. 0.5A multiplied by 1.33 is 0.665A. From the chart named " R_{SET} vs. I_{LIM} ", R_{SET} should be less than 11k Ω . 10.5 k Ω is a standard value that is a little less than 11k Ω but very close. The chart reads approximately 0.700A as a typical I_{LIM} value for 10.5k Ω . Multiplying 0.700A by 0.75 and 1.25 shows that the AAT4608 will limit the load current to greater than 0.525A but less than 0.875A.

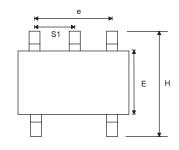
Operation in Current Limit

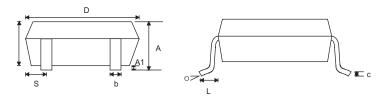
When a heavy load is applied to the output of the AAT4608, the load current is limited to the value of I_{LIM} determined by $R_{SET}.$ See the figure "Overload Operation". Since the load is demanding more current than $I_{LIM},$ the voltage at the output drops. This causes the AAT4608 to dissipate a larger than normal quantity of power, and its die temperature to increase. When the die temperature exceeds an over temperature limit, the AAT4608 will shut down until is has cooled sufficiently, at which point it will startup again. The AAT4608 will continue to cycle on and off until the load is removed or power is removed.

Reverse Voltage

The AAT4608 is designed to control current flowing from IN to OUT. If a voltage is applied to OUT which is greater than the voltage on IN, large currents may flow. This could cause damage to the AAT4608.

8 4608.2001.10.0.9




Ordering Information

Dealtage	Marking	Part Number		
Package		Bulk	Tape and Reel	
SOT-23-5		N/A	AAT4608IGV-T1	
SOT-23-5		N/A	AAT4608IGV-1-T1	

Package Information

SOT-23-5

Dim	Millimeters		Inches	
	Min	Max	Min	Max
Α	0.95	1.45	0.037	0.057
A1	0.05	0.15	0.002	0.006
A2	0.90	1.30	0.035	0.051
b	0.35	0.50	0.014	0.019
С	0.08	0.20	0.003	0.078
D	2.84	3.00	0.112	0.112
Е	1.50	1.70	0.059	0.067
е	1.90		0.0748	
Н	2.60	3.00	0.102	0.118
L	0.35	0.55	.0137	.0216
S	0.47	0.55	0.019	.0216
S1	.95		0.037	
Θ	0°	10°	0°	10°

This page intentionally left blank.

Advanced Analogic Technologies, Inc. 1250 Oakmead Parkway, Suite 310, Sunnyvale, CA 94086 Phone (408) 524-9684 Fax (408) 524-9689

AAT4608