
COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-2001401, Issue 2

PM4351, PM4354

COMET AND COMET-QUAD DEVICE
DRIVER

DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL

RELEASE

ISSUE 2: JUNE, 2001

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 1
Document ID: PMC-2001401, Issue 2

OVERVIEW

Scope

This document is the user’s driver manual for the COMET (PM4351) and COMET-QUAD
(PM4354) device driver software. It describes the features and functionality provided by the
driver, the software architecture, and the external interfaces of the driver software. Differences in
API functionality for COMET and COMET-QUAD devices are listed throughout the API
descriptions on a per-function basis.

Objectives

The main objectives of this document are as follows:

• Provide a detailed list of the device driver’s features

• Describe the software architecture of the driver (data structures, state diagrams, function
descriptions).

• Describe the external interfaces of the driver. The external interfaces illustrate how the driver
interacts with the underlying hardware and RTOS as well as external application software

References

The main references for this document are as follows:

• PMC-1990315 – Four Channel Combined E1/T1/J1 Transceiver/Framer Data Sheet, Issue 6

• PMC-1970624 – Combined E1/T1 Transceiver Standard Product Data Sheet, Issue 10

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-2001401, Issue 2

Legal Issues

None of the information contained in this document constitutes an express or implied warranty by
PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such
information or the fitness, or suitability for a particular purpose, merchantability, performance,
compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any
portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all
representations and warranties of any kind regarding the contents or use of the information,
including, but not limited to, express and implied warranties of accuracy, completeness,
merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost data
resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has
been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’
internal use. In any event, no part of this document may be reproduced in any form without the
express written consent of PMC-Sierra, Inc.

© 2001 PMC-Sierra, Inc.

PMC-2010108 (P1), ref PMC-1991407 (P2)

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-2001401, Issue 2

TABLE OF CONTENTS

Overview.. 1

Table of Contents... 3

List of Figures .. 8

List of Tables.. 9

1 Introduction ... 12

2 Software Architecture.. 13

2.1 Driver External Interfaces.. 13
Application Programming Interface .. 14
Real-Time Operating System (RTOS) Interface... 14
Hardware Interface ... 14

2.2 Main Components ... 15
Module Data-Block and Device Data-Blocks.. 16
Module and Device Management... 17
Interrupt Servicing/Polling... 17
Status and Statistics Collection... 17
Interface Configuration ... 18
T1/E1 Framers.. 18
Signal Insertion / Extraction.. 19
Alarm Control and Inband Communications... 19
Serial Controller .. 19
Device Diagnostics ... 19
Specific Callback Functions.. 20

2.3 Software States ... 20
Module States ... 21
Device States.. 22

2.4 Processing Flows .. 23
Module Management .. 23
Device Management... 24

2.5 Interrupt Servicing ... 25
Calling cometqISR.. 25
Calling cometqDPR .. 26
Calling cometqPoll .. 27

3 Data Structures ... 28

3.1 Constants .. 28

3.2 Structures Passed by the Application.. 28
Module Initialization Vector: MIV .. 28
Device Initialization Vector: DIV.. 29

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-2001401, Issue 2

ISR Enable/Disable Mask... 34
Other API Structures... 43

3.3 Structures in the Driver’s Allocated Memory ... 62
Module Data Block: MDB.. 62
Device Data Block: DDB... 63

3.4 Structures Passed through RTOS Buffers .. 65
Interrupt Service Vector: ISV .. 65
Deferred Processing Vector: DPV .. 66

3.5 Global Variable .. 69

4 Application Programming Interface... 70

4.1 Module Management .. 70
Opening the Driver Module: cometqModuleOpen .. 70
Closing the Driver Module: cometqModuleClose ... 70
Starting the Driver Module: cometqModuleStart ... 71
Stopping the Driver Module: cometqModuleStop ... 71

4.2 Profile Management .. 72
Adding an Initialization Profile: cometqAddInitProfile ... 72
Getting an Initialization Profile: cometqGetInitProfile ... 72
Deleting an Initialization Profile: cometqDeleteInitProfile ... 73

4.3 Device Management ... 73
Adding a Device: cometqAdd ... 73
Deleting a Device: cometqDelete ... 74
Initializing a Device: cometqInit .. 74
Resetting a Device: cometqReset .. 75
Updating the Configuration of a Device: cometqUpdate .. 75
Activating a Device: cometqActivate .. 76
Deactivating a Device: cometqDeActivate.. 76

4.4 Device Read and Write ... 77
Reading from Device Registers: cometqRead ... 77
Writing to Device Registers: cometqWrite .. 77
Reading from a block of Device Registers: cometqReadBlock.. 78
Writing to a Block of Device Registers: cometqWriteBlock .. 79
Reading from Framer Device Registers: cometqReadFr ... 79
Writing to Framer Device Registers: cometqWriteFr .. 80
Reading from Device Indirect Registers: cometqReadFrInd .. 81
Writing to Device Indirect Registers: cometqWriteFrInd... 81
Reading from Device RLPS Indirect Registers: cometqReadRLPS 82
Writing to Device RLPS Indirect Registers: cometqWriteRLPS ... 83

4.5 Interface Configuration.. 83
Transmit line coding configuration: cometqLineTxEncodeCfg ... 83
Receive line coding configuration: cometqLineRxEncodeCfg.. 84
Analog transmitter configuration: cometqLineTxAnalogCfg ... 85
Analog receiver configuration: cometqLineRxAnalogCfg ... 85
Transmit jitter attenuator configuration: cometqLineTxJatCfg.. 86
Receive jitter attenuator configuration: cometqLineRxJatCfg .. 86

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID: PMC-2001401, Issue 2

Clock service unit configuration: cometqLineClkSvcCfg .. 87
Receive clock and data recovery options: cometqLineRxClkCfg....................................... 87
Backplane transmit interface configuration: cometqBTIFAccessCfg.................................. 88
Backplane transmit interface configuration: cometqBTIFFrmCfg....................................... 88
Backplane receive interface configuration: cometqBRIFAccessCfg 89
Backplane receive interface configuration: cometqBRIFFrmCfg 89
Receive and transmit HMVIP interfaces configuration: cometqHMVIPCfg 90
Receive elastic store configuration: cometqRxElstStCfg.. 90
Transmit elastic store configuration: cometqTxElstStCfg ... 90

4.6 T1 /E1 Framers ... 91
Set Device Operational Mode: cometqSetOperatingMode .. 91
T1 transmit framer configuration: cometqT1TxFramerCfg ... 92
T1 receive framer configuration: cometqT1RxFramerCfg.. 93
E1 transmit framer configuration: cometqE1TxFramerCfg... 93
E1 receive framer configuration: cometqE1RxFramerCfg.. 94
E1 transmit framer extra bits insertion: cometqE1TxSetExtraBits...................................... 94
E1 transmit framer international bits configuration: cometqE1TxSetIntBits 95
E1 transmit framer national bits configuration: cometqE1TxSetNatBits............................. 95
E1 receive framer extra bit extraction: cometqE1RxGetExtraBits...................................... 96
E1 receive framer international bit extraction: cometqE1RxGetIntBits 97
E1 receive framer national bit extraction: cometqE1RxGetNatBitsNFAS 97
E1 receive framer national bit extraction: cometqE1RxGetNatBitsSMFRM....................... 98

4.7 Signal Insertion/Extraction .. 99
Change of signaling state detection: cometqExtractCOSS.. 99
Signaling state extraction: cometqSigExtract ... 99
Signal trunken: cometqSigTslotTrnkDataCfg.. 100

4.8 Alarm and Inband Communications.. 101
Automatic alarm response configuration: cometqAutoAlarmCfg...................................... 101
Alarm insertion: cometqInsertAlarm ... 102
HDLC configuration: cometqHDLCEnable ... 103
HDLC configuration: cometqHDLCRxCfg... 103
HDLC configuration: cometqHDLCTxCfg... 104
HDLC transmitter: cometqTDPRData... 104
HDLC transmitter: cometqTDPRCtl.. 105
HDLC transmitter: cometqTDPRFIFOThreshCfg ... 105
HDLC transmitter: cometqTDPRTx .. 106
HDLC receiver: cometqRDLCTerm .. 106
HDLC receiver: cometqRDLCAddrMatch... 107
HDLC receiver: cometqRDLCFIFOThreshCfg ... 107
HDLC receiver: cometqRDLCRx .. 108
Inband loopack code detection: cometqIBCDActLpBkCfg ... 109
Inband loopack code detection: cometqIBCDDeActLpBkCfg... 110
Inband loopack code transmission: cometqIBCDTxCfg ... 110
Bit Oriented Code transmission: cometqBOCTxCfg ...111
Bit Oriented Code detection: cometqBOCRxCfg...111
Bit Oriented Code detection: cometqBOCRxGet ... 112

4.9 Serial Control... 112
Transmit per-channel serial controller: cometqTPSCEnable ... 112
Transmit per-channel serial controller: cometqTPSCPCMCtl .. 113
Receive per-channel serial controller: cometqRPSCEnable .. 114

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID: PMC-2001401, Issue 2

Receive per-channel serial controller: cometqRPSCPCMCtl... 115
Transmit Trunk Conditioning: cometqTxTrnkCfg .. 116
Receive Trunk Conditioning: cometqRxTrnkCfg... 117
Pattern receive and generation control: cometqPRGDCtlCfg .. 117
Pattern receive and generation control: cometqPRGDPatCfg ... 118
Pattern receive and generation control: cometqPRGDErrInsCfg..................................... 121

4.10 Interrupt Service Functions ... 121
Configuring ISR Processing: cometqISRConfig ... 122
Getting the Interrupt Status Mask: cometqGetMask... 122
Setting the Interrupt Enable Mask: cometqSetMask .. 123
Clearing the Interrupt Enable Mask: cometqClearMask... 123
Polling the Interrupt Status Registers: cometqPoll ... 124
Interrupt Service Routine: cometqISR.. 124
Deferred Processing Routine: cometqDPR.. 125

4.11 Status and Statistics Functions ... 126
Performance monitoring statistics: cometqForceStatsUpdate.. 126
Performance monitoring statistics: cometqGetStats... 126
Framer status: cometqGetStatus .. 127
Status of line clocks: cometqLineClkStatGet .. 127
Pattern receive and generation control: cometqPRGDCntGet... 128
Pattern receive and generation control: cometqPRGDGetBitCnt 128
Automatic performance report generation: cometqPmonSet ... 128
Automatic performance report generation: cometqPmonReportGet................................ 129

4.12 Device Diagnostics.. 130
Register access test: cometqTestReg .. 130
Framer loopback: cometqLoopFramer ... 130
DS0 loopback: cometqLoopTslots .. 131
Analog transmitter bypass: cometqTxAnalogByp... 131
Analog transmitter bypass: cometqRxAnalogByp .. 132

4.13 Callback Functions.. 132
Calling Back to the Application due to Interface events: cometqCbackIntf 133
Calling Back to the Application due to T1 / E1 Framer events: cometqCbackFramer 133
Calling Back to the Application due to Signal Insertion / Extraction events:

cometqCbackSigInsExt .. 134
Calling Back to the Application due to Performance Monitoring events: cometqCbackPMon

... 134
Calling Back to the Application due to Alarm Inband Communications events:

cometqCbackAlarmInBand .. 135
Calling Back to the Application due to Serial Controller events: cometqCbackSerialCtl.. 135

5 Hardware Interface ... 136

5.1 Device I/O.. 136
Reading from a Device Register: sysCometqRead.. 136
Writing to a Device Register: sysCometqWrite... 136

5.2 System-Specific Interrupt Servicing .. 137
Installing the ISR Handler: sysCometqISRHandlerInstall... 137
ISR Handler: sysCometqISRHandler ... 137
Removing the ISR Handler: sysCometqISRHandlerRemove... 138

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID: PMC-2001401, Issue 2

6 RTOS Interface ... 139

6.1 Memory Allocation / De-Allocation .. 139
Allocating Memory: sysCometqMemAlloc .. 139
Freeing Memory: sysCometqMemFree.. 139
Setting memory: sysCometqMemSet ... 140
Copying memory: sysCometqMemCpy.. 140

6.2 Buffer Management... 140
Starting Buffer Management: sysCometqBufferStart.. 141
Getting an ISV Buffer: sysCometqISVBufferGet .. 141
Returning an ISV Buffer: sysCometqISVBufferRtn... 141
Getting a DPV Buffer: sysCometqDPVBufferGet ... 142
Returning a DPV Buffer: sysCometqDPVBufferRtn ... 142
Stopping Buffer Management: sysCometqBufferStop .. 142

6.3 Timers ... 143
Sleeping a Task: sysCometqTimerSleep.. 143

6.4 Preemption .. 143
Disabling Preemption: sysCometqPreemptDis .. 143
Re-Enabling Preemption: sysCometqPreemptEn .. 143

6.5 System-Specific DPR Routine... 144
Installing the DPR Task: sysCometqDPRTaskInstall .. 144
DPR Task: sysCometqDPRTask... 144
Removing the DPR Task: sysCometqDPRTaskRemove.. 145

7 Porting the COMET-QUAD Driver... 146

7.1 Driver Source Files.. 146

7.2 Driver Porting Procedures... 147
Step 1: Porting Driver RTOS Extensions.. 147
Step 2: Porting Drivers to Hardware Platforms... 148
Step 3: Porting Driver Application Specific Elements ... 149
Step 4: Building the Driver .. 151

Appendix A: Coding Conventions.. 152

Appendix B: COMET-QUAD Error Codes ... 155

Appendix C: COMET-QUAD Events ... 157

List of Terms .. 169

Acronyms... 170

Index .. 171

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID: PMC-2001401, Issue 2

LIST OF FIGURES

Figure 1: Driver External Interfaces..13

Figure 2: Driver Architecture ..16

Figure 3: Driver Software States ..21

Figure 4: Module Management Flow Diagram ...23

Figure 5: Device Management Flow Diagram..24

Figure 6: Interrupt Service Model ...25

Figure 7: Polling Service Model..27

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID: PMC-2001401, Issue 2

LIST OF TABLES

Table 1: COMET-QUAD Module Initialization Vector: sCMQ_MIV ...29

Table 2: COMET-QUAD Device Initialization Vector: sCMQ_DIV ...30

Table 3: COMET-QUAD Analog Transmitter and Receiver Initialization: sCMQ_ANALOG_INIT .31

Table 4: COMET-QUAD Transmit and Receive Framer Initialization: sCMQ_FRAMER_INIT32

Table 5: COMET-QUAD Transmit and Receive Backplane Interface Initialization:
sCMQ_BACKPLANE_INIT ..33

Table 6: COMET-QUAD ISR Mask: sCMQ_ISR_MASK...34

Table 7: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_CDRC...36

Table 8: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_RLPS ...36

Table 9: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_JAT..36

Table 10: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_SLIP ...37

Table 11: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_T1FRMR ..37

Table 12: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_IBCD...37

Table 13: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_ALMI ...37

Table 14: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_PDVD ...38

Table 15: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_XPDE ...38

Table 16: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_RBOC ...38

Table 17: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_E1TRAN ...39

Table 18: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_E1FRMR ...39

Table 19: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_TDPR ...41

Table 20: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_RDLC ...41

Table 21: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_PRBS ...42

Table 22: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_SIGX ...42

Table 23: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_PMON ...42

Table 24: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_BTIF ...43

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID: PMC-2001401, Issue 2

Table 25: COMET-QUAD Transmit Jitter Attenuator Configuration: sCMQ_CFG_TX_JAT43

Table 26: COMET-QUAD Receive Jitter Attenuator Configuration: sCMQ_CFG_RX_JAT44

Table 27: COMET-QUAD Receive Clock Configuration: sCMQ_CFG_RX_CLK44

Table 28: COMET-QUAD Line Side Interface Analog Transmitter Configuration:
sCMQ_CFG_TX_ANALOG...46

Table 29: COMET-QUAD Analog Receiver Configuration: sCMQ_CFG_RX_ANALOG49

Table 30: COMET-QUAD Backplane Access Configuration: sCMQ_BACKPLANE_ACCESS_CFG 52

Table 31: COMET-QUAD Backplane Receive Frame Configuration: sCMQ_CFG_BRIF_FRM.....52

Table 32: COMET-QUAD Backplane Transmit Frame Configuration: sCMQ_CFG_BTIF_FRM....53

Table 33: COMET-QUAD H-MVIP Configuration: sCMQ_CFG_HMVIP ...54

Table 34: COMET-QUAD Receive Elastic Store Configuration: sCMQ_CFG_RX_ELST55

Table 35: COMET-QUAD T1 Transmit Framer Configuration: sCMQ_CFG_T1TX_FRM55

Table 36: COMET-QUAD T1 Receive Framer Configuration: sCMQ_CFG_T1RX_FRM56

Table 37: COMET-QUAD E1 Transmit Framer Configuration: sCMQ_CFG_E1TX_FRM57

Table 38: COMET-QUAD E1 Receive Framer Configuration: sCMQ_CFG_E1RX_FRM58

Table 39: COMET-QUAD HDLC Link Extraction/Insertion Location Configuration:
sCMQ_CFG_HDLC_LINK...59

Table 40: COMET-QUAD HDLC Receiver Configuration: sCMQ_CFG_HDLC_RX60

Table 41: COMET-QUAD HDLC Receiver Configuration: sCMQ_CFG_HDLC_TX60

Table 42: COMET-QUAD Clock Status Structure: sCMQ_CLK_STATUS61

Table 43: COMET-QUAD Framer Statistics: sCMQ_FRM_CNTS ...61

Table 44: COMET-QUAD Framer Status: sCMQ_FRM_STATUS ...61

Table 45: COMET-QUAD T1 Automatic Performance Monitoring Message: sCMQ_STAT_APRM62

Table 46: COMET-QUAD Module Data Block: sCMQ_MDB ...63

Table 47: COMET-QUAD Device Data Block: sCMQ_DDB..64

Table 48: COMET-QUAD Interrupt Service Vector: sCMQ_ISV ...65

Table 49: COMET-QUAD Deferred Processing Vector: sCMQ_DPV ...66

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID: PMC-2001401, Issue 2

Table 50: Variable Type Definitions ...152

Table 51: Naming Conventions...152

Table 52: File Naming Conventions ..153

Table 53: COMET-QUAD Error Codes ..155

Table 54: COMET-QUAD DPV Event bit masks..157

Table 55: COMET-QUAD Events for Interface Callbacks...162

Table 56: COMET-QUAD Events for Framer Callbacks ..164

Table 57: COMET-QUAD Events for Alarm and InBand Communications Callbacks.................166

Table 58: COMET-QUAD Events for Signal Extraction Callbacks...167

Table 59: COMET-QUAD Events for Performance Monitoring Callbacks167

Table 60: COMET-QUAD Events for Serial Controller Callbacks...168

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-2001401, Issue 2

1 INTRODUCTION

The following sections of the COMET and COMET-QUAD driver manual describe the COMET
and COMET-QUAD device driver. Throughout the document, the device driver will be referred
to as the COMET-QUAD device driver. However, the driver supports the COMET through the
same set of API calls. Sections 4 and 5 of this document outline how each API function within the
driver applies to both COMET and COMET-QUAD devices on a per API function basis.

The code provided throughout this document is written in the C language. This has been done to
promote greater driver portability to other embedded Real Time Operating Systems (section 6)
and hardware environments (section 5).

Section 2 of this document, Software Architecture, defines the software architecture of the
COMET-QUAD device driver by including a discussion of the driver’s external interfaces and its
main components. The Data Structure information in section 3 describes the elements of the
driver that configure or control its behavior. Included here are the constants, variables and
structures that the COMET-QUAD Device Driver uses to store initialization, configuration and
statistics information. Section 4 provides a detailed description of each function that is a member
of the COMET-QUAD driver Application Programming Interface (API). The section outlines
function calls that hide device-specific details and application callbacks that notify the user of
significant device events.

For your convenience, section 7 of this manual provides a brief guide for porting the COMET-
QUAD device driver to your hardware and RTOS platform. In addition, an extensive Appendix
(page 152) and Index (page 171) provide you with useful reference information.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID: PMC-2001401, Issue 2

2 SOFTWARE ARCHITECTURE

This section of the manual describes the software architecture of the COMET-QUAD device
driver. Details of the software architecture include a discussion of the driver’s external interfaces
and its main components.

2.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the COMET-QUAD device driver.

Figure 1: Driver External Interfaces

RTOS

 Function Calls Application Callbacks

Hardware
Interrupts

Service Callbacks

Application

COMET-Quad Device Driver

COMET-Quad/COMET Devices

Service Calls

Register
Accesses

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-2001401, Issue 2

Application Programming Interface

The Driver Application Programming Interface (API) is a list of high-level functions that can be
invoked by application programmers to configure, control and monitor COMET-QUAD and
COMET devices.

The API includes the following functions:

• Initialize the device(s)

• Perform diagnostic tests

• Validate configuration information

• Retrieve status and statistics information

The driver API functions use the services of the other driver components to provide this system-
level functionality to the application programmer.

The driver API also consists of callback routines that are used to notify the application of
significant events that take place within the device(s) and module.

Real-Time Operating System (RTOS) Interface

The driver’s RTOS interface provides functions that let the driver use the RTOS’s memory,
interrupt, and pre-emption services. These RTOS interface functions perform the following tasks
for the driver:

• Allocate and de-allocate memory

• Manage buffers for the ISR and the DPR

• Enable and disable pre-emption

The RTOS interface also includes service callbacks. These are functions installed by the driver
using RTOS service calls such as installing interrupts. These service callbacks are invoked when
an interrupt occurs.

Hardware Interface

The hardware interface provides functions that read from and write to the device registers. The
hardware interface also provides a template for an ISR that the driver calls when the device raises
a hardware interrupt. You must modify this function based on the interrupt configuration of your
system.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-2001401, Issue 2

2.2 Main Components

Figure 2 illustrates the top-level architectural components of the COMET-QUAD device driver:

• Module data-block and device data-blocks

• Module and device management

• Interrupt servicing

• Status and statistics

• Interface configuration

• T1/E1 framers

• Signal Insertion/Extraction

• Alarm Control and Inband Communication

• Serial Control

• Device Diagnostics and Loopbacks

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-2001401, Issue 2

Figure 2: Driver Architecture

 Function
Calls

Register
Accesses

Hardware
Interrupts

Se
rv

ic
e

C
al

ls

Application

R
TO

S

COMET & COMET-Quad Devices

Deferred
Processing

Routine

Interrupt
Service
Routine

Interrupt
Context

R
TO

S
In

te
rfa

ce

Hardware Interface

Application
Callbacks

Se
rv

ic
e

C
al

lb
ac

ksDriver API

Status & Statistics

Signal Insertion/
Extraction

Interface Configuration

Module & Device
Management

Module
Data Block

Device Data Blocks

.......

T1/E1 Framers

Device Diagnostics

Serial Control

Interrupt
Servicing

Alarm Control & In-
band Communication

Module Data-Block and Device Data-Blocks

The Module Data-Block (MDB) is the top layer data structure created by the COMET-QUAD
driver to store context information about the driver module, such as:

• Module state

• Maximum number of devices

• The DDB(s)

• The initialization profile(s)

The Device Data-Block (DDB) is contained in the MDB, and initialized by the driver module for
each COMET-QUAD or COMET device that is registered. There is one DDB per device and
there is a limit on the number of DDBs available. That limit is set by the USER when the module
is initialized. The DDB is used to store context information about one device, such as:

• Device state

• Control information

• Initialization parameters

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-2001401, Issue 2

• Callback function pointers

Module and Device Management

The module and device management block provides the following:

• Module management that takes care of initializing the driver, allocating memory and all
RTOS resources needed by the driver

• Device management that is responsible for providing basic read/write routines and initializing
a device in a specific configuration, as well as enabling the device general activity

For more information on the module and device states see the state diagram on page 21. For
typical module and device management flow diagrams see pages 23 and 24 respectively.

Interrupt Servicing/Polling

Interrupt Servicing is an optional feature. The user can disable device interrupts and instead poll
the device periodically to monitor status and check for alarm/error conditions. The COMET-
QUAD driver provides:

• An Interrupt-Service Routine (ISR) called cometqISR that checks for valid interrupt
conditions

• A Deferred Processing Routine (DPR) called cometqDPR that processes any interrupt
condition gathered by the ISR

See section 2.5 for a detailed explanation of the interrupt-servicing model.

Status and Statistics Collection

This section contains functions to gather statistics and monitor the status of the device.
Specifically, this interface provides functionality to examine error counts such as framing errors,
CRC errors, and line code violations as well as clock status information and pseudo-random
generator error counts.

This API allows the user to monitor the status of each framer on the device. The device is polled
for the following error conditions:

• Loss of signal

• Loss of frame alignment

• Alarm Indication Signal (AIS)

• Yellow or E1 RAI alarm

• E1 loss of signaling multiframe alignment

• E1 loss of CRC-4 multiframe alignment

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-2001401, Issue 2

• E1 timeslot 16 RAI

Also, transmission of T1 ESF FDL automatic performance report messages (APRM) is handled
through this API. The user can perform the following APRM functions through the status and
statistics collection API:

• Enable/disable automatic performance report insertion into the FDL. For COMET devices,
manual insertion of the performance report can be forced by these APIs

• View the current APRM message to be sent on the FDL

Interface Configuration

This section of the driver allows the user to configure both the T1/E1 line and the receive and
transmit backplane interfaces. Specifically, these functions provide the following:

• Selection of the receive and transmit line coding scheme: B8ZS, HDB3, or AMI

• Programming of transmit pulse waveform from predefined Long/Short haul waveform
template or allow USER defined

• Transmitter fuse programming

• Selection of Clock & Data Recovery algorithm for low or high frequency jitter tolerance

• Receive and transmit jitter attenuation enable/disable and configuration

• Analog and digital loss of signal (LOS) configuration

• Backplane clock master or slave mode selection for the transmit and receive interfaces

• Backplane data format (channelized, full frame) and the clock rate configuration

• Frame pulse master or slave and frame pulse offset configuration

• Receive and transmit backplane H-MVIP or H-MVIP CCS mode selection

T1/E1 Framers

This section of the driver contains functions that are used to configure the T1/E1 receive and
transmit framers. These functions provide the following:

• Selection between global T1 or E1 mode

• Configuration of the T1 framers to transmit or receive in SF, ESF, T1DM, SLC96 or TTC JT-
G704 mode

• Configure the E1 framers to transmit or receive in CRC-4 multiframe format as well as
enable channel associative signaling insertion and receiver signaling multiframe alignment

• Retrieve and transmit E1 international, national, and extra bits.

In addition to configuring the relevant framer, these functions configure the complete receive and
transmit data path based on the receive and transmit framing modes specified.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-2001401, Issue 2

Signal Insertion / Extraction

The signal insertion/extraction API provide functionality that monitors channel associative
signaling (CAS) in the receive stream. These API provide the following functionality:

• Extraction of CAS from an E1 signaling multiframe or from a T1 ESF or SF frame

• Monitoring signaling state transitions

• Control on a per-timeslot basis, bit fixing, data inversion, and signal state debouncing

Alarm Control and Inband Communications

This section of the driver contains functions that are used for detection and insertion of Inband
Communication codes, BOC codes, and alarms. Specifically, these functions perform the
following:

• Transmission of AIS, yellow alarms, E1 y-bit alarms, and E1 timeslot 16 AIS

• Enabling or disabling of automatic device alarm response upon detection of yellow alarm, red
alarm, out-of frame, or loss of signal

• Detection and transmission of BOC codes transmitted in the T1 FDL channel in ESF framing
format

• Configuration of transmit and receive HDLC data links

• Configuration of T1 FDL to transmit one of 63 possible BOC codes

• Transmission and detection of T1 Inband Loopback codes

Serial Controller

This section contains functions that are used to configure the receive and transmit serial
controllers. Specifically, these functions perform the following:

• DS0 control of PCM data manipulation and digital milliwatt pattern insertion

• Pseudo-random pattern generation and detection

• Idle code insertion into T1 or E1 stream

Device Diagnostics

The device diagnostics API can be used to isolate/identify problems within the device and its
interfaces. Specifically, these functions perform:

• Device register read/write test

• Backplane loopback

• Line loopback

• Payload loopback

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-2001401, Issue 2

• Per-channel loopback

• Analog transmitter and receiver bypass

Specific Callback Functions

Callback functions are available to the application for event notification from the device driver.
Applications will be notified via the callback functions for selected events of interest such as:

• Alarm conditions

• Statistics

• Diagnostics

• Line coding and conditioning

• T1/E1 Framer

• Data Link

• Performance Monitoring

2.3 Software States

Figure 3 shows the software state diagram for the COMET-QUAD driver. State transitions occur
on the successful execution of the corresponding transition functions shown below. State
information helps maintain the integrity of the MDB and DDB(s) by controlling the set of
operations allowed in each state.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-2001401, Issue 2

Figure 3: Driver Software States

Idle

Present

Inactive
cometqActivate

cometqDeActivate

Start

cometqAdd cometqDelete

Ready

cometqModuleClosecometqModuleStart

cometqModuleOpen

cometqModuleClose

cometqModuleStop

Start

PER-DEVICE STATES

MODULE STATES

cometqReset

cometqInit

cometqReset

Active

Module States

The following is a description of the COMET-QUAD module states. See section 4.1 for a detailed
description of the API functions that are used to change the module state. The module states are:

Start

The driver module has not been initialized. In this state the driver does not hold any RTOS
resources (memory, timers, etc), has no running tasks, and performs no actions.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-2001401, Issue 2

Idle

The driver module has been initialized successfully. The Module Initialization Vector (MIV) has
been validated; the Module Data Block (MDB) has been allocated and loaded with current data;
the per-device data structures have been allocated; and the RTOS has responded without error to
all the requests sent to it by the driver.

Ready

This is the normal operating state for the driver module. This means that all RTOS resources have
been allocated and the driver is ready for devices to be added. The driver module remains in this
state while devices are in operation.

Device States

The following is a description of the COMET or COMET-QUAD per-device states. The state that
is mentioned here is the software state as maintained by the driver, and not as maintained inside
the device itself. See section 4.1 for a detailed description of the API functions that are used to
change the per-device state.

Start

The device has not been initialized. In this state the device is unknown to the driver and performs
no actions. There is a separate flow for each device that can be added, and they all start here.

Present

The device has been successfully added. A Device Data Block (DDB) has been associated with
the device and updated with the user context; and a device handle has been given to the USER. In
this state, the device performs no actions.

Inactive

In this state the device is configured but all data functions are de-activated, including interrupts
and alarms, and status and statistics functions.

Active

This is the normal operating state for the device. In this state, interrupt servicing or polling is
enabled.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-2001401, Issue 2

2.4 Processing Flows

This section of the manual describes the main processing flows of the COMET-QUAD driver
components.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application programmer by
illustrating the sequence in which the application must invoke the driver API.

Module Management

The following diagram illustrates the typical function call sequences that occur when either
initializing or shutting down the COMET-QUAD driver module.

Figure 4: Module Management Flow Diagram

De-registers an initialization profile previously registered with the driver.

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all timers and semaphores as
well as removing the ISR handler and DPR task.

Performs module level shutdown of the driver. De-allocates all the driver's
memory.

Performs all device level functions here (add, init, activate, de-activate,
reset, delete,...)

Registers an initialization profile. This allows the user to store pre-defined
parameter vectors that are validated ahead of time. When the device-
initialization function is invoked, only a profile number need to be passed.
This method simplifies and expedites the above operations.

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers and installing the ISR handler
and DPR task.

Performs module level initialization of the driver. Validates the Module
Initialization Vector (MIV). Allocates memory for the MDB and all its
components (i.e. all the memory needed by the driver) and then initializes
the contents of the MDB with the validated MIV.

cometqAddInitProfile

cometqModuleStart

cometqModuleOpen

cometqDeleteInitProfile

cometqModuleStop

cometqModuleClose

END

START

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-2001401, Issue 2

Device Management

The following figure shows the typical function call sequences that the driver uses to add,
initialize, re-initialize, and delete a COMET or COMET-QUAD device.

Figure 5: Device Management Flow Diagram

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts. ISR routines for this device are
removed using sysCometqISRRemoveHandler when the module is closed.

Applies a software reset to the device to put it in its default startup state.

Removes the device from the list of devices being controlled by the
COMETQ driver. This function de-allocates the device context information
for the device being deleted.

In order to re-initialize the device, reset the device using spectraReset and
go through the initialization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables. ISR routines are installed when the module is started
using sysCometqISRInstallHandler. The device is now operational and all
other APIs can be invoked.

Applies a reset to the device and initializes the device registers and
associated RAMs based on the DIV passed by the user. The user may
only pass a profile number, which corresponds to a previously saved &
validated set of configurations (by using cometqSetInitProfile).

Detects the new device in hardware, assigns a DDB to the new device and
stores the user's context for the device. Returns a device handle to the
user.

cometqInit

cometqAdd

cometqActivate

cometqReset

cometqDeactivate

cometqReset

cometqDelete

END

START

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-2001401, Issue 2

2.5 Interrupt Servicing

The COMET-QUAD driver services device interrupts using an interrupt service routine (ISR) that
traps interrupts. It also contains a deferred processing routine (DPR) that actually processes the
interrupt conditions and clears them. This architecture enables the ISR to execute quickly and
then exit. Most of the time-consuming processing of the interrupt conditions is deferred to the
DPR by queuing the necessary interrupt-context information to the DPR task. The DPR function
runs in the context of a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should set the
DPR task’s priority higher than the application task interacting with the COMET-QUAD driver.

The driver provides system-independent functions, cometqISR and cometqDPR. You must fill in
the corresponding system-specific functions, sysCometqISRHandler and
sysCometqDPRTask. The system-specific functions isolate the system-specific communication
mechanism (between the ISR and DPR) from the system-independent functions, cometqISR and
cometqDPR.

Figure 6 illustrates the interrupt service model used in the COMET-QUAD driver design.

Figure 6: Interrupt Service Model

cometqISR

sysCometqISRHandler

cometqDPR

Interrupt
Context

Information
sysCometqDPRTask Indication

Callbacks
Application

Note: Instead of using an interrupt service model, you can use a polling service model in the
COMET-QUAD driver to process the device’s event-indication registers (see page 26).

Calling cometqISR

An interrupt handler function (which is system dependent), must call cometqISR. But first, the
low-level interrupt-handler function must trap the device interrupts. You must implement this
function (sysCometqISRHandler) to fit your own system. For an example implementation of
the interrupt handler and its prototype, see page 137.

The interrupt handler that you implement (sysCometqISRHandler) is installed in the interrupt
vector table of the system processor. It is called when one or more COMET or COMET-QUAD
devices interrupt the processor. The interrupt handler then calls cometqISR for each device in
the active state that has interrupt processing enabled.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-2001401, Issue 2

The cometqISR function reads from the master interrupt-status registers and the miscellaneous
interrupt-status registers of the COMET or COMET-QUAD. If at least one valid interrupt
condition is found then cometqISR fills an Interrupt Service Vector (ISV) with this status
information as well as the current device handle. The cometqISR function also clears and
disables all the interrupts detected by the device. The sysCometqISRHandler function is then
responsible for sending this ISV buffer to the DPR task.

Note: Normally you should save the status information for deferred processing by implementing a
message queue. The interrupt handler sends the status information to the queue by
sysCometqISRHandler.

Calling cometqDPR

The sysCometqDPRTask function is a system specific function that runs as a separate task
within the RTOS. You should set the DPR task’s priority higher than the application task(s)
interacting with the COMET-QUAD driver. In the message-queue implementation model, this
task has an associated message queue. The task waits for messages from the ISR on this message
queue. When a message arrives, sysCometqDPRTask calls the DPR (cometqDPR) with the
received ISV.

Then cometqDPR processes the status information and takes appropriate action based on the
specific interrupt condition detected. The nature of this processing can differ from system to
system. Therefore, cometqDPR calls different indication callbacks for different interrupt
conditions.

Typically, you should implement these callback functions as simple message posting functions
that post messages to an application task. However, you can implement the indication callback to
perform processing within the DPR task context and return without sending any messages. In this
case, ensure that this callback function does not call any API functions that would change the
driver’s state, such as cometqDelete. In addition, ensure that the callback function is
non-blocking because the DPR task executes while COMET or COMET-QUAD interrupts are
disabled. You can customize these callbacks to suit your system. See page 131 for example
implementations of the callback functions.

Note: Since the cometqISR and cometqDPR routines themselves do not specify a
communication mechanism, you have full flexibility in choosing a communication mechanism
between the two. A convenient way to implement this is to use a message queue, which is a
service that most RTOSs provide.

You must implement the two system specific functions, sysCometqISRHandler and
sysCometqDPRTask. When the driver calls sysCometqISRHandlerInstall, the application
installs sysCometqISRHandler in the interrupt vector table of the processor, and the
sysCometqDPRTask function is spawned as a task by the application. The
sysCometqISRHandlerInstall function also creates the communication channel between
sysCometqISRHandler and sysCometqDPRTask. This communication channel is most
commonly a message queue associated with sysCometqDPRTask.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-2001401, Issue 2

Similarly, during removal of interrupts, the driver removes sysCometqISRHandler from the
microprocessor’s interrupt vector table and deletes the task associated with sysCometqDPRTask.

As a reference, the driver provides example implementations of the interrupt installation and
removal functions on pages 137 and 152. You can modify these functions to suit your specific
needs.

Calling cometqPoll

Instead of using an interrupt service model, you can use a polling service model in the COMET-
QUAD driver to process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the COMET-QUAD driver design.

Figure 7: Polling Service Model

cometqPoll

Application

Indication
Callbacks

cometqDPRcometqISR
Interrupt Context

Information

In polling mode, the application is responsible for calling cometqPoll often enough to service
any pending error or alarm conditions. When cometqPoll is called, the cometqISR function is
called internally.

The cometqISR function reads from the master interrupt-status registers and the miscellaneous
interrupt-status registers of the COMET or COMET-QUAD device. If at least one valid interrupt
condition is found then cometqISR fills an Interrupt Service Vector (ISV) with this status
information as well as the current device handle. The cometqISR function also clears and
disables all the device’s interrupts detected. In polling mode, cometqPoll then invokes
cometqDPR directly and passes the ISV buffer (returned by cometqISR) as an input parameter.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-2001401, Issue 2

3 DATA STRUCTURES

This section of the manual describes the elements of the driver that configure or control its
behavior. Included here are the constants, variables and structures that the COMET-QUAD
Device Driver uses to store initialization, configuration and statistics information. For more
information on naming conventions, please see Appendix A (page 152).

3.1 Constants

The following Constants are used throughout the driver code:

• <COMET-QUAD ERROR CODES>: this contains error codes returned by the API functions and
used in the global error number field of the MDB and DDB. For a complete list of error codes
see Appendix B.

• CMQ_MAX_DEVS: this defines the maximum number of devices that can be supported by this
driver. This constant must not be changed without a thorough analysis of the consequences to
the driver code.

• CMQ_MAX_INIT_PROFS: this defines the maximum number of profiles that can be supported
by this driver.

• CMQ_MOD_START, CMQ_MOD_IDLE, CMQ_MOD_READY: these contain the three possible
Module states (stored in the MDB as stateModule).

• CMQ_START, CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE: these contain the four possible
Device states (stored in the DDB as stateDevice).

3.2 Structures Passed by the Application

These structures are defined for use by the application and are passed as an argument to functions
within the driver. These structures are the Module Initialization Vector (MIV), the Device
Initialization Vector (DIV) and the ISR mask. The following explains their workings in detail.

Module Initialization Vector: MIV

Passed via the cometqModuleOpen call, this structure contains all the information needed by
the driver to initialize and connect to the RTOS.

• The variable maxDevs is used to inform the driver how many devices will be operating
concurrently during this session. The number is used to calculate the amount of memory that
will be allocated to the driver. The maximum value that can be passed is CMQ_MAX_DEVS (see
section 3.1).

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-2001401, Issue 2

• The variable maxInitProfs is used to inform the driver how many profiles will be used
during this session. The number is used to calculate the amount of memory that will be
allocated to the driver. The maximum value that can be passed is CMQ_MAX_INIT_PROFS
(see section 3.1).

Table 1: COMET-QUAD Module Initialization Vector: sCMQ_MIV

Field Name Field Type Field Description

perrModule INT4 * (pointer to) errModule (see description
in the MDB)

maxDevs UINT2 Maximum number of devices supported
during this session

maxInitProfs UINT2 Maximum number of initialization profiles

Device Initialization Vector: DIV

Passed via the cometqInit call, this structure contains all the information needed by the driver
to initialize a COMET or COMET-QUAD device. This structure is also passed via the
cometqSetInitProfile call when used as an initialization profile.

Note that when initializing COMET-QUAD devices with a DIV, the hardware initialization
specified in the DIV is applied to all four quadrants.

• valid indicates that this initialization profile has been properly initialized and may be used
by the USER. This field should be ignored when the DIV is passed directly.

• pollISR is a flag that indicates the type of interrupt servicing the driver is to use. The
choices are ‘polling’ (CMQ_POLL_MODE), and ‘interrupt driven’ (CMQ_ISR_MODE). When
configured in polling the Interrupt capability of the device is NOT used, and the USER is
responsible for calling cometqPoll periodically. The actual processing of the event
information is the same for both modes.

• cbackFramer, cbackIntf, cbackAlarmInBand, cbackPMon, cbackSerialCtl,
and cbackSigInsExt are used to pass the address of application functions that will be used
by the DPR to inform the application code of pending events. If these fields are set as NULL,
then any events that might cause the DPR to ‘call back’ the application will be processed
during ISR processing but ignored by the DPR.

• initDevice is a flag that indicates whether or not the hardware is to be initialized based on
the information in the analogInit, framerInit, and backplaneInit members of the
DIV. If initDevice is not set, the hardware remains in its reset state upon initialization.
When set, the device is initialized as appropriate for the values of the hardware initialization
members. This field is only used when the DIV is not being used as an initialization profile.
When adding an initialization profile, the hardware configuration must always be valid.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID: PMC-2001401, Issue 2

Table 2: COMET-QUAD Device Initialization Vector: sCMQ_DIV

Field Name Field Type Field Description

valid UINT2 Indicates that this structure is valid

pollISR eCMQ_ISR_MODE Indicates type of interrupt processing
(ISR mode or polling)

cbackIntf CMQ_CBACK Address of the callback function for
Interface Events

cbackFramer CMQ_CBACK Address of the callback function for
Framer Events

cbackAlarmInBand CMQ_CBACK Address of the callback function for
Alarm Inband Events

cbackSigInsExt CMQ_CBACK Address of the callback function for
Signal Insertion and Extraction Events

cbackPMon CMQ_CBACK Address of the callback function for
Performance Monitoring Events

cbackSerialCtl CMQ_CBACK Address of the callback function for
Serial Control Events

initDevice UINT1 Flag to indicate whether or not to
apply hardware configuration
(analogInit, framerInit, backplaneInit)
to the device. If this flag is not set, the
device is left in its reset state. By
setting this flag, analogInit,
framerInit, and backplaneInit are all
applied to the device. This field is not
used when the DIV is used as an
initialization profile.

analogInit sCMQ_ANALOG_INIT Initialization configuration for the
analog interfaces.

framerInit sCMQ_FRAMER_INIT Initialization configuration for the
transmit and receive framers.

backplaneInit sCMQ_BACKPLANE_I
NIT

Initialization configuration for the
transmit and receive backplane
interfaces.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-2001401, Issue 2

DIV Sub-structures

The following structures are members of the device initialization vector (DIV) structure. They
have the function of initializing the analog transmitter and receiver, the transmit and receive
framers, and the transmit and receive backplane interfaces respectively. The contents of these
structures are not applied to the device hardware when the initDevice member of the DIV is
set to false. When this member is true, the hardware configuration is applied to the device.

Initialization of the framers includes configuring all blocks within the device to conform to the
framing modes that are given in the framer initialization structure. Backplane hardware is
programmed as recommended in the Operations section of the COMET and COMET-QUAD data
sheet.

The transmit and receive analog structure allows the user to select the transmit pulse waveform
and the receive equalizer RAM from a table stored within the driver. These tables correspond to
the values specified in the Operations section of the COMET and COMET-QUAD data sheet.

Table 3: COMET-QUAD Analog Transmitter and Receiver Initialization:
sCMQ_ANALOG_INIT

Field Name Field Type Field Description

txLineBuildOut eCMQ_TX_LBO Selects XLPG line build out and waveform scale
factor. Choose from predefined tables and
corresponding waveform scale factors stored within
the driver (as defined in the COMET and COMET-
QUAD data sheet):

CMQ_TX_LBO_T1_LONG_HAUL_0DB,
CMQ_TX_LBO_T1_LONG_HAUL_7_5DB,
CMQ_TX_LBO_T1_LONG_HAUL_15DB,
CMQ_TX_LBO_T1_LONG_HAUL_22_5DB,
CMQ_TX_LBO_T1_LONG_HAUL_TR62411_0DB,
CMQ_TX_LBO_T1_SHORT_HAUL_110FT,
CMQ_TX_LBO_T1_SHORT_HAUL_220FT,
CMQ_TX_LBO_T1_SHORT_HAUL_330FT,
CMQ_TX_LBO_T1_SHORT_HAUL_440FT,
CMQ_TX_LBO_T1_SHORT_HAUL_550FT,
CMQ_TX_LBO_T1_SHORT_HAUL_660FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_110FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_220FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_330FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_440FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_550FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_660FT,
CMQ_TX_LBO_E1_75OHM,
CMQ_TX_LBO_E1_120OHM

txEnable UINT1 Set to 1 to enable transmitter, otherwise analog
outputs are left in high impedance state

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

rxEqualizerTable eCMQ_RX_LINE
_EQ

Selects one of predefined RLPS equalizer RAMs (as
defined in the COMET and COMET-QUAD data
sheet):

CMQ_RX_LINE_EQ_RAM_T1,
CMQ_RX_LINE_EQ_RAM_E1

csuClkMode eCMQ_CSU_SVC
_CLK

Selects the clock synthesis unit (CSU) operational
mode based on the XCLK frequency:
CMQ_XCLK_2048_TXCLK_2048,
CMQ_XCLK_1544_TXCLK_1544,
CMQ_XCLK_2048_TXCLK_1544

Table 4: COMET-QUAD Transmit and Receive Framer Initialization: sCMQ_FRAMER_INIT

Field Name Field Type Field Description

txFramerMode eCMQ_FRAME_MODE Selects a T1 or E1 framing format for the
transmit framer:

CMQ_FRM_MODE_E1,
CMQ_FRM_MODE_E1_CRC_MFRM,
CMQ_FRM_MODE_E1_UNFRAMED,
CMQ_FRM_MODE_T1_SF,
CMQ_FRM_MODE_T1_DM,
CMQ_FRM_MODE_T1_SLC96,
CMQ_FRM_MODE_T1_DM_FDL,
CMQ_FRM_MODE_T1_ESF,
CMQ_FRM_MODE_T1_SF_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_JPN_ALARM,
CMQ_FRM_MODE_T1_SLC96_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_FDL_JPN_ALARM,
CMQ_FRM_MODE_T1_JT_G704,
CMQ_FRM_MODE_T1_UNFRAMED

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

rxFramerMode eCMQ_FRAME_MODE Selects a T1 or E1 framing format for the
receive framer:

CMQ_FRM_MODE_E1,
CMQ_FRM_MODE_E1_CRC_MFRM,
CMQ_FRM_MODE_E1_UNFRAMED,
CMQ_FRM_MODE_T1_SF,
CMQ_FRM_MODE_T1_DM,
CMQ_FRM_MODE_T1_SLC96,
CMQ_FRM_MODE_T1_DM_FDL,
CMQ_FRM_MODE_T1_ESF,
CMQ_FRM_MODE_T1_SF_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_JPN_ALARM,
CMQ_FRM_MODE_T1_SLC96_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_FDL_JPN_ALARM,
CMQ_FRM_MODE_T1_JT_G704,
CMQ_FRM_MODE_T1_UNFRAMED

Note that both the transmit and receive
framers must be operating in either T1 or E1.

Table 5: COMET-QUAD Transmit and Receive Backplane Interface Initialization:
sCMQ_BACKPLANE_INIT

Field Name Field
Type

Field Description

backplaneTxMode eCMQ_BACK
PLANE_TX_
MODE

Selects the configuration of the transmit backplane
interface:

CMQ_BACKPLANE_TX_CLOCK_MASTER_FULL_T1E1,
CMQ_BACKPLANE_TX_CLOCK_MASTER_Nx64,
CMQ_BACKPLANE_TX_CLOCK_MASTER_CLEAR_CHAN
CMQ_BACKPLANE_TX_CLOCK_SLAVE_FULL_T1E1,
CMQ_BACKPLANE_TX_CLOCK_SLAVE_CLEAR_CHAN,
CMQ_BACKPLANE_TX_CLOCK_SLAVE_HMVIP
(COMET-QUAD only),
CMQ_BACKPLANE_TX_CLOCK_SLAVE_FULL_T1E1_H

MVIP_CCS (COMET-QUAD only)

For a detailed description of each of these
configurations, consult the device data sheet.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-2001401, Issue 2

Field Name Field
Type

Field Description

backplaneRxMode eCMQ_BACK
PLANE_RX_
MODE

Selects the configuration of the receive backplane
interface:

CMQ_BACKPLANE_RX_CLOCK_MASTER_FULL_T1E1,
CMQ_BACKPLANE_RX_CLOCK_MASTER_Nx64,
CMQ_BACKPLANE_RX_CLOCK_MASTER_CLEAR_CHAN
CMQ_BACKPLANE_RX_CLOCK_SLAVE_FULL_T1E1,
CMQ_BACKPLANE_RX_CLOCK_SLAVE_HMVIP
(COMET-QUAD Only)
CMQ_BACKPLANE_RX_CLOCK_SLAVE_FULL_T1E1_H

MVIP_CCS (COMET-QUAD only)

For a detailed description of each of these
configurations, please consult the device data sheet.

CCSTimeslot15 UINT1 If backplaneTxMode is
CMQ_BACKPLANE_TX_CLOCK_SLAVE_FULL_T1E1_H

MVIP_CCS, this member enables CCS insertion into
timeslot 15

CCSTimeslot16 UINT1 If backplaneTxMode is
CMQ_BACKPLANE_TX_CLOCK_SLAVE_FULL_T1E1_H

MVIP_CCS, this member enables CCS insertion into
timeslot 16

CCSTimeslot31 UINT1 If backplaneTxMode is
CMQ_BACKPLANE_TX_CLOCK_SLAVE_FULL_T1E1_H

MVIP_CCS, this member enables CCS insertion into
timeslot 31

 ISR Enable/Disable Mask

Passed via the cometqSetMask, cometqGetMask and cometqClrMask calls, this structure
contains all the information needed by the driver to enable and disable any of the interrupts on the
COMET or COMET-QUAD.

ISR Mask Top-Level Structure

Table 6: COMET-QUAD ISR Mask: sCMQ_ISR_MASK

Field Name Field Type Field Description

cdrc sCMQ_ISR_MASK_CDRC[4] Clock & data recovery mask

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

rjat sCMQ_ISR_MASK_JAT[4] Receive jitter attenuation mask

tjat sCMQ_ISR_MASK_JAT[4] Transmit jitter attenuation mask

rxSlip sCMQ_ISR_MASK_SLIP[4] Receive elastic store slip mask

txSlip sCMQ_ISR_MASK_SLIP[4] Transmit elastic store slip mask

btif sCMQ_ISR_MASK_BTIF[4] Transmit backplane interface signal
and data parity detection mask

t1Frmr sCMQ_ISR_MASK_T1FRMR[4] T1 receive framer mask

ibcd sCMQ_ISR_MASK_IBCD[4] Inband communications loopback
mask

pmon sCMQ_ISR_MASK_PMON[4] Performance monitoring mask

almi sCMQ_ISR_MASK_ALMI[4] Alarm integrator mask

pdvd sCMQ_ISR_MASK_PDVD[4] Receive pulse density violation mask

xpde sCMQ_ISR_MASK_XPDE[4] Transmit pulse density enforcer mask

rboc sCMQ_ISR_MASK_RBOC[4] Receive BOC mask

tboc UINT1[4] Transmit BOC interrupt enable
(COMET-QUAD Only)

e1Tran sCMQ_ISR_MASK_E1TRAN[4] E1 transmit section mask

e1Frmr sCMQ_ISR_MASK_E1FRMR[4] E1 receive framer mask

rxCCSSlip sCMQ_ISR_MASK_SLIP[4] Receive signal elastic store slip mask
(COMET-QUAD Only)

txCCSSlip sCMQ_ISR_MASK_SLIP[4] Transmit signal elastic store slip mask
(COMET-QUAD Only)

tdpr sCMQ_ISR_MASK_TDPR[4] HDLC transmitter mask

rdlc sCMQ_ISR_MASK_RDLC[4] HDLC receiver mask

prbs sCMQ_ISR_MASK_PRBS[4] Pseudo random binary sequence mask

rlps sCMQ_ISR_MASK_RLPS[4] RLPS analog loss of signal mask

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

aprmEn UINT1[4] Auto performance report mask

sigx sCMQ_ISR_MASK_SIGX[4] Signaling extractor mask

ISR Mask Sub-structures

Table 7: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_CDRC

Field Name Field Type Field Description

lcvEn UINT1 CDRC line code violation detection enable

losEn UINT1 CDRC loss of signal detection enable

lcsdEn UINT1 CDRC line code signature detection enable

zndEn UINT1 CDRC excess zero detection enable

altLosEn UINT1 CDRC alternate loss of signal detection enable

atlLosInd UINT1 CDRC alternate loss of signal status indicator

losInd UINT1 CDRC loss of signal status indicator

Table 8: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_RLPS

Field Name Field Type Field Description

losEn UINT1 RLPS loss of signal detection enable

losInd UINT1 RLPS loss of signal status indicator

Table 9: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_JAT

Field Name Field Type Field Description

undEn UINT1 Jitter attenuator FIFO underrun detection enable

ovrEn UINT1 Jitter attenuator FIFO overrun detection enable

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-2001401, Issue 2

Table 10: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_SLIP

Field Name Field Type Field Description

slipEn UINT1 Elastic store FIFO underrun/overrun detection
enable

slipInd UINT1 Elastic store FIFO underrun/overrun indicator (1
= overrun, 0 = underrun)

Table 11: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_T1FRMR

Field Name Field Type Field Description

COFAEn UINT1 Change of frame alignment detection enable

ferEn UINT1 Framing bit error detection enable

beeEn UINT1 Bit error event detection enable

sefEn UINT1 Severely errored frame detection enable

mfpEn UINT1 Mimic frame pattern detection enable

mfpInd UINT1 Mimic frame pattern status indicator

infrEn UINT1 In frame detection enable

infrInd UINT1 In frame status indicator

Table 12: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_IBCD

Field Name Field Type Field Description

lbaEn UINT1 Activate loopback code detection enable

lbaInd UINT1 Activate loopback code status indicator

lbdEn UINT1 Deactivate loopback code detection enable

lbdInd UINT1 Deactivate loopback code status indicator

Table 13: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_ALMI

Field Name Field Type Field Description

yelEn UINT1 Yellow alarm detection enable

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

yelInd UINT1 Yellow alarm status indicator

redEn UINT1 Red alarm detection enable

redInd UINT1 Red alarm status indicator

AISEn UINT1 AIS detection enable

AISInd UINT1 AIS status indicator

Table 14: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_PDVD

Field Name Field Type Field Description

z16dEn UINT1 16 consecutive zero detection enable

pdvdEn UINT1 Pulse density violation detection enable

pdvdInd UINT1 Pulse density violation status indicator

Table 15: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_XPDE

Field Name Field Type Field Description

stufEn UINT1 Bit stuff detection enable

z16dEn UINT1 16 consecutive zero detection enable

pdvEn UINT1 Pulse density enforcer violation detection enable

pdvInd UINT1 Pulse density enforcer violation status indicator

Table 16: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_RBOC

Field Name Field Type Field Description

idleEn UINT1 Idle code detection enable

BOCEn UINT1 BOC code detection enable

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID: PMC-2001401, Issue 2

Table 17: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_E1TRAN

Field Name Field Type Field Description

sigmfEn UINT1 Signaling multiframe boundary detection enable

nfasEn UINT1 NFAS frame boundary detection enable

mfEn UINT1 CRC-4 multiframe boundary detection enable

smfEn UINT1 Signaling multiframe boundary detection enable

frmEn UINT1 Frame boundary detection enable

Table 18: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_E1FRMR

Field Name Field Type Field Description

c2nciwEn UINT1 CRC to non-CRC internetworking detection
enable

c2nciwInd UINT1 CRC to non-CRC internetworking status
indicator

OOFEn UINT1 Out of frame detection enable

OOFInd UINT1 Out of frame status indicator

oosmfEn UINT1 Out of signaling multiframe detection enable

oosmfInd UINT1 Out of signaling multiframe status indicator

oocmfEn UINT1 Out of CRC-4 multiframe detection enable

oocmfInd UINT1 Out of CRC-4 multiframe status indicator

COFAEn UINT1 Change of frame alignment detection enable

ferEn UINT1 Frame error detection enable

smferEn UINT1 Signaling multiframe error detection enable

cmferEn UINT1 CRC-4 multiframe error detection enable

RAIEn UINT1 Remote alarm indication detection enable

RAIInd UINT1 Remote alarm indication status indicator

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

RMAIEn UINT1 Remote muliframe alarm indication detect
enable

RMAIInd UINT1 Remote multiframe alarm indication status
indicator

AISdEn UINT1 AIS (low zero bit density) detection enable

AISdInd UINT1 AIS (low zero bit density) status indicator

redEn UINT1 Red alarm detection enable

redInd UINT1 Red alarm status indicator

AISEn UINT1 AIS (unframed all ones) detect enable

AISInd UINT1 AIS (unframed all ones) status indicator

FEBEEn UINT1 far end block error detection enable

CRCEn UINT1 CRC error detection enable

sa4En UINT1 National bit codeword 4 change detection
enable

sa5En UINT1 National bit codeword 5 change detection
enable

sa6En UINT1 National bit codeword 6 change detection
enable

sa7En UINT1 National bit codeword 7 change detection
enable

sa8En UINT1 National bit codeword 8 change detection
enable

oOOfEn UINT1 Out of offline frame detection enable

oOOFInd UINT1 Out of offline frame status indicator

RAIcCRCEn UINT1 Remote alarm indication and continuous CRC
detection enable

RAIcCRCInd UINT1 Remote alarm indication and continuous CRC
status indicator

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

cFEBEEn UINT1 Continuous far end block error detection enable

cFEBEInd UINT1 Continuous far end block error status indicator

v52linkEn UINT1 V5.2 link identification detection enable

v52linkInd UINT1 V5.2 link identification status indicator

brfpEn UINT1 Basic frame boundary interrupt enable

icsmfpEn UINT1 CRC-4 sub-multiframe boundary interrupt
enable

icmfpEn UINT1 CRC-4 multiframe boundary interrupt enable

ismfpEn UINT1 Signaling multiframe boundary enable

Table 19: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_TDPR

Field Name Field Type Field Description

printEn UINT1 Performance report ready detection enable

fullEn UINT1 TDPR FIFO full detection enable

ovrEn UINT1 TDPR FIFO overrun detection enable

udrEn UINT1 TDPR FIFO underrun detection enable

lfillEn UINT1 TDPR FIFO low level fill threshold detection
enable

fullInd UINT1 TDPR FIFO full indicator

blFillInd UINT1 TDPR FIFO below lower threshold indicator

Table 20: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_RDLC

Field Name Field Type Field Description

rdlcEn UINT1 Receive data link control interrupt enable

pcktInLastBI
nd

UINT1 Last byte of non-aborted packet in FIFO
indicator

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

colsInd UINT1 Change of Link Status indicator

fifoOvrInd UINT1 RDLC FIFO overrun indicator

fifoEmptyInd UINT1 RDLC FIFO empty indicator

Table 21: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_PRBS

Field Name Field Type Field Description

syncEn UINT1 Change in PRBS/PRGD checker state detection
enable

syncInd UINT1 PRBS/PRGD synchronization state indicator

beEn UINT1 PRBS/PRGD receive bit error detection enable

xferEn UINT1 PRBS/PRGD metrics updated detection enable

ovrnInd UINT1 PRBS/PRGD transfer overwrite indicator

Table 22: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_SIGX

Field Name Field Type Field Description

COSSEn UINT1 Change of signaling state detection enable

COSSInd UINT1[32] Change of signaling state per time slot
indication

Table 23: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_PMON

Field Name Field Type Field Description

pmonEn UINT1 Performance monitoring transfer interrupt
enable

ovrnInd UINT1 Performance monitoring count overrun
indication

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-2001401, Issue 2

Table 24: COMET-QUAD ISR SubMask: sCMQ_ISR_MASK_BTIF

Field Name Field Type Field Description

parEn UINT1 Parity error detection enable

speInd UINT1 Signal parity error indicator

dpeInd UINT1 Data parity error indicator

Other API Structures

The following structures are used by the application when executing API functions. The user is
encouraged to refer to this section for detailed explanations of the configuration options available
in the functions defined in section 4, Application Programming Interface.

Interface Configuration API Structures

Table 25: COMET-QUAD Transmit Jitter Attenuator Configuration: sCMQ_CFG_TX_JAT

Field Name Field Type Field Description

enable UINT2 Enables the TJAT or selects TJAT bypass.

refDiv UINT1 One less than the ratio between the frequency of the
recovered clock and the frequency of the phase
discriminator input

outputDiv UINT1 One less than the ratio between the frequency of the
output clock and the frequency of the phase
discriminator input

FIFOselfCenter UINT1 Enables the FIFO to self-center the read pointer
upon FIFO overrun or underrun

preventOvfUndf UINT1 Set to prevent FIFO underflows/overflows at the
expense of limited jitter attenuation.

outputClock eCMQ_TJAT_OUT
PUT_CLK_SRC

Selects output clock source:

CMQ_TJAT_OUTPUT_CLK_INTERN_JAT,
CMQ_TJAT_OUTPUT_CLK_CTCLK,
CMQ_TJAT_OUTPUT_CLK_FIFO_INPUT

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

pllRefClock eCMQ_TJAT_PLL
_REF_CLK_SRC

Selects phase lock loop reference clock source:

CMQ_TJAT_PLL_REF_CLK_FIFO_INPUT,
CMQ_TJAT_PLL_REF_CLK_BACKPLANE,
CMQ_TJAT_PLL_REF_CLK_RECOVERED,
CMQ_TJAT_PLL_REF_CLK_CTCLK

Table 26: COMET-QUAD Receive Jitter Attenuator Configuration: sCMQ_CFG_RX_JAT

Field Name Field Type Field Description

enable UINT2 Enables the RJAT or selects RJAT bypass

refDiv UINT1 One less than the ratio between the frequency of the
recovered clock and the frequency of the phase
discriminator input

outputDiv UINT1 One less than the ratio between the frequency of the
output clock and the frequency of the phase
discriminator input

FIFOselfCenter UINT1 Enables the FIFO to self-center the read pointer
upon FIFO overrun or underrun

preventOvfUndf UINT1 Set to prevent FIFO underflows/overflows at the
expense of limited jitter attenuation

Table 27: COMET-QUAD Receive Clock Configuration: sCMQ_CFG_RX_CLK

Field Name Field Type Field Description

recoverClkSel eCMQ_RX_RECOVER_CLK Clock recovery algorithm; select between
high or low frequency jitter tolerance
algorithms:

CMQ_RECOVER_CLK_LOW_FREQ_JAT,
CMQ_RECOVER_CLK_HIGH_FREQ_JAT

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

LOSThresh eCMQ_CDRC_LOS_THRES
H

Digital loss of signal threshold in PCM
samples:

CMQ_LOS_THRESH_PCM_10_HDB3 (E1),
CMQ_LOS_THRESH_PCM_15_B8ZS (T1),
CMQ_LOS_THRESH_PCM_15_AMI,
CMQ_LOS_THRESH_PCM_31,
CMQ_LOS_THRESH_PCM_63,
CMQ_LOS_THRESH_PCM_175

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID: PMC-2001401, Issue 2

Table 28: COMET-QUAD Line Side Interface Analog Transmitter Configuration:
sCMQ_CFG_TX_ANALOG

Field Name Field Type Field Description

txEn UINT2 If zero, transmit lines TXTIP and TXRING
are held in high impedance state

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

wvFormType eCMQ_TX_LBO Selection of the transmit pulse waveform type
and waveform scale factor. Predefined tables
are from the COMET and COMET-QUAD
data sheet. To specify a user-defined
waveform definition and scale factor, this
should be set to
CMQ_TX_LBO_USER_DEFINED. The user
must then specify their own waveform data in
wvFormData and their own waveform
amplitude scaling factor in wvFormScFac. If
this value is
CMQ_TX_LBO_RETAIN_CURRENT, no changes
are made.

Select one of:

CMQ_TX_LBO_T1_LONG_HAUL_0DB,
CMQ_TX_LBO_T1_LONG_HAUL_7_5DB,
CMQ_TX_LBO_T1_LONG_HAUL_15DB,
CMQ_TX_LBO_T1_LONG_HAUL_22_5DB,
CMQ_TX_LBO_T1_LONG_HAUL_TR62411_0D
B
CMQ_TX_LBO_T1_SHORT_HAUL_110FT,
CMQ_TX_LBO_T1_SHORT_HAUL_220FT,
CMQ_TX_LBO_T1_SHORT_HAUL_330FT,
CMQ_TX_LBO_T1_SHORT_HAUL_440FT,
CMQ_TX_LBO_T1_SHORT_HAUL_550FT,
CMQ_TX_LBO_T1_SHORT_HAUL_660FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_1
10FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_2
20FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_3
30FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_4
40FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_5
50FT,
CMQ_TX_LBO_T1_SHORT_HAUL_TR62411_6
60FT, CMQ_TX_LBO_E1_75OHM,
CMQ_TX_LBO_E1_120OHM,
CMQ_TX_LBO_USER_DEFINED,
CMQ_TX_LBO_RETAIN_CURRENT

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

wvFormScFac UINT1 Amplitude control of DAC output. Increments
are in 11.14 mA. This parameter is only used
if wvFormType =
CMQ_TX_LBO_USER_DEFINED.

A value of 0 tri-states the output line and the
max value is 21 (234mA).

If the transmit waveform type is not
CMQ_TX_LBO_USER_DEFINED, the value
corresponding to the specified line build out
configuration is applied.

wvFormData UINT1[24][5] User defined waveform. 24 7-bit samples of
five unit intervals.

fuseDataSel eCMQ_TX_FUSE_DATA Select either fuse programming burned into
the transmit LIU with
CMQ_TX_FUSE_DATA_LIU_FUSE or user
defined with
CMQ_TX_FUSE_DATA_USER_DEFINED

alogTstPosCtrl INT1 Used when fuseDataSel is
CMQ_TX_FUSE_DATA_USER_DEFINED.
Controls the digital to analog converted
positive current control in steps of 0.78125%
in either the negative or positive direction.
Valid range is -63 to +63.

alogTstNegCtrl INT1 Used when fuseDataSel is
CMQ_TX_FUSE_DATA_USER_DEFINED.
Controls the digital to analog converted
negative current control in steps of 0.78125%
in either the negative or positive direction.
Valid range is -63 to +63.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-2001401, Issue 2

Table 29: COMET-QUAD Analog Receiver Configuration: sCMQ_CFG_RX_ANALOG

Field Name Field Type Field Description

aLosThreshold eCMQ_RX_ALOS_THRESH Analog loss of signal threshold. Note
that the device requires that both the
detection and clearance thresholds be
the same so this value is applied to both
the clearance and detection thresholds.

One of:

CMQ_RX_ALOS_9DB_THRESH,
CMQ_RX_ALOS_14_5DB_THRESH,
CMQ_RX_ALOS_20DB_THRESH,
CMQ_RX_ALOS_22DB_THRESH,
CMQ_RX_ALOS_25DB_THRESH,
CMQ_RX_ALOS_30DB_THRESH,
CMQ_RX_ALOS_31DB_THRESH,
CMQ_RX_ALOS_35DB_THRESH

aLosDetectPeriod UINT1 Duration for declaring analog loss of
signal. The actual duration used is 16 x
aLosDetectPeriod pulse intervals

aLosClearPeriod UINT1 Duration for clearing analog loss of
signal. The actual duration used is 16 x
aLosClearPeriod pulse intervals

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

eqFreq eCMQ_RX_ALOG_EQ_FREQ Equalizer feedback loop frequency. One
of:

CMQ_RX_EQ_FREQ_T1_24_125KHZ

(24.125 kHz),
CMQ_RX_EQ_FREQ_T1_12_063KHZ

(12.063 kHz),
CMQ_RX_EQ_FREQ_T1_8_0417KHZ

(8.0417 kHz),
CMQ_RX_EQ_FREQ_T1_6_0313KHZ

(6.0313 kHz),
CMQ_RX_EQ_FREQ_T1_4_8250KHZ

(4.8250 kHz),
CMQ_RX_EQ_FREQ_T1_4_0208KHZ

(4.0208 kHz),
CMQ_RX_EQ_FREQ_T1_3_4464KHZ

(3.4464 kHz),
CMQ_RX_EQ_FREQ_T1_3_0156KHZ

(3.0156 kHz),
CMQ_RX_EQ_FREQ_E1_32_000KHZ

(32.000 kHz),
CMQ_RX_EQ_FREQ_E1_16_000KHZ

(16.000 kHz),
CMQ_RX_EQ_FREQ_E1_10_667KHZ

(10.667 kHz),
CMQ_RX_EQ_FREQ_E1_8_000KHZ

(8.000 kHz),
CMQ_RX_EQ_FREQ_E1_6_40KHZ

(6.40 kHz),
CMQ_RX_EQ_FREQ_E1_5_333KHZ

(5.333 kHz),
CMQ_RX_EQ_FREQ_E1_4_5714KHZ

(4.5714 kHz),
CMQ_RX_EQ_FREQ_E1_4_0KHZ (4.0
kHz)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

eqFdBckPer eCMQ_RX_ALOG_EQ_PER Specifies the time interval that the
equalizer dB counter must be stable
before declaring stable equalization
state. The period is based on equalizer
feedback loop frequency.

One of:

CMQ_RX_EQ_VALID_PERIOD_32,
CMQ_RX_EQ_VALID_PERIOD_64,
CMQ_RX_EQ_VALID_PERIOD_128
CMQ_RX_EQ_VALID_PERIOD_256

ramType eCMQ_RX_LINE_EQ Selects either user defined receiver
equalizer RAM in eqCoef, a pre-
defined equalizer RAM from the
COMET and COMET-QUAD data
sheet, or no change to the equalizer
settings:

CMQ_RX_LINE_EQ_RAM_T1,
CMQ_RX_LINE_EQ_RAM_E1,
CMQ_RX_LINE_EQ_USER_DEFINED,
CMQ_RX_LINE_EQ_RETAIN_CURRENT

eqCoef UINT4[256] Programmable equalizer coefficients. If
ramType is
CMQ_RX_LINE_EQ_USER_DEFINED,
this array should contain the new
coefficients.

squelchEn UINT1 Enable/disable data squelching (force
data to all 0's) upon analog loss of
signal detection

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-2001401, Issue 2

Table 30: COMET-QUAD Backplane Access Configuration: sCMQ_BACKPLANE_ACCESS_CFG

Field Name Field Type Field Description

masterMode UINT1 Selects slave or master backplane mode

dataMode eCMQ_BACKPLAN
E_DATA_MODE

Data format mode. Only used if masterMode
is set (clock master), otherwise ignored. Select
one of:

CMQ_BACKPLANE_FULL_FRAME_MODE,
CMQ_BACKPLANE_NX56K_MODE,
CMQ_BACKPLANE_NX64K_MODE,
CMQ_BACKPLANE_NX64K_E1_MODE,

clkTimes2 UINT1 Select clock mode multiplication by two. If set,
clock operates at twice the backplane rate.

dataRate eCMQ_BACKPLAN
E_DATA_RATE

The backplane data rate. Should be one of:

CMQ_BACKPLANE_CLK_RATE_1544,
CMQ_BACKPLANE_CLK_RATE_2048,
CMQ_BACKPLANE_CLK_RATE_8192,

Table 31: COMET-QUAD Backplane Receive Frame Configuration: sCMQ_CFG_BRIF_FRM

Field
Name

Field Type Field Description

fpMaster UINT1 Selects frame pulse signal master/slave

fpmMode eCMQ_BACKPLANE_
RX_FRAMEPULSE_M
ODE

Configure the type of frame pulse transmitted on the
backplane. Only used if frame pulse is master. Should be
one of:

CMQ_BACKPLANE_RX_FP_T1_HIGH_ON_SF_ESF,
CMQ_BACKPLANE_RX_FP_T1E1_HIGH_EVERY_FRAME,
CMQ_BACKPLANE_RX_FP_E1_HIGH_ON_CRC_MFRM,
CMQ_BACKPLANE_RX_FP_E1_HIGH_ON_SIG_MFRM,
CMQ_BACKPLANE_RX_FP_E1_COMP_MFRM ,
CMQ_BACKPLANE_RX_FP_E1_HIGH_ON_OVERHEAD

fpInvEn UINT1 Enable inversion of the frame pulse signal

parInsEn UINT1 Enable parity insertion

oddPar UINT1 Odd/even parity selection. Only used if parity insertion
enabled

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-2001401, Issue 2

Field
Name

Field Type Field Description

extParEn UINT1 Enable extension of parity over current and previous
frame

fBitFix UINT1 Enable fixing of F bit, only valid when not in parity
insertion mode

fBitPol UINT1 Polarity of the F bit, valid only when fBitFix is 1 and
not in parity mode

fpFrmOff
set

UINT1 Offset in bytes between the framing pulse and start of
next frame: valid range: 0 - 127 bytes

fpBitOff
setEn

UINT1 Enables offset between frame pulse and first timeslot in
bits

fpBitOff
set

UINT1 If bit offset is enabled, this value will be applied as the
bit offset between the frame pulse and the first timeslot.
This field should be a 3 bit value.

altFDLEn UINT1 Enabling this option causes the framing bit to contain
FDL data. Only supported for T1 ESF frame formats

tslotMap
Format

eCMQ_BACKPLANE_
TIMESLOT_MAP

Selects timeslot mapping format when mapping a 1.544
MHz line onto a 2.048 MHz backplane. If this timeslot
translation is not required (i.e. when the line rate matches
the backplane rate) this value is ignored

Should be one of:

CMQ_BACKPLANE_TIMESLOT_MAP_3_OF_4,
CMQ_BACKPLANE_TIMESLOT_MAP_24_OF_32

Table 32: COMET-QUAD Backplane Transmit Frame Configuration: sCMQ_CFG_BTIF_FRM

Field Name Field Type Field Description

fpMaster UINT1 Selects frame pulse signal master/slave

fpInvEn UINT1 Enable inversion of the frame pulse signal

oddPar UINT1 Odd/even parity selection

extParEn UINT1 Enable extension of parity over current and previous
frame

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

fpFrmOffset UINT1 Offset in bytes between the framing pulse and start of
next frame: valid range: 0 - 127 bytes

T1ESFAlign UINT1 For T1 mode, enables ESF alignment as opposed to SF
alignment. This option is not supported for E1 mode

fpBitOffsetEn UINT1 Enables offset between frame pulse and first timeslot in
bits

fpBitOffset UINT1 If bit offset is enabled, this value will be applied as the
bit offset between the frame pulse and the first timeslot
(3 bit value)

tslotMapFormat eCMQ_BACKP
LANE_TIMES
LOT_MAP

Selects timeslot mapping format when mapping 2.048
MHz backplane onto 1.544 MHz line. If this timeslot
translation is not required (i.e., when the line rate
matches the backplane rate), this value is ignored.

Should be one of:

CMQ_BACKPLANE_TIMESLOT_MAP_3_OF_4
CMQ_BACKPLANE_TIMESLOT_MAP_24_OF_32

Table 33: COMET-QUAD H-MVIP Configuration: sCMQ_CFG_HMVIP

Field Name Field Type Field Description

rxHMVIPMode eCMQ_BACKPLANE_
HMVIP_MODE

Enable HMVIP, enable CCS, or disable both on the
receive backplane interface.

Should be one of:

CMQ_BACKPLANE_HMVIP_MODE,
CMQ_BACKPLANE_HMVIP_CCS,
CMQ_BACKPLANE_HMVIP_DISABLE

txHMVIPMode eCMQ_BACKPLANE_
HMVIP_MODE

Enable HMVIP, enable CCS, or disable both on the
transmit backplane interface.

Should be one of:

CMQ_BACKPLANE_HMVIP_MODE,
CMQ_BACKPLANE_HMVIP_CCS,
CMQ_BACKPLANE_HMVIP_DISABLE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

txEnableCCS
InTs15

UINT1[4] Selects whether or not common channel signaling
from the transmit backplane interface is inserted into
timeslot 15. Only used when E1 mode and
txHMVIPMode is set for CCS

txEnableCCS
InTs16

UINT1[4] Selects whether or not common channel signaling
from the transmit backplane interface is inserted into
timeslot 16. Only used when E1 mode and
txHMVIPMode is set for CCS

txEnableCCS
InTs31

UINT1[4] Selects whether or not common channel signaling
from the transmit backplane interface is inserted into
timeslot 31. Only used when E1 mode and
txHMVIPMode is set for CCS

Table 34: COMET-QUAD Receive Elastic Store Configuration: sCMQ_CFG_RX_ELST

Field Name Field Type Field Description

elstEnable UINT1 Enable/disable the elastic store

idleCode UINT1 Elastic store idle code

CCSidleCode UINT1 Elastic store CCS idle code (Comet-Quad only)

T1/E1 Framers API Structures

Table 35: COMET-QUAD T1 Transmit Framer Configuration: sCMQ_CFG_T1TX_FRM

Field Name Field Type Field Description

frmMode eCMQ_FRAME_MODE T1 transmit framing format. Should be one of:

CMQ_FRM_MODE_T1_SF,
CMQ_FRM_MODE_T1_DM,
CMQ_FRM_MODE_T1_SLC96,
CMQ_FRM_MODE_T1_DM_FDL,
CMQ_FRM_MODE_T1_ESF,
CMQ_FRM_MODE_T1_SF_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_JPN_ALARM,
CMQ_FRM_MODE_T1_SLC96_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_FDL_JPN_ALARM,
CMQ_FRM_MODE_T1_JT_G704,
CMQ_FRM_MODE_T1_UNFRAMED

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

zSupFormat eCMQ_T1_ZSUP_FOR
MAT

Zero code suppression format to be used.
Should be one of:

CMQ_T1_ZSUP_NONE, CMQ_T1_ZSUP_GTE,
CMQ_T1_ZSUP_DDS, CMQ_T1_ZSUP_BELL

SFSigAlignerEn UINT1 Enables the signaling aligner to ensure that
signaling alignment between superframes on the
backplane and the transmit framer is
maintained. Note that when using this option,
the ESF alignment option in the transmit
backplane frame pulse configuration must be
off.

Table 36: COMET-QUAD T1 Receive Framer Configuration: sCMQ_CFG_T1RX_FRM

Field Name Field Type Field Description

frmMode eCMQ_FRAME_MO
DE

T1 receive framing format. Should be one of:

CMQ_FRM_MODE_T1_SF,
CMQ_FRM_MODE_T1_DM,
CMQ_FRM_MODE_T1_SLC96,
CMQ_FRM_MODE_T1_DM_FDL,
CMQ_FRM_MODE_T1_ESF,
CMQ_FRM_MODE_T1_SF_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_JPN_ALARM,
CMQ_FRM_MODE_T1_SLC96_JPN_ALARM,
CMQ_FRM_MODE_T1_DM_FDL_JPN_ALARM,
CMQ_FRM_MODE_T1_JT_G704,
CMQ_FRM_MODE_T1_UNFRAMED

outOfFrameCriteria eCMQ_T1_FRAME
_LOSS_THRESH

Selects criteria for declaring out of frame. Note
that if frmMode is T1DM, this parameter has
no effect as the criteria is fixed at 4 out of 12.

Select one of:

CMQ_T1_OOF_2OF4,
CMQ_T1_OOF_2OF5, CMQ_T1_OOF_2OF6

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

frmESFAlgo eCMQ_T1_ESF_F
RAME_ALGO

For ESF framing formats, this parameter
selects whether to use the ESF frame alignment
algorithm based on a continuous CRC-6
calculation or the ESF frame alignment
algorithm where frame alignment is not
declared while there are two framing
candidates. Select one of
CMQ_T1_ESF_FRAME_ALGO_ONE_CANDIDAT
E or CMQ_T1_ESF_FRAME_ALGO_CRC_6

COFACntEn UINT1 Enable counting of change of frame alignment
(COFA) events rather than out of frame
alignment (OOF) events in the PMON

Table 37: COMET-QUAD E1 Transmit Framer Configuration: sCMQ_CFG_E1TX_FRM

Field Name Field Type Field Description

frmMode eCMQ_FRAME_MODE E1 transmit framing format. Should be
one of:

CMQ_FRM_MODE_E1,
CMQ_FRM_MODE_E1_CRC_MFRM,
CMQ_FRM_MODE_E1_UNFRAMED

ts16Signaling eCMQ_E1_SIG_INSE
RTION

Type of signaling to insert into timeslot
16. Select from:

CMQ_E1_SIG_INS_NONE,
CMQ_E1_SIG_INS_HDLC_CCS,
CMQ_E1_SIG_INS_CAS

insNatIntBitEn UINT1 Enables insertion of international and
national bits into timeslot 0 of NFAS
frames

insXtraBitsEn UINT1 Enables insertion of extra bits into
timeslot 16 of frame 0 in a signaling
multiframe

insFEBEEn UINT1 If CRC multiframe mode selected, this
value enables insertion of far end block
error (FEBE) bits.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-2001401, Issue 2

Table 38: COMET-QUAD E1 Receive Framer Configuration: sCMQ_CFG_E1RX_FRM

Field Name Field Type Field Description

frmMode eCMQ_FRAME_
MODE

E1 transmit framing format. Should be one of:

CMQ_FRM_MODE_E1,
CMQ_FRM_MODE_E1_CRC_MFRM,
CMQ_FRM_MODE_E1_UNFRAMED

CASAlignmentEn UINT1 Enable alignment to channel associative
signaling multiframes

CRC2NCRCEn UINT1 Enable checking of CRC multiframe in CRC to
non-CRC internetworking mode

noReframeOnErrEn UINT1 Disable reframing upon any error event

reframeOnXSCrcErrEn UINT1 Enable a forced reframe to occur when
excessive CRC errors are reported

lofBit2CritEn UINT1 Enable loss of frame criteria: Bit 2, timeslot 0 of
NFAS frames is 0 in 3 consecutive frames

NFASErrEn UINT1 Enable errors in bit 2 of timeslot 0 of NFAS
frames to contribute towards the framing error
count

multFASEOneFEEn UINT1 Enable multiple FAS errors to generate a single
framing error. If NFAS errors are counted
towards framing errors, enabling this option
includes Bit 2 of timeslot 0 in NFAS frames as
part of the FAS word

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

mfrmLossAlignCrit eCMQ_E1_LOS
S_MFRM_ALIG
N_TS16_CRIT

Select additional timeslot 16 criteria for
declaring loss of signaling mutliframe
alignment of either all 0’s in timeslot 16 for 1 or
2 multiframes. Note that the selection made here
is in addition to the criteria of 2 consecutive
mutliframe alignment pattern errors which
always generates a loss of signaling multiframe
alignment declaration

Select from:

CMQ_E1_LOSS_MFRM_ALIGN_TS16_CRIT_NO
NE,
CMQ_E1_LOSS_MFRM_ALIGN_TS16_CRIT_ZE
RO_1_MFRM,
CMQ_E1_LOSS_MFRM_ALIGN_TS16_CRIT_ZE
RO_2_MFRM

AISCriteria eCMQ_E1_AIS
_CRIT

Criteria for declaring AIS. Select between less
than 3 zeroes in 512 consecutive bits or 2
consecutive periods of less than 3 zeroes in 512
consecutive bits:

CMQ_E1_AIS_CRIT_3Z_IN_512BITs
CMQ_E1_AIS_CRIT_2_PERIODS_3Z_IN_512
BITS

RAICriteria eCMQ_E1_RAI
_CRIT

Criteria for declaring RAI. Select between
declaration upon receiving any A-bit (bit 3,
timeslot 0) that is 1 or declaration upon four
consecutive A-bits that are one

CMQ_E1_RAI_CRIT_ALL_A_1,
CMQ_E1_RAI_CRIT_4_CONSEC_A_1

Alarm Control and Inband Communications API Structures

Table 39: COMET-QUAD HDLC Link Extraction/Insertion Location Configuration:
sCMQ_CFG_HDLC_LINK

Field Name Field Type Field Description

useT1DataLink UINT1 Specifies the use of the T1 FDL (ESF or T1DM with
FDL modes). For COMET, only valid for first HDLC
controller. In E1 mode, this value should be 0

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

evenFrames UINT1 Enable link extraction/insertion from even frames.
Ignored when using T1 data link

oddFrames UINT1 Enable link extraction/insertion from odd frames.
Ignored when using T1 data link

timeslot UINT1 Timeslot to extract data link from (0 based). Ignored if
both oddFrames and evenFrames are 0 or if using T1
data link

dataLinkBitMask UINT1 Bit mask selecting which of the bits in a
timeslot/channel are to be used. Ignored if both
oddFrames and evenFrames are 0 or if using T1
Data Link

Table 40: COMET-QUAD HDLC Receiver Configuration: sCMQ_CFG_HDLC_RX

Field Name Field Type Field Description

linkLocation sCMQ_CFG_HDLC
_LINK

Specifies where to extract the HDLC link from

addrMatchEn UINT1 Forces detection of packets with either an address
of all 1's or an address matching either the
primary or secondary addresses

addrMaskEn UINT1 Specifies the receive HDLC controller to ignore
the two least significant bits of the primary and
secondary addresses when looking for matches

Table 41: COMET-QUAD HDLC Receiver Configuration: sCMQ_CFG_HDLC_TX

Field Name Field Type Field Description

linkLocation sCMQ_CFG_H
DLC_LINK

Specifies where to insert the HDLC link

flagShareEn UINT1 Enables sharing of start/end flags between packets

crcFCSEn UINT1 Enables CRC frame check sequence generation

pmRepEn UINT1 Enables performance report transmission. For COMET
devices, this option is valid only for the first HDLC
controller.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID: PMC-2001401, Issue 2

Status and Statistics API Structures

Table 42: COMET-QUAD Clock Status Structure: sCMQ_CLK_STATUS

Field Name Field Type Field Description

XCLCKactive UINT1 Indicates XCLK is alive. Note that this value
on COMET-QUAD devices is not quadrant
based.

BTCLKactive UINT1 Indicates BTCLK is alive

CTCLKactive UINT1 Indicates CTCLK is alive

BRCLKactive UINT1 Indicates BRCLK is alive

RCLKIactive UINT1 Indicates RCLKI is alive

CSULock UINT1 Indicates CSU has locked onto XCLK. Note
that this value on COMET-QUAD devices is
not quadrant based.

Table 43: COMET-QUAD Framer Statistics: sCMQ_FRM_CNTS

Field Name Field Type Field Description

frmErrCnt UINT1[4] Framing error count (T1 and E1)

T1_OOF_COFA_Cnt UINT4[4] Out of frame count or change of frame
alignment count depending on option selected
for T1 receive framer

E1_FEBECnt UINT2[4] E1 Far end block error count

T1_BitErrCnt UINT4[4] T1 bit error event count

E1_CRCErrCnt UINT2[4] E1 CRC error count

lcvCnt UINT4[4] Line code violation count (T1 and E1)

Table 44: COMET-QUAD Framer Status: sCMQ_FRM_STATUS

Field Name Field Type Field Description

lossOfSignal UINT1[4] Loss of signal indicator

lossOfFrame UINT1[4] Loss of frame alignment indicator

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

AIS UINT1[4] AIS alarm indicator

yelAlm UINT1[4] Yellow alarm (E1 RAI) indicator

E1_lossOfSMF UINT1[4] E1 loss of signaling multiframe alignment
indicator (unused for T1)

E1_lossOfCMF UINT1[4] E1 loss of CRC-4 multiframe alignment
indicator (unused for T1)

E1_ts16RAI UINT1[4] E1 timeslot 16 RAI alarm indicator (unused
for T1)

Table 45: COMET-QUAD T1 Automatic Performance Monitoring Message:
sCMQ_STAT_APRM

Field Name Field Type Field Description

octet2 UINT1 Service access point identifier, command
response flag, extended address flag

octet3 UINT1 Terminal endpoint identifier, extended address2
flag

octet4 UINT1 Performance report control field

octet5 UINT1 Event threshold flags: see data sheet

octet6 UINT1 Event threshold flags: see data sheet

3.3 Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver and are part of the context memory allocated
when the driver is opened. These structures are the Module Data Block (MDB) and the Device
Data Block (DDB).

Module Data Block: MDB

The MDB is the top-level structure for the module. It contains configuration data about the
module level code and pointers to configuration data about the device level codes.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID: PMC-2001401, Issue 2

• errModule indicates specific error codes returned by API functions that are not passed
directly to the application. Most of the module API functions return a specific error code
directly. When the returned code is not CMQ_SUCCESS, this indicates that the top-level
function was not able to carry the specified error code back to the application. Under those
circumstances, the proper error code is recorded in this element. The element is the first in the
structure so that the USER can cast the MDB pointer into an INT4 pointer and retrieve the
local error. This eliminates the need to include the MDB template into the application code

• valid indicates that this structure has been properly initialized and may be read by the
USER

• stateModule contains the current state of the module and can be any one of:
CMQ_MOD_START, CMQ_MOD_IDLE or CMQ_MOD_READY

Table 46: COMET-QUAD Module Data Block: sCMQ_MDB

Field Name Field Type Field Description

errModule INT4 Global error indicator for module calls

valid UINT2 Indicates that this structure has been
initialized

stateModule eCMQ_MOD_STATE Module state; can be any one of the
following: CMQ_MOD_START,
CMQ_MOD_IDLE or CMQ_MOD_READY

maxDevs UINT2 Maximum number of devices supported

numDevs UINT2 Number of devices currently registered

maxInitProfs UINT2 Maximum number of initialization profiles

pddb sCMQ_DDB * (array of) Device Data Blocks (DDB) in
context memory

pinitProfs sCMQ_DIV * (array of) Initialization profiles in context
memory

Device Data Block: DDB

The DDB is the top-level structure for each device. It contains configuration data about the device
level code and pointers to configuration data about device level sub-blocks.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID: PMC-2001401, Issue 2

• errDevice indicates specific error codes returned by API functions that are not passed
directly to the application. Most of the device API functions return a specific error code
directly. When the returned code is CMQ_FAILURE, this indicates that the top-level function is
not able to carry the specified error code back to the application. In addition, some device
functions do not return an error code. Under those circumstances, the proper error code is
recorded in this element. This element is the first in the structure so that the USER can cast
the DDB pointer to an INT4 pointer and retrieve the local error. This eliminates the need to
include the DDB template in the application code

• valid indicates that this structure has been properly initialized and may be read by the
USER

• stateDevice contains the current state of the device and can be any one of: CMQ_START,
CMQ_PRESENT, CMQ_ACTIVE or CMQ_INACTIVE

• usrCtxt is a value that can be used by the USER to identify the device during the execution
of the callback functions. It is passed to the driver when cometqAdd is called and returned
to the USER when a callback function is invoked

Table 47: COMET-QUAD Device Data Block: sCMQ_DDB

Field Name Field Type Field Description

errDevice INT4 Global error indicator for device calls

valid UINT2 Indicates that this structure has been
initialized

stateDevice CMQ_DEV_STATE Device State; can be one of the
following: CMQ_PRESENT,
CMQ_ACTIVE or CMQ_INACTIVE

baseAddr UINT1 * Base address of the Device

usrCtxt void * Stores the user’s context for the
device. It is passed as an input
parameter when the driver invokes an
application callback

profileNum UINT2 Profile number used at initialization

pollISR sCMQ_POLL Indicates the current mode of
interrupt processing

cbackFramer CMQ_CBACK Address for the callback function for
Framer Events

cbackIntf CMQ_CBACK Address for the callback function for
Line Side Interface Events

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

cbackAlarmInBand CMQ_CBACK Address for the callback function for
Alarm InBand Events

cbackSigInsExt CMQ_CBACK Address for the callback function for
Signal Insertion and Extraction
Events

cbackPMon CMQ_CBACK Address for the callback function for
Performance Monitoring Events

cbackSerialCtl CMQ_CBACK Address for the callback function for
Serial Control Events

cometqFlag UINT1 Indicates the device type: COMET (=
0) or COMET-QUAD (= 1)

modeE1 UINT1 Operational mode of the device. A
one indicates E1 mode and a value of
zero indicates T1 mode

mask sCMQ_ISR_MASK Interrupt enable mask

3.4 Structures Passed through RTOS Buffers

Interrupt Service Vector: ISV

This buffer structure is used to capture the status of the device (during a poll or ISR processing)
for use by the Deferred Processing Routine (DPR). It is the application’s responsibility to create a
pool of ISV buffers (using this template to determine the buffer’s size) when the driver calls the
user-supplied sysCometqBufferStart function. An individual ISV buffer is then obtained by
the driver via sysCometqISVBufferGet and returned to the ‘pool’ via
sysCometqISVBufferRtn.

Table 48: COMET-QUAD Interrupt Service Vector: sCMQ_ISV

Field Name Field Type Field Description

deviceHandle sCMQ_HNDL Handle to the device generating interrupts

mask sCMQ_ISR_MASK ISR mask with interrupt status information

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID: PMC-2001401, Issue 2

Deferred Processing Vector: DPV

This structure is used in two ways. First, it is used to determine the size of the buffer required by
the RTOS for use in the driver. Second, it defines the format of the data that is assembled by the
DPR and sent to the application code. Note: the application code is responsible for returning this
buffer to the RTOS buffer pool.

The DPR reports events to the application using user-defined callbacks. The DPR uses each
callback to report a functionally-related group of events. Refer to section 4.13 for a description of
the COMET and COMET-QUAD callback functions, and to Appendix C for a list of events and
bit masks used in the interpretation of the DPV.

Within the callback there are three event fields. The callback routine can determine what events
are being passed by the DPR by examining the bits in these fields. Appendix C provides a listing
of the bit masks required to interpret the bits in the event fields.

In addition to the three event fields, the DPR also contains fields that hold additional information
that is relevant only when the corresponding event has occurred.

For all interrupts that are processed by the DPR simultaneously, only a single invocation of the
relevant callback functions takes place. For the multiple framers on a COMET-QUAD device,
there is a single callback for all framers. The framer number can be identified by the index into
the event fields for which an event bit is set. For COMET devices, only the first element of the
arrays in the DPV are used.

Table 49: COMET-QUAD Deferred Processing Vector: sCMQ_DPV

Field Name Field Type Field Description

event1 UINT4[4] Event indicator bit field

event2 UINT4[4] Event indicator bit field

event3 UINT4[4] Event indicator bit field

CDRCLosInd UINT1[4] CDRC loss of signal status indicator. Used with
event CMQ_EVENT_CDRC_LOS.

CDRCAltLosInd UINT1[4] CDRC alternate loss of signal status indicator. Used
with event CMQ_EVENT_CDRC_ALT_LOS.

RLPSLosInd UINT1[4] RLPS analog loss of signal status indicator. Used
with event CMQ_EVENT_RLPS_ALOS.

T1FRMRMfpInd UINT1[4] T1-FRMR mimic frame pattern status indicator.
Used with event
CMQ_EVENT_T1_FRMR_MIMIC_FRM.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

T1FRMRInfrInd UINT1[4] T1-FRMR in frame status indicator. Used with event
CMQ_EVENT_T1_FRMR_INFRM.

IBCDLbaInd UINT1[4] Activate loopback code status indicator. Used with
event CMQ_EVENT_IBCD_LPBCK_ACT_CODE.

IBCDLbdInd UINT1[4] Deactivate loopback code status indicator. Used
with event
CMQ_EVENT_IBCD_LPBCK_DEACT_CODE.

ALMIYelInd UINT1[4] ALMI yellow alarm status indicator. Used with
event CMQ_EVENT_ALMI_YELLOW_ALARM.

ALMIRedInd UINT1[4] ALMI red alarm status indicator. Used with event
CMQ_EVENT_ALMI_RED_ALARM.

ALMIAISInd UINT1[4] ALMI AIS status indicator. Used with event
CMQ_EVENT_ALMI_AIS_ALARM.

PDVDPdvInd UINT1[4] PDVD pulse density violation status indicator. Used
with event
CMQ_EVENT_PDVD_PULSE_DENSITY_VIOLT.

XPDEPdvInd UINT1[4] XPDE pulse density enforcer violation status
indicator. Used with event
CMQ_EVENT_XPDE_PULSE_DENSITY_VIOLT.

PRBSSyncInd UINT1[4] PRBS/PRGD synchronization state indicator. Used
with event CMQ_EVENT_PRBS_PAT_SYNC.

PRBSOvrnInd UINT1[4] PRBS/PRGD transfer overwrite indicator. Used with
event CMQ_EVENT_PRBS_XFER_UPD.

E1FRMRC2nciwInd UINT1[4] E1-FRMR CRC to non-CRC internetworking status
indicator. Used with event
CMQ_EVENT_E1_FRMR_CRC2NCRC.

E1FRMROOFInd UINT1[4] E1-FRMR out of frame status indicator. Used with
event CMQ_EVENT_E1_FRMR_OOF.

E1FRMOOSMFInd UINT1[4] E1-FRMR out of signaling multiframe status
indicator. Used with event
CMQ_EVENT_E1_FRMR_OOF_SMFRM.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

E1FRMOOCMFInd UINT1[4] E1-FRMR out of CRC-4 multiframe status
indicator. Used with event
CMQ_EVENT_E1_FRMR_OOF_CRC_MFRM.

E1FRMOoofInd UINT1[4] E1-FRMR out of offline frame status indicator.
Used with event
CMQ_EVENT_E1_FRMR_OOF_ALARM.

E1FRMRaiCrcInd UINT1[4] E1-FRMR remote alarm indication and continuous
CRC status indicator. Used with event
CMQ_EVENT_E1_FRMR_RAI_CONT_CRC_ALARM.

E1FRMCfebeInd UINT1[4] E1-FRMR far end block error status indicator. Used
with event
CMQ_EVENT_E1_FRMR_CONT_FEBE_ALARM.

E1FRMV52LinkInd UINT1[4] E1-FRMR V5.2 link identification status indicator.
Used with event
CMQ_EVENT_E1_FRMR_V52LINKID_ALARM.

E1FRMRaiInd UINT1[4] E1-FRMR remote alarm indication status indicator.
Used with event
CMQ_EVENT_E1_FRMR_RAI_ALARM.

E1FRMRmaiInd UINT1[4] E1-FRMR remote multiframe alarm indication
status indicator. Used with event
CMQ_EVENT_E1_FRMR_RMAI_ALARM.

E1FRMAisdInd UINT1[4] E1-FRMR AIS (low zero bit density) status
indicator. Used with event
CMQ_EVENT_E1_FRMR_AISD_ALARM.

E1FRMRedInd UINT1[4] E1-FRMR red alarm status indicator. Used with
event CMQ_EVENT_E1_FRMR_RED_ALARM.

E1FRMAisInd UINT1[4] E1-FRMR AIS (unframed all ones) status indicator.
Used with event
CMQ_EVENT_E1_FRMR_AIS_ALARM.

COSStimeslot UINT4[4] Change of signaling state information bitmap. For
E1, bit 0 represents timeslot 0 and bit 31 represents
timeslot 31. For T1, bit 1 represents channel 1 and
bit 24 represents channel 24. Used with event
CMQ_EVENT_SIGX_COS_STATE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID: PMC-2001401, Issue 2

Field Name Field Type Field Description

RDLCCOLS UINT1[4] RDLC change of link state. Used with event
CMQ_EVENT_RDLC_EVENT

RDLCPacketIn UINT1[4] RDLC packet indicator. Used with event
CMQ_EVENT_RDLC_EVENT

RDLCFIFOOvr UINT1[4] RDLC FIFO overrun indicator. Used with event
CMQ_EVENT_RDLC_EVENT

RDLCFIFOEmpty UINT1[4] RDLC FIFO underrun indicator. Used with event
CMQ_EVENT_RDLC_EVENT

TDPRFIFOBelowThre
sh

UINT1[4] TDPR FIFO below threshold indicator. Used with
event
CMQ_EVENT_TDPR_FIFO_FILL_LOWLVL_THRESH

TDPRFIFOFull UINT1[4] TDPR FIFO full indicator. Used with event
CMQ_EVENT_TDPR_FIFO_FULL

3.5 Global Variable

Although most of the variables within the driver are not intended for used by the application
code, there is one global variable that can be of great use to the application code.

This variable is called cometqMdb and it acts as a global pointer to the Module Data Block
(MDB). The content of this global variable should be considered read-only by the application.

• errModule: This structure element is used to store an error code that specifies the reason for
an API function’s failure. The field is only valid for functions that do not return an error code
or when a value of CMQ_FAILURE is returned.

• stateModule: This structure element is used to store the module state (as shown in Figure
3).

• pddb[]: An array of pointers to the individual Device Data Blocks. The USER is cautioned
that a DDB is only valid if the valid flag is set. Note that the array of DDBs is in no
particular order.

° errDevice: This structure element is used to store an error code that specifies the
reason for an API function’s failure. The field is only valid for functions that do not
return an error code or when a value of CMQ_FAILURE is returned.

° stateDevice: This structure element is used to store the device state (as shown in
Figure 3).

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-2001401, Issue 2

4 APPLICATION PROGRAMMING INTERFACE

This section of the manual provides a detailed description of each function that is a member of
the COMET-QUAD driver Application Programming Interface (API). API functions typically
execute in the context of an application task.

It is important to note that these functions are not re-entrant. This means that two application
tasks can not invoke the same API at the same time. However the driver protects its data
structures from concurrent accesses by the Application and the DPR task.

4.1 Module Management

The module management is a set of API functions that are used by the Application to open, start,
stop and close the driver module. These functions initialize the driver; they also allocate memory
and all the RTOS resources needed by the driver. They are also used to change the module state.
For more information on the module states see the state diagram on page 21. For a typical module
management flow diagram see page 23.

All module management functions are device independent, and thus have the same behavior
irrespective of whether the driver is being used with COMET-QUAD or COMET devices.

Opening the Driver Module: cometqModuleOpen

This performs module level initialization of the device driver, which involves allocating all of the
memory needed by the driver and initializing the internal structures.

Prototype INT4 cometqModuleOpen(sCMQ_MIV *pmiv)

Inputs pmiv : (pointer to) Module Initialization Vector

Outputs Places the address of the MDB into the MIV passed by the Application

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_MOD_START

Side Effects Changes the MODULE state to CMQ_MOD_IDLE

Closing the Driver Module: cometqModuleClose

Performs module level shutdown of the driver. This involves deleting all devices being controlled
by the driver (by calling cometqDelete for each device) and de-allocating all the memory
allocated by the Driver.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID: PMC-2001401, Issue 2

Prototype INT4 cometqModuleClose(void)

Inputs None

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States ALL STATES

Side Effects Changes the MODULE state to CMQ_MOD_START

Starting the Driver Module: cometqModuleStart

Connects the RTOS resources to the Driver. This involves allocating semaphores and timers,
initializing buffers, and installing the ISR handler and DPR task. Upon successful return from this
function, the driver is ready to add devices.

Prototype INT4 cometqModuleStart(void)

Inputs None

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_MOD_IDLE

Side Effects Changes the MODULE state to CMQ_MOD_READY

Stopping the Driver Module: cometqModuleStop

Disconnects the RTOS resources from the Driver. This involves de-allocating semaphores and
timers, freeing-up buffers, and uninstalling the ISR handler and the DPR task. If there are any
registered devices, cometqDelete is called for each.

Prototype INT4 cometqModuleStop(void)

Inputs None

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_MOD_READY

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID: PMC-2001401, Issue 2

Side Effects Changes the MODULE state to CMQ_MOD_IDLE

4.2 Profile Management

This section of the manual describes the functions that add, get and clear an initialization profile.
Initialization profiles allow the user to store pre-defined Device Initialization Vectors (DIV) that
are validated ahead of time. When the device initialization function is invoked only a profile
number need be passed. This method simplifies and expedites the initialization process.

Adding an Initialization Profile: cometqAddInitProfile

Creates an initialization profile that is stored by the driver. A device can now be initialized by
simply passing the initialization profile number.

Prototype INT4 cometqAddInitProfile(sCMQ_DIV *pProfile, UINT2
*pProfileNum)

Inputs pProfile : (pointer to) initialization profile being added
pProfileNum : (pointer to) profile number to be assigned by

 the driver

Outputs pProfileNum : profile number assigned by the driver

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_MOD_IDLE, CMQ_MOD_READY

Side Effects None

Getting an Initialization Profile: cometqGetInitProfile

Gets the content of an initialization profile given its profile number.

Prototype INT4 cometqGetInitProfile(UINT2 profileNum, sCMQ_DIV *pProfile)

Inputs profileNum : initialization profile number
pProfile : (pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_MOD_IDLE, CMQ_MOD_READY

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-2001401, Issue 2

Side Effects None

Deleting an Initialization Profile: cometqDeleteInitProfile

Deletes an initialization profile given its profile number.

Prototype INT4 cometqDeleteInitProfile(UINT2 profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_MOD_IDLE, CMQ_MOD_READY

Side Effects None

4.3 Device Management

The device management is a set of API functions that are used by the Application to control the
device. These functions take care of initializing a device in a specific configuration, enabling the
device’s general activity as well as enabling interrupt processing for that device. They are also
used to change the software state for that device. For more information on the device states see
the state diagram on page 21. For a typical device management flow diagram see page 24.

Adding a Device: cometqAdd

This function verifies the presence of a new device in the hardware, then returns a handle back to
the user. The device handle is passed as a parameter to most of the Device API Functions. It is
used by the driver to identify the device on which the operation is to be performed.

When a COMET or COMET-QUAD device is added to the module, the TYPE field in the
Revision/Chip ID register is used to determine whether the user is adding a COMET or COMET-
QUAD device. The device data block stores the device type (COMET or COMET-QUAD) in the
cometqFlag field.

Prototype sCMQ_HNDL cometqAdd(void *usrCtxt, UINT1 *baseAddr, INT4
**pperrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pperrDevice : (pointer to) an area of memory

Outputs ERROR code written to the MDB on failure

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-2001401, Issue 2

pperrDevice : (pointer to) errDevice (inside the DDB)

Returns Device Handle (to be used as an argument to most of the COMET-
QUAD APIs) or NULL (pointer) in case of an error

Valid States CMQ_MOD_READY

Side Effects Changes the Device state to CMQ_PRESENT

Deleting a Device: cometqDelete

This function is used to remove the specified device from the list of devices being controlled by
the COMET-QUAD driver. Deleting a device involves invalidating the DDB for that device and
releasing its associated device handle.

This API call is identical for both COMET and COMET-QUAD devices.

Prototype INT4 cometqDelete(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Initializing a Device: cometqInit

Initializes the Device Data Block (DDB) associated with that device during cometqAdd, applies
a soft reset to the device and configures it according to the DIV passed by the Application. If the
DIV is passed as a NULL, the profile number is used. A profile number of zero indicates that all
the register bits are to be left in their default state (after a soft reset). Note that the profile number
is ignored UNLESS the passed DIV is NULL.

To set the callbacks on a device while retaining the device in its reset state, the initDevice
member of the DIV should be set to 0. The analogInit, backplaneInit, and framerInit members are
then not applied to the hardware and are not validated before application of the DIV.

This function is supported by both COMET and COMET-QUAD devices. For COMET devices,
the backplane configuration modes in the DIV should not be H-MVIP or H-MVIP CCS.

Prototype INT4 cometqInit(sCMQ_HNDL deviceHandle, sCMQ_DIV
*pdiv, UINT2 profileNum)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID: PMC-2001401, Issue 2

Inputs deviceHandle : device Handle (from cometqAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (ignored if pdiv is NULL)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_PRESENT

Side Effects Changes the DEVICE state to CMQ_INACTIVE

Resetting a Device: cometqReset

Applies a software reset to the COMET or COMET-QUAD device. Also resets all the DDB
contents (except for the user context). This function is typically called before re-initializing the
device (via cometqInit).

This function is supported by both COMET and COMET-QUAD devices.

Prototype INT4 cometqReset(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects Changes the DEVICE state to CMQ_PRESENT

Updating the Configuration of a Device: cometqUpdate

Updates the configuration of the device as well as the Device Data Block (DDB) associated with
that device according to the DIV passed by the Application. The only difference between
cometqUpdate and cometqInit is that a soft reset is not applied to the device. In addition, a
profile number of zero is not allowed if a DIV is not passed to the function.

Prototype INT4 cometqUpdate(sCMQ_HNDL deviceHandle, sCMQ_DIV
*pdiv, UINT2 profileNum)

Inputs deviceHandle : device handle (from cometqAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (only used if pdiv is NULL)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-2001401, Issue 2

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Activating a Device: cometqActivate

This function activates a device by enabling interrupts. If the device was deactivated, the interrupt
mask remains as it was prior to deactivation. Interrupts will be re-enabled if the device was in ISR
mode.

This function is supported by both COMET and COMET-QUAD.

Prototype INT4 cometqActivate(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_INACTIVE

Side Effects Changes the DEVICE state to CMQ_ACTIVE

Deactivating a Device: cometqDeActivate

Deactivates a device by disabling interrupts. The interrupt mask is retained within the DDB and is
restored upon device activation.

This function is supported by both COMET and COMET-QUAD devices.

Prototype INT4 cometqDeActivate(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-2001401, Issue 2

Side Effects Changes the DEVICE state to CMQ_INACTIVE

4.4 Device Read and Write

Reading from Device Registers: cometqRead

This function can be used to read any one of the registers on a specific COMET or COMET-
QUAD device by providing the register number. This function derives the actual address location
based on the device handle and register number inputs. It then reads the contents of this address
location using the system specific macro, sysCometqRead. Note that a failure to read returns a
zero and any error indication is written to the associated DDB. In the event that the device handle
passed to the function is invalid, the corresponding error code is written to the MDB.

This function is supported by both COMET and COMET-QUAD devices and behaves identically
for both devices. Register address bounds checking is performed as is appropriate for the specific
device.

Prototype UINT1 cometqRead(sCMQ_HNDL deviceHandle, UINT2
regNum)

Inputs deviceHandle : device Handle (from cometqAdd)
regNum : register number

Outputs ERROR code written to the DDB. If DDB is invalid, the error code is
written to the MDB.

Returns Success = value read
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Device Registers: cometqWrite

This function can be used to write any one of the registers on a specific COMET or COMET-
QUAD device by providing the register number. The function derives the actual address location
based on the device handle and register number inputs. It then writes the contents of this address
location using the system specific macro, sysCometqWrite. Note that a failure to write returns a
zero and any error indication is written to the DDB. In the event that the device handle passed to
the function is invalid, the corresponding error code is written to the MDB.

This function is supported by both COMET and COMET-QUAD devices and behaves identically
for both devices. Register address bounds checking is performed as is appropriate for the specific
device.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-2001401, Issue 2

Prototype UINT1 cometqWrite(sCMQ_HNDL deviceHandle, UINT2
regNum, UINT1 value)

Inputs deviceHandle : device Handle (from cometqAdd)
regNum : register number
value : value to be written

Outputs ERROR code written to the DDB. If the DDB is invalid, the error code
is written to the MDB.

Returns Success = value written
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May change the configuration of the Device

Reading from a block of Device Registers: cometqReadBlock

This function can be used to read a block of registers on a COMET or COMET-QUAD device by
providing the starting register number and the size to read. This function derives the actual start
address location based on the device handle and starting register number inputs. It then reads the
contents of this data block using multiple calls to the system specific macro, sysCometqRead.
Note that a failure to read returns a zero and any error indication is written to the DDB. In the
event that the device handle passed to the function is invalid, the corresponding error code is
written to the MDB. It is the USER’s responsibility to allocate enough memory for the block read.

This function is supported by both COMET and COMET-QUAD devices and behaves identically
for both devices. Register address bounds checking is performed as is appropriate for the specific
device.

Prototype UINT1 cometqReadBlock(sCMQ_HNDL deviceHandle, UINT2
startRegNum, UINT2 size, UINT1 *pblock)

Inputs deviceHandle : device Handle (from cometqAdd)
startRegNum : starting register number
size : size of the block to read

Outputs ERROR code written to the DDB. If the DDB is invalid, the error code
is written to the MDB.

pblock : (pointer to) block read memory

Returns Last register value read

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May affect registers that change after a read operation

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID: PMC-2001401, Issue 2

Writing to a Block of Device Registers: cometqWriteBlock

This function can be used to write to a block of registers on a COMET or COMET-QUAD device
by providing the starting register number, the block size, and the data. This function derives the
actual starting address location based on the device handle and starting register number inputs. It
then writes the contents of this data block using multiple calls to the system specific macro,
sysCometqWrite. A bit from the passed block is only modified in the device’s registers if the
corresponding bit is set in the passed mask. Note that any error indication is written to the DDB.
In the event that the device handle passed to the function is invalid, the corresponding error code
is written to the MDB.

This function is supported by both COMET and COMET-QUAD devices and behaves identically
for both devices. Register address bounds checking is performed as is appropriate for the specific
device.

Prototype UINT1 cometqWriteBlock(sCMQ_HNDL deviceHandle, UINT2
startRegNum, UINT2 size, UINT1 *pblock, UINT1 *pmask)

Inputs deviceHandle : device Handle (from cometqAdd)
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs ERROR code written to the DDB. If the DDB is invalid, the error code
is written to the MDB.

Returns Last register value written

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May change the configuration of the Device

Reading from Framer Device Registers: cometqReadFr

This function can be used to read any one of the indirect registers on a specific COMET-QUAD
device by providing the register number. This function derives the actual address location based
on the device handle and register number inputs. It then reads the contents of this address location
using the system specific macro, sysCometqRead. Note that a failure to read returns a zero and
any error indication is written to the associated DDB. In the event that the device handle passed to
the function is invalid, the corresponding error code is written to the MDB.

This function is not supported by COMET devices as it contains only a single framer. Invocations
of this API for a COMET device will fail with error code CMQ_ERR_INVALID_DEV.

Prototype UINT1 cometqReadFr(sCMQ_HNDL deviceHandle, UINT1
frmNum, UINT2 regNum)

Inputs deviceHandle : device Handle (from cometqAdd)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-2001401, Issue 2

frmNum : framer number: 0, 1, 2, or 3
regNum : register number

Outputs ERROR code written to the DDB

Returns Success = value read
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Framer Device Registers: cometqWriteFr

This function can be used to write to any one of the indirect registers on a specific COMET-
QUAD device by providing the register number. This function derives the actual address location
based on the device handle and register number inputs. It then writes the contents of this address
location using the system specific macro, sysCometqWrite. Note that a failure to write returns a
zero and any error indication is written to the DDB. In the event that the device handle passed to
the function is invalid, the corresponding error code is written to the MDB.

This function is not supported by COMET devices as it provides only a single framer. Invocations
of this API for a COMET device will fail with error code CMQ_ERR_INVALID_DEV.

Prototype UINT1 cometqWriteFr(sCMQ_HNDL deviceHandle, UINT1
frmNum, UINT2 regNum, UINT1 value)

Inputs deviceHandle : device Handle (from cometqAdd)
frmNum : framer number: 0, 1, 2, or 3
regNum : register number
value : value to be written

Outputs ERROR code written to the DDB

Returns Success = value written
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May change the configuration of the Device

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-2001401, Issue 2

Reading from Device Indirect Registers: cometqReadFrInd

This function can be used to read any one of the indirect registers on a specific COMET or
COMET-QUAD device by providing the indirect address and the indirect memory section. This
function derives the actual address location based on the device handle and indirect address
inputs. It then reads the contents of this address location using the system specific macro,
sysCometqRead. Note that a failure to read returns a zero and any error indication is written to
the associated DDB. In the event that the device handle passed to the function is invalid, the
corresponding error code is written to the MDB.

Note that the RLPS Equalizer RAM indirect registers are accessed through cometqReadRLPS and
cometqWriteRLPS.

Prototype UINT1 cometqReadFrInd(sCMQ_HNDL deviceHandle, UINT1
frmNum, eCMQ_SECTION section, UINT2 regNum)

Inputs deviceHandle : device Handle (from cometqAdd)
frmNum : framer number: COMET-QUAD: 0, 1, 2, or 3

 COMET: not used
section : section number: CMQ_SIGX_SECT,

 CMQ_TPSC_SECT,
 CMQ_RPSC_SECT,
 CMQ_XLPG_SECT

regNum : indirect address

Outputs ERROR code written to the DDB

Returns Success = value read
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Device Indirect Registers: cometqWriteFrInd

This function can be used to write to any one of the indirect registers on a specific COMET or
COMET-QUAD device by providing the indirect address and indirect memory section. This
function derives the actual address location based on the device handle and indirect address
inputs. It then writes the contents of this address location using the system specific macro,
sysCometqWrite. Note that a failure to write returns a zero and any error indication is written to
the DDB. In the event that the device handle passed to the function is invalid, the corresponding
error code is written to the MDB.

Note that the RLPS Equalizer RAM indirect registers are accessed through cometqReadRLPS and
cometqWriteRLPS.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-2001401, Issue 2

Prototype UINT1 cometqWriteFrInd(sCMQ_HNDL deviceHandle, UINT1
frmNum, eCMQ_SECTION section, UINT2 regNum, UINT1
value)

Inputs deviceHandle : device Handle (from cometqAdd)
frmNum : framer number: COMET-QUAD: 0, 1, 2, or 3

 COMET: not used
section : section number: CMQ_SIGX_SECT,

 CMQ_TPSC_SECT,
 CMQ_RPSC_SECT,
 CMQ_XLPG_SECT

regNum : indirect address
value : value to be written

Outputs ERROR code written to the DDB

Returns Success = value written
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May change the configuration of the Device

Reading from Device RLPS Indirect Registers: cometqReadRLPS

This function can be used to read any one of the RLPS indirect registers on a specific COMET or
COMET-QUAD device. This function derives the actual address location based on the device
handle and indirect address inputs. It then reads the contents of this address location using the
system specific macro, sysCometqRead. Note that a failure to read returns a zero and any error
indication is written to the associated DDB. In the event that the device handle passed to the
function is invalid, the corresponding error code is written to the MDB.

Prototype UINT4 cometqReadRLPS(sCMQ_HNDL deviceHandle, UINT1
frmNum, UINT1 regNum)

Inputs deviceHandle : device Handle (from cometqAdd)
frmNum : framer number: COMET-QUAD: 0, 1, 2, or 3

 COMET: not used
regNum : indirect address

Outputs ERROR code written to the DDB

Returns Success = value read
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May affect registers that change after a read operation

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-2001401, Issue 2

Writing to Device RLPS Indirect Registers: cometqWriteRLPS

This function can be used to write to any one of the RLPS indirect registers on a specific COMET
or COMET-QUAD device. This function derives the actual address location based on the device
handle and indirect address inputs. It then writes the contents of this address location using the
system specific macro, sysCometqWrite. Note that a failure to write returns a zero and any
error indication is written to the DDB. In the event that the device handle passed to the function is
invalid, the corresponding error code is written to the MDB.

Prototype UINT4 cometqWriteRLPS(sCMQ_HNDL deviceHandle, UINT1
frmNum, UINT1 regNum, UINT4 value)

Inputs deviceHandle : device Handle (from cometqAdd)
frmNum : framer number: COMET-QUAD: 0, 1, 2, or 3

 COMET: not used
regNum : indirect address
value : value to be written

Outputs ERROR code written to the DDB

Returns Success = value written
Failure = 0

Valid States CMQ_PRESENT, CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May change the configuration of the Device

4.5 Interface Configuration

The Interface Configuration section of the driver is used for configuring the COMET and
COMET-QUAD T1/E1 line interfaces and the receive and transmit backplane interfaces,
including the transmit and receive H-MVIP interfaces on the COMET-QUAD. These APIs allow
the user to configure the receive and transmit line coding scheme to B8ZS, HDB3, or AMI, the
receive and transmit analog characteristics, jitter attenuators and their associated timing options,
and digital and analog loss of signal definitions. For both COMET and COMET-QUAD, the
receive and transmit elastic stores can be configured through this interface in addition to
backplane interface configuration. The Interface Configuration API does not provide a backplane
profile mechanism. In order to configure the backplane based upon any of the standard
configurations given in the device data sheets, the profile initialization API or a device
initialization vector (DIV) must be used.

Transmit line coding configuration: cometqLineTxEncodeCfg

Allows configuration of the transmit line coding scheme. In T1 operational mode, selection
between alternate mark inversion (AMI) and bipolar with eight zero substitution (B8ZS) is
allowed. In E1 mode, the user can select either AMI or high density bipolar (HDB3) schemes.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-2001401, Issue 2

Prototype INT4 cometqLineTxEncodeCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, eCMQ_LINE_CODE encScheme)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

 COMET: not used
encScheme : transmit encoding scheme for E1/T1. One of:

CMQ_LINE_CODE_AMI,
CMQ_LINE_CODE_HDB3_E1, or
CMQ_LINE_CODE_B8ZS_T1

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Receive line coding configuration: cometqLineRxEncodeCfg

Allows configuration of the receive line coding scheme. In T1 operational mode, selection
between alternate mark inversion (AMI) and bipolar with eight zero substitution (B8ZS) is
allowed. In E1 mode, the user can select either AMI or high density bipolar (HDB3) schemes.
This function also allows the user to configure the bipolar violation definition.

Prototype INT4 cometqLineRxEncodeCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, eCMQ_LINE_CODE encScheme, UINT1
incXSZeros, UINT1 E1_O162En)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
encScheme : transmit encoding scheme for E1/T1. One of:

CMQ_LINE_CODE_AMI,
CMQ_LINE_CODE_HDB3_E1, or
CMQ_LINE_CODE_B8ZS_T1

incXSZeros : indication to include excess zero violations as bipolar
 violations. Excess zero run lengths are 5 bits for T1
 AMI, 8 bits in T1 B8ZS, and 4 bits for both E1
 schemes

E1_O162En : enable the O.162 bipolar violation definition (E1
 only)

Outputs None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-2001401, Issue 2

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Analog transmitter configuration: cometqLineTxAnalogCfg

Allows configuration of the transmit analog interface including the waveform scale factor, the
waveform pulse shape, transmit tri-state, and fuse programming.

Prototype INT4 cometqLineTxAnalogCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CFG_TX_ANALOG* ptxAnalogCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
ptxAnalogCfg : transmit analog configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Analog receiver configuration: cometqLineRxAnalogCfg

Configures the analog line receive interface including analog loss of signal thresholds and periods
and equalizer feedback frequency and stabilization period. Also, the equalizer RAM can be
configured through this function.

Prototype INT4 cometqLineRxAnalogCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CFG_RX_ANALOG* prxAnalogCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
prxAnalogCfg : receive analog configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Transmit jitter attenuator configuration: cometqLineTxJatCfg

Configures the line transmit interface jitter attenuator by allowing the user to select bypass, clock
divisors, and reference clocks.

Prototype INT4 cometqLineTxJatCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_CFG_TX_JAT *ptxJatCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
ptxJatCfg : transmit jitter configuration data

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects Implicitly sets voltage reference of the analog receiver's equalizer based
on the operational mode.

Receive jitter attenuator configuration: cometqLineRxJatCfg

Configures the line receive interface jitter attenuator by allowing the user to select jitter attenuator
bypass and clock divisors.

Prototype INT4 cometqLineRxJatCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_CFG_RX_JAT *prxJatCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
prxJatCfg : receive jitter configuration data

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-2001401, Issue 2

Clock service unit configuration: cometqLineClkSvcCfg

This API function allows the user to configure the clock service unit operating mode. The user
can select between a straight mapping of 2.048 MHz onto 2.048 MHz or 1.544 MHz onto 1.544
MHz as well as the option of transmitting at a 1.544 MHz line rate when the XCLK input is 2.048
MHz.

This function is supported by both COMET and COMET-QUAD devices.

Prototype INT4 cometqLineClkSvcCfg(sCMQ_HNDL deviceHandle,
eCMQ_CSU_SVC_CLK synthTxFreq)

Inputs deviceHandle : device Handle (from cometqAdd)
synthTxFreq : synthesis clock frequency and transmit clock

 clock frequency. Select one of:
 CMQ_XCLK_2048_TXCLK_2048,

CMQ_XCLK_1544_TXCLK_1544, or
 CMQ_XCLK_2048_TXCLK_1544

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Receive clock and data recovery options: cometqLineRxClkCfg

Configures the line receive interface clock and data recovery characteristics including the clock
and data recovery algorithm and the digital loss of signal threshold. Note that selection of either
CMQ_LOS_THRESH_PCM_10_HDB3 (E1 only), CMQ_LOS_THRESH_PCM_15_B8ZS (T1 only),
or CMQ_LOS_THRESH_PCM_15_AMI as the loss of signal threshold will set the receive line
coding scheme to the specified value, overriding the current setting.

Prototype INT4 cometqLineRxClkCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_CFG_RX_CLK *prxClkCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
prxClkCfg : receive clock and data recovery structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects The line coding scheme will change if one of
CMQ_LOS_THRESH_PCM_10_HDB3,

CMQ_LOS_THRESH_PCM_15_B8ZS, or
CMQ_LOS_THRESH_PCM_15_AMI was selected as the loss of signal
threshold

Backplane transmit interface configuration: cometqBTIFAccessCfg

This function allows selection between transmit backplane master/slave modes as well as basic
backplane data mode configuration.

Prototype INT4 cometqBTIFAccessCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_BACKPLANE_ACCESS_CFG *pBTIFCfgData)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pBTIFCfgData : backplane transmit interface configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Backplane transmit interface configuration: cometqBTIFFrmCfg

This function allows configuration of the transmit backplane interface frame pulse, parity
odd/even selection and inversion, as well as frame pulse bit offset and T1 ESF alignment.

Prototype INT4 cometqBTIFFrmCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_CFG_BTIF_FRM* pfrmCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pfrmCfg : backplane transmit interface framing structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Backplane receive interface configuration: cometqBRIFAccessCfg

This function allows selection between receive backplane master/slave modes as well as basic
backplane data mode configuration.

Prototype INT4 cometqBRIFAccessCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_BACKPLANE_ACCESS_CFG* pBRIFCfgData)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pBRIFCfgData : backplane receive interface configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Backplane receive interface configuration: cometqBRIFFrmCfg

The user is able to configure the backplane receive interface frame pulse mode, parity
configuration, frame pulse bit offset, bit fixing, T1 ESF insertion, and timeslot mapping through
the use of this function.

Prototype INT4 cometqBRIFFrmCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_CFG_BRIF_FRM *pfrmCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pfrmCfg : backplane receive interface framing structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-2001401, Issue 2

Receive and transmit HMVIP interfaces configuration: cometqHMVIPCfg

This function provides configuration of the H-MVIP receive and transmit interfaces for COMET-
QUAD devices.

This function is not supported by COMET devices.

Prototype INT4 cometqHMVIPCfg(sCMQ_HNDL deviceHandle,
sCMQ_CFG_HMVIP *pHMVIPCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
pHMVIPCfg : H-MVIP interface configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Receive elastic store configuration: cometqRxElstStCfg

This function provides configuration of the elastic store in the receive data path. The user can
select whether or not to bypass the receive elastic store and configure the idle codes for both the
PCM data stream (COMET and COMET-QUAD) and the CCS stream (COMET-QUAD only).

Prototype INT4 cometqRxElstStCfg(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_CFG_RX_ELST* pElstCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pElstCfg : elastic store configuration data

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Transmit elastic store configuration: cometqTxElstStCfg

This function configures the elastic store in the transmit data path. The user can select whether or
not to bypass the transmit elastic store.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-2001401, Issue 2

Prototype INT4 cometqTxElstStCfg(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 elstEnable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
elstEnable : enable the elastic store or force bypass

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

4.6 T1 /E1 Framers

This section of the driver configures and monitors the T1/E1 Framers. The T1 framers can be
configured to detect and transmit ESF, SF, J1 and the other T1 variants supported by the COMET
and COMET-QUAD. The E1 framer can be configured to detect and transmit basic frame
alignment or CRC-4multiframe with additional criteria to generate/detect channel associative
signaling.

Set Device Operational Mode: cometqSetOperatingMode

This function specifies whether the device will operate in T1 or E1 mode. If cometqInit was
called and hardware initialization was not specified, this function must be called immediately
after device initialization. The behavior of subsequent calls to the configuration APIs throughout
the driver assumes correct operating mode configuration. Configuration via any of the APIs
throughout the driver may not be correct if cometqSetOperatingMode is not executed first.

The following device configuration is performed based on the operating mode:

• The RLPS voltage reference is configured as specified on the data sheet for the current device
operation mode. Note that these values differ for the COMET and COMET-QUAD and are
programmed accordingly

• RX-ELST Configuration register is configured to reflect the operating mode on both COMET
and COMET-QUAD devices

• RX-ELST CCS Configuration register is configured to the reflect operating mode on the
COMET-QUAD only

• TX-ELST Configuration register is configured to reflect the operating mode on both COMET
and COMET-QUAD devices

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-2001401, Issue 2

• TX-ELST CCS Configuration register is configured to the reflect operating mode on the
COMET-QUAD only

For COMET-QUAD devices, all four framers operate in the same operational mode as it is a
global device value.

Prototype INT4 cometqSetOperatingMode(sCMQ_HNDL deviceHandle,
eCMQ_OPER_MODE operMode)

Inputs deviceHandle : device Handle (from cometqAdd)

operMode : Selects either T1 or E1 mode:
 CMQ_MODE_E1, CMQ_MODE_T1

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_INACTIVE

Side Effects RLPS Equalizer Loop Voltage Reference, RX-ELST Configuration, TX-
ELST Configuration, RX-ELST CCS Configuration (COMET-QUAD),
and TX-ELST CCS Configuration (COMET-QUAD) registers configured
to reflect operating mode

T1 transmit framer configuration: cometqT1TxFramerCfg

This function configures the transmit framing format and the zero code suppression format. Also,
the user can enable the signal aligner block (SIGA) between the backplane and the transmit
framer.

Prototype INT4 cometqT1TxFramerCfg (sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CFG_T1TX_FRM *pfrmCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pfrmCfg : T1 transmit framer configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-2001401, Issue 2

T1 receive framer configuration: cometqT1RxFramerCfg

This function provides the interface to configure the receive framing format and out of frame
criteria. Also, if the frame format is ESF, the user can select the framing algorithm. Selection
between use of frame alignment (COFA) event counts or out of frame alignment (OOFA) event
counts in the PMON block can be configured here as well.

Based on the framing format specified in pfrmCfg, the alarm integrator (ALMI) is configured for
the T1 framing format and the signaling extractor (SIGX) block is configured for ESF if ESF is
the selected framing format.

Prototype INT4 cometqT1RxFramerCfg (sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CFG_T1RX_FRM *pfrmCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: param not used
pfrmCfg : T1 receive framer configuration

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects Framing format is configured in SIGX and ALMI device blocks

E1 transmit framer configuration: cometqE1TxFramerCfg

This function provides an interface to configure the E1 transmit framing characteristics. The user
is able to specify whether or not to generate CRC-4 multiframes and the type of signaling, if any,
to insert into timeslot 16. Also, the user can enable or disable the insertion of national bits,
international bits, extra bits, and the FEBE indicator bits through this API.

Prototype INT4 cometqE1TxFramerCfg (sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CFG_E1TX_FRM *pfrmCfg)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pfrmCfg : E1 transmit framer configuration structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-2001401, Issue 2

Side Effects None

E1 receive framer configuration: cometqE1RxFramerCfg

This API allows the user to configure the receive framing format and specify whether or not to
align to signaling multiframes. In addition to basic framing and signaling configuration, the user
can specify the criteria for AIS, RAI, framing errors, and loss of frame detection.

Prototype INT4 cometqE1RxFramerCfg (sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CFG_E1RX_FRM *pfrmCfg)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
pfrmCfg : E1 receive framer configuration

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 transmit framer extra bits insertion: cometqE1TxSetExtraBits

This API allows the user to set the extra bit values that will be inserted into bits 5, 7, and 8 of
timeslot 16 in the first frame of every signaling multiframe. Note that these bits will only be
inserted if the user has enabled extra bit insertion in the E1 transmit framer configuration.

Prototype INT4 cometqE1TxSetExtraBits(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1 extraBits)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
extraBits : bitmap containing extra bits information

bit 0: X1 (timeslot 16, bit 5)
bit 1: X3 (timeslot 16, bit 7)
bit 2: X4 (timeslot 16, bit 8)
bits 3-7: unused

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 transmit framer international bits configuration: cometqE1TxSetIntBits

This API provides the user with an interface to set the value of the international bits to insert into
the E1 stream. The user can specify two bits, one for FAS frames and the other for NFAS frames.
Note that insertion of the international bits must already be enabled in the transmit framer.

Prototype INT4 cometqE1TxSetIntBits(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1 intBits)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
intBits : bitmap containing international bits

bit 0 : Si[0]: inserted into NFAS frames
bit 1: Si[1]: inserted into FAS frames
bit 2-7 : unused

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 transmit framer national bits configuration: cometqE1TxSetNatBits

This function allows the user to set the national bit codeword for each of the five national bits in
timeslot 0 of an NFAS frame. The codeword consists of four bits, one for each NFAS frame in a
submultiframe. The user can enable or disable insertion of each of the four bits within the
codeword. National bit insertion must be enabled in the E1 transmit framer for transmission of the
national bits.

Prototype INT4 cometqE1TxSetNatBits(sCMQ_HNDL deviceHandle,
UINT2 chan, eCMQ_E1_NAT_BIT codeSelect, UINT1 natBits,
UINT1 natBitsEn)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
codeSelect : selects the national bit codeword to set:

CMQ_E1_NAT_BIT_SA4,
CMQ_E1_NAT_BIT_SA5,

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-2001401, Issue 2

CMQ_E1_NAT_BIT_SA6,
CMQ_E1_NAT_BIT_SA7,
CMQ_E1_NAT_BIT_SA8

natBits : bitmap containing national bit values (over one sub-
 multiframe)

bit 0 : first Sai position in SMF
bit 1 : second Sai position in SMF
bit 2 : third Sai position in SMF
bit 3 : fourth Sai position in SMF
bits 4-7 : unused

natBitsEn : enables/disables each bit position in natBits:
bit 0 : enable first Sai bit
bit 1 : enable second Sai bit
bit 2 : enable third Sai bit
bit 3 : enable fourth Sai bit
bits 4-7 : unused

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 receive framer extra bit extraction: cometqE1RxGetExtraBits

This API provides the value of the extra bits and the y bit from timeslot 16, frame 0 of the last
received signaling multiframe.

Prototype INT4 cometqE1RxGetExtraBits(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1* pExtraBits)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pExtraBits : bitmap containing extra bits & y bit
bit 0 : X1 (from timeslot 16, bit 5)
bit 1 : Y bit (from timeslot 16, bit 6)
bit 2 : X3 (from timeslot 16, bit 7)
bit 3 : X4 (from timeslot 16, bit 8)
bits 4-7 : unused

Returns Success = CMQ_SUCCESS

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID: PMC-2001401, Issue 2

Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 receive framer international bit extraction: cometqE1RxGetIntBits

This function returns the international bits from the incoming E1 stream for the last frame. Si[0] is
updated every NFAS frame while Si[1] is updated every FAS frame.

Prototype INT4 cometqE1RxGetIntBits(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1* pIntBits)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pIntBits : bitmap containing international bits
bit 0 : Si[0]: inserted into NFAS frames
bit 1 : Si[1]: inserted into FAS frames
bit 2-7: unused

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 receive framer national bit extraction: cometqE1RxGetNatBitsNFAS

This function returns the value of the national bits from the incoming E1 stream from the last
NFAS frame. This API allows the user to process the national bits on a frame by frame basis,
without waiting for the complete submultiframe.

Prototype INT4 cometqE1RxGetNatBitsNFAS(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1* pNatBits)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pNatBits : bitmap containing national bit values
bit 0 : Sa 4
bit 1 : Sa 5
bit 2 : Sa 6
bit 3 : Sa 7
bit 4 : Sa 8

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID: PMC-2001401, Issue 2

bits 5-7 : unused

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

E1 receive framer national bit extraction: cometqE1RxGetNatBitsSMFRM

This function returns a complete national bit codeword for a specified national bit in the incoming
E1 stream for the last submultiframe.

Prototype INT4 cometqE1RxGetNatBitsSMFRM(sCMQ_HNDL deviceHandle,
UINT2 chan, eCMQ_E1_NAT_BIT codeSelect, UINT1*
pNatBits)

Inputs deviceHandle : device handle (from cometqAdd)
chan : E1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

codeSelect : selects the national bit codeword to extract:
CMQ_E1_NAT_BIT_SA4,
CMQ_E1_NAT_BIT_SA5,
CMQ_E1_NAT_BIT_SA6,
CMQ_E1_NAT_BIT_SA7,
CMQ_E1_NAT_BIT_SA8

Outputs pNatBits : bitmap containing national bit values (over one sub-
 multiframe)

bit 0 : first Sai position in SMF
bit 1 : second Sai position in SMF
bit 2 : third Sai position in SMF
bit 3 : fourth Sai position in SMF
bits 4-7 : unused

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-2001401, Issue 2

4.7 Signal Insertion/Extraction

This section of the driver provides the framework to examine channel associative signaling in the
receive T1 or E1 stream and to detect a change of signaling state event. Also an interface to
manipulate the data stream on a DS0 basis through the SIGX block on the device is provided.

Change of signaling state detection: cometqExtractCOSS

This function provides a bitmap corresponding to change of signaling state (COSS) information
for a T1 or E1 stream. After determining on which E1 timeslot or T1 channel the signaling state
has changed through the use of this function, the user should call cometqSigExtract for the
new signaling state.

Prototype INT4 cometqExtractCOSS(sCMQ_HNDL deviceHandle, UINT2
chan, UINT4 *psigState)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pSigState : Signal state bit map.

 E1: Bit 0 corresponds to timeslot 1 and bit
30 corresponds to timeslot 31.
Timeslot 0 and 16 do
not have COSS info. Bit 15 (timeslot
16) is always set to 0. Bit 31 is unused
and set to zero.

 T1: Bits 0 to 23 correspond to timeslots 1 to
24 respectively. Bits 24 to 31 are not
used and set to 0.

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Signaling state extraction: cometqSigExtract

This API extracts signaling bits for a single E1 timeslot or T1 channel from the receive stream.
Note that upon a COSS event, these values are not updated until the next signaling multiframe.

Prototype INT4 cometqSigExtract(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 timeslot, UINT1* pSigState)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-2001401, Issue 2

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

timeslot : timeslot for which to retrieve signaling. For T1, this
 value should be from 1-24. When in E1 mode, this
 value should range from 1-31 as there is no signaling
 info for timeslot 0.

Outputs pSigState : contains the signaling state information
 for the timeslot.
 bit 0: D bit

bit 1: C bit
bit 2: B bit
bit 3: A bit
bits 4-7: unused

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Signal trunken: cometqSigTslotTrnkDataCfg

This API allows the user to enable change of signal state debouncing by only allowing a COSS
event to be generated when the new signaling data is received twice consecutively. Also, DS0
manipulation of the PCM data stream can be performed here. DS0 PCM data manipulation
performed by the signal extraction block occurs before PCM data manipulation performed by the
RPSC block (via cometqRPSCPCMCtrl).

Prototype INT4 cometqSigTslotTrnkDataCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT2 readWrite, UINT1 timeslot, UINT1*
pSigConfig)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
readWrite : Read data = 0
 : Write data = 1
timeslot : timeslot to operate on. For T1, this value should be

 from 1-24. When in E1 mode, this value should range
 from 0-31.

pSigConfig : pointer to config data when writing

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-2001401, Issue 2

Outputs pSigConfig : pointer to config data

bit map for T1 mode:

 bit 0: enable COSS debouncing
 bit 1: logic level when bit fixing enabled
 bit 2: enable bit fixing
 bit 3: invert all PCM data bits
 bit 4-7: unused

 bit map for E1 mode:

 bit 0: enable COSS debouncing
 bit 1: unused
 bit 2,3:

0,0 – no inversion
0,1 – invert odd PCM bits
1,0 – invert even PCM bits
1,1 – invert all bits

 bit 4-7: unused

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

4.8 Alarm and Inband Communications

This section of the driver provides an interface to configure alarms, configure and use the HDLC
transmitter and receiver, and transmit and receive bit oriented codes (BOCs). Alarms
configuration includes forced insertion of alarms such as AIS and yellow alarms into the transmit
stream as well as automatic handling of alarm conditions on the receive line.

Automatic alarm response configuration: cometqAutoAlarmCfg

This function allows the user to enable or disable the possible automatic alarm response on
detection of AIS, yellow alarms, red alarms, and out of frame. For an out of frame event, data
conditioning can be enabled from the receive elastic stores or the RPSC idle code registers.

Prototype INT4 cometqAutoAlarmCfg(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 autoYellowEn, UINT1 autoRedEn, UINT1
OOF_RPSCEn, UINT1 OOF_RxELSTEn, UINT1 autoAISEn)

Inputs deviceHandle : device Handle (from cometqAdd)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-2001401, Issue 2

chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3
COMET: not used

autoYellowEn : enables automatic generation of yellow (E1 RAI)
 alarms in the receive direction upon a red alarm

autoRedEn : enables automatic trunk conditioning onto the
 backplane data and signaling streams from the RPSC
 upon a red carrier fail alarm condition

OOF_RPSCEn : enables automatic trunk conditioning onto the
 backplane data stream for the duration of out of frame.
 The conditioning data is inserted from the RPSC
 registers

OOF_RxELSTEn : enables automatic trunk conditioning onto the
 backplane data stream for the duration of out of frame.
 The conditioning data is inserted from the Rx Elastic
 store idle code registers

autoAISEn : enables automatic insertion of AIS into the receive path
 upon loss of signal

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Alarm insertion: cometqInsertAlarm

This function allows the user to insert or to disable insertion of alarms into the data stream. The
user can insert AIS into the receive stream (onto the backplane) or transmit yellow and AIS
alarms for both T1 and E1. In addition, for E1 data, timeslot 16 y bit alarms and timeslot 16 AIS
can also be inserted or disabled.

Prototype INT4 cometqInsertAlarm(sCMQ_HNDL deviceHandle, UINT2
chan, eCMQ_ALARM_INS alarmType, UINT1 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
alarmType : type of alarm to activate/deactivate:

CMQ_ALARM_INS_RX_AIS - force AIS into
receive backplane interface
CMQ_ALARM_INS_TX_YELLOW - transmit
yellow alarm (RAI for E1)
CMQ_ALARM_INS_TX_AIS - force AIS into
transmit stream
CMQ_ALARM_INS_TX_E1_Y_BIT - E1 only.
Sends the timeslot 16 Y-bit alarm

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-2001401, Issue 2

CMQ_ALARM_INS_TX_E1_TS16_AIS - E1
only. Transmits AIS in timeslot 16

enable : selects activation or deactivation of the specified alarm

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC configuration: cometqHDLCEnable

Enables or disables an HDLC link by enabling its respective input clocks and the associated
TDPR and RDLC blocks.

Prototype INT4 cometqHDLCEnable(sCMQ_HNDL deviceHandle, UINT2
idHDLC, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2

enable : enable HDLC controller if set

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC configuration: cometqHDLCRxCfg

Configures the receive HDLC controller for a data link on a COMET or COMET-QUAD device.
This function allows you to configure where the receive data link is extracted from. It also
enables address matching and masking.

Prototype INT4 cometqHDLCRxCfg(sCMQ_HNDL deviceHandle, UINT2
idHDLC, sCMQ_CFG_HDLC_RX* pData)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2
pData : HDLC receiver configuration data

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-2001401, Issue 2

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC configuration: cometqHDLCTxCfg

Configures the HDLC transmitter for a data link on a COMET or COMET-QUAD device. This
function allows configuration of where the data link is inserted as well as options such as flag
sharing, CRC frame check sequences, and performance report insertion.

Prototype INT4 cometqHDLCTxCfg(sCMQ_HNDL deviceHandle, UINT2
idHDLC, sCMQ_CFG_HDLC_TX* pData)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2
pData : HDLC transmitter configuration data

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC transmitter: cometqTDPRData

This function transmits a data byte on the specified HDLC link.

Prototype INT4 cometqTDPRData(sCMQ_HNDL deviceHandle, UINT2
idHDLC, UINT1 value)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2
value : byte to transmit on data link

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC transmitter: cometqTDPRCtl

With this function the user can transmit a control byte on an HDLC link or force a FIFO clear.

Prototype INT4 cometqTDPRCtl(sCMQ_HNDL deviceHandle, UINT2
idHDLC, eCMQ_TDPR_ACTION hdlcAction)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2
hdlcAction : CMQ_TDPR_ACTION_ABORT

- insert HDLC abort code into data link
 CMQ_TDPR_ACTION_END_ABORT

- end abort code insertion
CMQ_TDPR_ACTION_EOM

- send end of message indicator
CMQ_TDPR_ACTION_FIFOCLR

- clear transmit fifo

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC transmitter: cometqTDPRFIFOThreshCfg

Configures the upper and lower limits of the HDLC transmitter FIFO for one of the transmit
HDLC Controllers.

Prototype INT4 cometqTDPRFIFOThreshCfg(sCMQ_HNDL deviceHandle,
UINT2 idHDLC, UINT1 upFifoThresh, UINT1 lowFifoThresh)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or
upFifoThresh : upper FIFO threshold for auto transmit

valid values are 0 thru 127
lowFifoThresh: lower FIFO threshold for LFILL interrupt

valid values are 0 thru 127
Note that the lower threshold must be less than upper threshold
unless both are set to 0.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-2001401, Issue 2

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC transmitter: cometqTDPRTx

This function transmits an HDLC packet on the specified HDLC link. If this function returns
CMQ_ERR_FIFO_UNDERRUN, a FIFO underrun has occurred and the packet should be
retransmitted.

Prototype INT4 cometqTDPRTx(sCMQ_HNDL deviceHandle, UINT2
idHDLC, UINT1* pPacket, UINT2 packetLength)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or
pPacket : Buffer containing packet to transmit
packetLength : Number of bytes in packet to transmit.

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE

Side Effects None

HDLC receiver: cometqRDLCTerm

Forces the RDLC to immediately terminate the reception of the current data frame. This function
causes the current data frame to terminate and the FIFO buffer to empty. The RDLC then begins
searching for a frame delimiting flag.

Prototype INT4 cometqRDLCTerm(sCMQ_HNDL deviceHandle, UINT2
idHDLC)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2

Outputs None

Returns Success = CMQ_SUCCESS

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-2001401, Issue 2

Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC receiver: cometqRDLCAddrMatch

This function configures the primary and secondary addresses used with address matching on an
HDLC receiver. When address masking is enabled, the lower two bits of each of the primary and
secondary addresses are masked during comparison.

Prototype INT4 cometqRDLCAddrMatch(sCMQ_HNDL deviceHandle, UINT2
idHDLC, UINT1 addrPri, UINT1 addrSec)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2
addrPri : primary address
addrSec : secondary address

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC receiver: cometqRDLCFIFOThreshCfg

Configures the fill level threshold for an RDLC FIFO. The fill level threshold is the number of
bytes that must be present in the FIFO before an interrupt is generated.

Prototype INT4 cometqRDLCFIFOThreshCfg(sCMQ_HNDL deviceHandle,
UINT2 idHDLC, UINT1 fifoThresh)

Inputs deviceHandle : device Handle (from cometqAdd)
idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3

COMET: 0, 1, or 2

fifoThresh : FIFO fill level threshold (7 bit value)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

HDLC receiver: cometqRDLCRx

This function services an RDLC interrupt condition and should be called when an RDLC
interrupt has occurred or periodically to poll the RDLC on a COMET or COMET-QUAD device
to check for activity on the HDLC link.

When this function is invoked, the return code indicates the status of RDLC data processing.
cometqRDLCRx should be repeatedly called until CMQ_SUCCESS is returned. The return codes
should be interpreted as follows:

• CMQ_SUCCESS : The RDLC FIFO is empty and cometqRDLCRx need not be called
again until the next RDLC interrupt event occurs. If pPacketStatus is set to
CMQ_HDLC_PACKET_INCOMPLETE, an incomplete packet was written to pPacket.
The number of bytes written to the buffer is given by pBytesWritten. The buffer
pointer pPacket should be incremented by this number of bytes when the next
RDLC interrupt occurs in order for cometqRDLCRx to continue writing the packet
from its previous position.

• CMQ_ERR_CHANGE_OF_LINK_STATE : A change of link state event has been
detected. The new link state is returned in pLinkStateFlag. cometqRDLCRx
should be called again after the change of link state has been processed.

• CMQ_ERR_PACKET_COMPLETE : Indicates that a packet was terminated in pPacket.
pPacketStatus specifies whether a CRC error or non-integral byte count error
occurred. cometqRDLCRx should be called again.

• CMQ_ERR_FIFO_OVERRUN : The HDLC receiver FIFO has overflowed. Any
incomplete packets (status CMQ_HDLC_PACKET_INCOMPLETE) must be discarded
and cometqRDLCRx should be called again.

Prototype
INT4 cometqRDLCRx(sCMQ_HNDL deviceHandle,

UINT2 idHDLC,
UINT2* pLinkStateFlag,
UINT2* pBytesWritten,
UINT1* pPacketStatus,
UINT1* pPacket)

Inputs deviceHandle : device Handle (from cometqAdd)

idHDLC : HDLC controller: COMET-QUAD: 0, 1, 2, or 3
COMET: 0, 1, or

pLinkStateFlag : pointer to link state flag

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-2001401, Issue 2

pBytesWritten : pointer to byte count

pPacketStatus : pointer to packet status

pPacket : packet buffer

Outputs pLinkStateFlag : new link state on a change of link state event
0 => inactive, 1 => active

pBytesWritten : number of bytes written to pPacket

pPacketStatus : bitmap containing status of packet written to
 pPacket:

 CMQ_HDLC_PACKET_OKAY => the packet is complete
and without errors

CMQ_HDLC_PACKET_CRC_ERR => the
packet is complete but contains a CRC
error

CMQ_HDLC_PACKET_NON_INTEGER_BYTES => the
packet is complete but contained a non-itegral
number of bytes and should be discarded

CMQ_HDLC_PACKET_INCOMPLETE => the packet is not
yet complete

CMQ_HDLC_PACKET_NONE => no data was been
written to the buffer

pPacket : packet buffer

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE

Side Effects None

Inband loopack code detection: cometqIBCDActLpBkCfg

Configures the detection of inband activate loopback code length and pattern. This API is valid
only in T1 mode.

Prototype INT4 cometqIBCDActLpBkCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1 patLen, UINT1 pat)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
patLen : pattern length (5-8)
pat : activate loopback pattern

Outputs None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-2001401, Issue 2

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Inband loopack code detection: cometqIBCDDeActLpBkCfg

Configures the detection of inband deactivate loopback code length and pattern. This API is valid
only in T1 mode.

Prototype INT4 cometqIBCDDeActLpBkCfg(sCMQ_HNDL deviceHandle,
UINT2 chan, UINT1 patLen, UINT1 pat)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
patLen : pattern length (5-8)
pat : deactivate loopback pattern

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Inband loopack code transmission: cometqIBCDTxCfg

Enables/disables transmission of the inband transmit loopback code and allows configuration of
the code length and pattern when activating. When disabling transmission of the loopback code,
the parameters pat and patLen are not used. This API is valid only in T1 mode.

Prototype INT4 cometqIBCDTxCfg(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 patLen, UINT1 pat, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

patLen : pattern length (5-8). Only used when enabling.
pat : loop code pattern. Only used when enabling.
enable : enable/disable loopback code transmission

Outputs None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-2001401, Issue 2

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Bit Oriented Code transmission: cometqBOCTxCfg

Configures the bit oriented code for transmission,. On COMET-QUAD devices, the associated
repeat count can also be configured. The value of parameter boc is transmitted with the least
significant bit leading. To terminate BOC transmission, boc should be set to all 1’s. Valid only in
T1 mode.

Prototype INT4 cometqBOCTxCfg(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 boc, UINT1 repCount)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
boc : 6 bit BOC code pattern. Setting this

 value to all 1’s disables BOC transmission
repCount : number of consecutive BOC codes to transmit. Valid

 range is 0 thru 15. Supported by COMET-QUAD only.

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Bit Oriented Code detection: cometqBOCRxCfg

Configures bit oriented code detection criteria by allowing the user to select the threshold that
determines whether or not a valid BOC code has been detected. Valid BOC detection criteria are
8 out of 10 matching values (or alternately 4 out of 5 matching values). Valid only in T1 mode.

Prototype INT4 cometqBOCRxCfg(sCMQ_HNDL deviceHandle, UINT2
chan, eCMQ_RBOC_CRITERIA detectCriteria)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
detectCriteria : CMQ_RX_BOC_VALID_4OF5

 – 4 out of 5 of the same BOC code

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-2001401, Issue 2

 received
 CMQ_RX_BOC_VALID_8OF10

 – 8 out of 10 of the same BOC code
 received

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Bit Oriented Code detection: cometqBOCRxGet

This API retrieves the current bit oriented code from the holding registers. Valid only in T1 mode.

Prototype INT4 cometqBOCRxGet(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 *prxBOC)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs prxBoc : pointer to last BOC received (6 bit value)

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

4.9 Serial Control

This section provides the user with an interface to manipulate the T1 or E1 stream on a DS0
basis; the user can force signal or trunk conditioning on any given timeslot or manipulate the
PCM data. Also, this section provides access to the on-chip pseudo random generator/detector,
allowing the user to configure the pattern and insert random data into the data stream.

Transmit per-channel serial controller: cometqTPSCEnable

This function enables or disables the Transmit Per-Channel Serial Controller (TPSC) to
manipulate signaling and data for all 24 T1 channels or all 32 E1 timeslots.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-2001401, Issue 2

Prototype INT4 cometqTPSCEnable(sCMQ_HNDL deviceHandle, UINT2
chan, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
enable : enable/disable Transmit Serial Controller

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Transmit per-channel serial controller: cometqTPSCPCMCtl

This function allows the user to invoke PCM data inversion, idle pattern insertion, DS0 loopback,
and zero code suppression. The user can also force insertion of signaling bits by providing their
own signaling data.

Prototype INT4 cometqTPSCPCMCtl(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 tSlot, UINT2 rWFlag, UINT1 *pctlByte,
UINT1 *ptrnkData, UINT1 *psigData)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
tSlot : timeslot

 E1: 0 thru 31
 T1: 1 thru 24

rWFlag : Read/Write select. Write = 1, Read = 0

pctlByte : pcm data control byte
 bit 7,5:

0,0 - data unchanged
0,1 - only msb inverted
1,0 - inverted all bits
1,1 - invert all except msb

 bit 6: replace pcm data with trunk conditioning byte
 bit 4: (T1 only)

replace pcm data with digital mW pattern
 bit 3: if receive pattern generation on, data routed to

PRBS/PRGD checker otherwise overwritten
with PRBS/PRGD test pattern

 bit 2: loopback DS0
 bit 1,0: zero code suppression format

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID: PMC-2001401, Issue 2

0,0 - no zero suppression
0,1 - jammed bit 8
1,0 - GTE zero suppression
1,1 - Bell zero suppression

ptrnkData : trunk conditioning data byte

psigData : signaling data byte / E1 control byte

bit map for E1 mode:

 bit 7,6,5: data manipulation
0,0,0 - data unchanged
0,0,1 - invert odd timeslot bits
0,1,0 - invert even timeslot bits
0,1,1 - invert all timeslot bits
1,0,0 - replace data with idle code
1,0,1 - replace data with idle code
1,1,0 - replace data with A-law pattern
1,1,1 - replace data with U-law pattern

 bit 4:
when CAS enabled, signaling bits taken
from A,B,C,D bits

 bit 3,2,1,0:
A,B,C,D bits

 bit map for T1 mode:

 bit 7: forces signaling data from A,B,C,D bits
 bit 6: enables signal insertion from ABCD bits
 bit 5,4:

unused
 bit 3,2,1,0:

A,B,C,D bits

Outputs pctlByte : control byte
ptrnkData : trunk conditioning data byte
psigData : signaling data byte

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Receive per-channel serial controller: cometqRPSCEnable

This function enables or disables the Receive Per-Channel Serial Controller (RPSC) to
manipulate signaling and data for all 24 T1 channels or all 32 E1 timeslots.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID: PMC-2001401, Issue 2

Prototype INT4 cometqRPSCEnable(sCMQ_HNDL deviceHandle, UINT2
chan, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
enable : enable/disable Receive Serial Controller

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Receive per-channel serial controller: cometqRPSCPCMCtl

Through the use of this function, the user can force data trunk conditioning on any individual
timeslot, force insertion of A-law or u-law patterns, or retrieve signaling information. Also, the
user can force PCM data inversion, idle pattern insertion, DS0 loopback, and zero code
suppression. The user can also force insertion of signaling bits by providing the signaling data to
the signaling bits. DS0 PCM data manipulation performed by the RPSC occurs after PCM data
manipulation performed in the SIGX block (cometqSigTslotTrnkDataCfg).

Prototype INT4 cometqRPSCPCMCtl(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 tSlot, UINT2 rWFlag, UINT1 *pctlByte,
UINT1 *ptrnkData, UINT1 *psigData)

Inputs deviceHandle : device Handle (from cometqAdd)

chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3
COMET: not used

tSlot : timeslot
 E1: 0 thru 31
 T1: 1 thru 24

rWFlag : Read/Write select. Write = 1, Read = 0

pctlByte : Control byte
 bit 7: if receive pattern generation off, data routed to

PRBS/PRGD checker otherwise overwritten
with PRBS/PRGD test pattern

 bit 6: overwrite data with data trunk conditioning
code byte

 bit 5: overwrite signaling with signaling trunk
conditioning code byte

 bit 4: replace pcm data with digital miliwat pat

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID: PMC-2001401, Issue 2

 bit 3: selects A-law mW patter instead of U-law
 bit 2: invert most significant bit of data
 bit 1,0: unused

trnkData : trunk conditioning data byte

sigData : signaling data byte
 bit 7,6,5,4: unused
 bit 3,2,1,0: A,B,C,D bits

Outputs pctlByte : array of control byte
trnkData : trunk conditioning data byte
sigData : signaling data byte

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Transmit Trunk Conditioning: cometqTxTrnkCfg

This function enables or disables trunk conditioning into the transmit stream for all timeslots.
PCM data is overwritten by the contents of the TPSC idle code bytes and signaling data is
overwritten by the ‘ABCD’ values in the TPSC signaling control registers.

Prototype INT4 cometqTxTrnkCfg (sCMQ_HNDL deviceHandle, UINT2
chan, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
enable : enable or disable transmit trunk conditioning

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID: PMC-2001401, Issue 2

Receive Trunk Conditioning: cometqRxTrnkCfg

This function allows the user to enable or disable trunk conditioning onto the backplane,
overwriting the received data stream. Upon enable, PCM data is overwritten by the contents of
the data trunk conditioning registers in the RPSC and signaling data is overwritten by the contents
of the signaling trunk conditioning registers in the RPSC.

Prototype INT4 cometqRxTrnkCfg (sCMQ_HNDL deviceHandle, UINT2
chan, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
enable : enable or disable receive trunk conditioning

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Pattern receive and generation control: cometqPRGDCtlCfg

This function allows the user to configure the pattern generator and detector to insert or detect
framed and unframed patterns in both the transmit and receive streams.

Prototype INT4 cometqPRGDCtlCfg(sCMQ_HNDL deviceHandle, UINT2
chan, eCMQ_PRGD_PAT_LEN genLen, eCMQ_PRGD_PAT_LEN
detLen, UINT2 unFrmGen, UINT2 unFrmDet, UINT2
rxPatGenLoc)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1channels: COMET-QUAD: 0, 1, 2, or 3

 COMET: not used
genLen : select 7 or 8 bit pattern insertion:
 CMQ_PRGD_PAT_8_BIT,

CMQ_PRGD_PAT_7_BIT

detLen : select 7 or 8 bit pattern detection:
CMQ_PRGD_PAT_8_BIT,
CMQ_PRGD_PAT_7_BIT

unFrmGen : generate unframed pattern if set
unFrmDet : detect unframed pattern if set
rxPatGenLoc : location of the PRBS generator/detector.

 If set, the pattern detector is inserted into the transmit
 path and the generator is inserted into the receive path.
 If clear, the generator is inserted in the transmit path
 and the detector is inserted in the receive path.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID: PMC-2001401, Issue 2

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Pattern receive and generation control: cometqPRGDPatCfg

This API provides configuration of the pattern type that the pseudo-random generator/detector
uses. The user can specify the pattern type and select between a pseudo-random or a quasi-
random sequence.

The available patterns for the COMET and COMET-QUAD and the corresponding value to
assign to the pat parameter are as follows:

Pattern Type pat enumerated value

220 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_20
th_MINUS1

215 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_15
th_MINUS1

COMET-QUAD

211 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_11
th_MINUS1

23 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_3R
D_MINUS1

24 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_4t
h_MINUS1

25 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_5t
h_MINUS1

26 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_6t
h_MINUS1

27 - 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_7t
h_MINUS1

COMET

27 – 1, Fractional T1
loopback activate

CMQ_PSEUDO_RANDOM_PAT_FRAC_T1
_ACTIVATE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID: PMC-2001401, Issue 2

Pattern Type pat enumerated value

29 – 1, O.153
compliant

CMQ_PSEUDO_RANDOM_PAT_2_TO_9t
h_MINUS1_O_153

210 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_10
th_MINUS1

211 – 1, O.152
compliant

CMQ_PSEUDO_RANDOM_PAT_2_TO_11
th_MINUS1_O_152

215 – 1, O.151
compliant

CMQ_PSEUDO_RANDOM_PAT_2_TO_15
th_MINUS1_O_151

217 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_17
th_MINUS1

218 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_18
th_MINUS1

220 – 1, O.153
compliant

CMQ_PSEUDO_RANDOM_PAT_2_TO_20
th_MINUS1_O_153

220 – 1, O.151
compliant, Quasi-
random (quasiRand
= 1)

CMQ_PSEUDO_RANDOM_PAT_2_TO_20
th_MINUS1_O_151

221 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_21
th_MINUS1

222 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_22
th_MINUS1

223 – 1, O.151
compliant

CMQ_PSEUDO_RANDOM_PAT_2_TO_23
th_MINUS1_O_151

225 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_25
th_MINUS1

228 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_28
th_MINUS1

COMET

229 – 1 CMQ_PSEUDO_RANDOM_PAT_2_TO_29
th_MINUS1

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120
Document ID: PMC-2001401, Issue 2

Pattern Type pat enumerated value

All ones CMQ_PSEUDO_RANDOM_PAT_ALL_ONE
S

All zeroes CMQ_PSEUDO_RANDOM_PAT_ALL_ZER
OS

Alternating 1’s and
0’s

CMQ_PSEUDO_RANDOM_PAT_ALT_ONE
S_AND_ZEROS

Double alternating
1’s and 0’s

CMQ_PSEUDO_RANDOM_PAT_DOUBLE_
ALT_ONES_AND_ZEROS

3 1’s in 24 bits CMQ_PSEUDO_RANDOM_PAT_3_IN_24

one 1 in 16 bits CMQ_PSEUDO_RANDOM_PAT_1_IN_16

one 1 in 8 bits CMQ_PSEUDO_RANDOM_PAT_1_IN_8

one 1 in 4 bits CMQ_PSEUDO_RANDOM_PAT_1_IN_4

Inband Activate
loopback pattern

CMQ_PSEUDO_RANDOM_PAT_INBAND_
LOOPBACK_ACTIVATE

COMET

Inband Deactivate
loopback pattern

CMQ_PSEUDO_RANDOM_PAT_INBAND_
LOOPBACK_DEACTIVATE

Prototype INT4 cometqPRGDPatCfg(sCMQ_HNDL deviceHandle, UINT2
chan, UINT1 quasiRand, eCMQ_PSEUDO_RANDOM_PATTERN pat)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

quasiRand : Select quasi-random data instead of pseudo-random.

pat : Pattern type as appropriate for COMET-QUAD
 or COMET

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID: PMC-2001401, Issue 2

Side Effects None

Pattern receive and generation control: cometqPRGDErrInsCfg

This function allows the user to configure the data generator and detector error insertion rate for a
COMET device.

Prototype INT4 cometqPRGDErrInsCfg(sCMQ_HNDL deviceHandle,
eCMQ_ERROR_RATE errRate)

Inputs deviceHandle : device Handle (from cometqAdd)

 errRate : Selects the error insertion probability:
CMQ_ERROR_RATE_OFF,
CMQ_ERROR_RATE_SINGLE,
CMQ_ERROR_RATE_10_TO_MINUS1,
CMQ_ERROR_RATE_10_TO_MINUS2,
CMQ_ERROR_RATE_10_TO_MINUS3,
CMQ_ERROR_RATE_10_TO_MINUS4,
CMQ_ERROR_RATE_10_TO_MINUS5,
CMQ_ERROR_RATE_10_TO_MINUS6,
CMQ_ERROR_RATE_10_TO_MINUS7

Outputs

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

4.10 Interrupt Service Functions

This section describes interrupt-service functions that perform the following tasks:

• Set, get and clear the interrupt enable mask

• Read and process the interrupt-status registers

• Poll and process the interrupt-status registers

See page 25 for an explanation of our interrupt servicing architecture.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID: PMC-2001401, Issue 2

Configuring ISR Processing: cometqISRConfig

Allows the USER to configure how ISR processing is to be handled: polling (CMQ_POLL_MODE)
or interrupt driven (CMQ_ISR_MODE). If polling is selected, the USER is responsible for calling
cometqPoll to collect interrupt data from the device.

ISR configuration is the same for both COMET and COMET-QUAD devices.

Prototype INT4 cometqISRConfig(sCMQ_HNDL deviceHandle,
eCMQ_ISR_MODE mode)

Inputs deviceHandle : device Handle (from cometqAdd)
mode : mode of operation : CMQ_ISR_MODE or

 CMQ_POLL_MODE

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Getting the Interrupt Status Mask: cometqGetMask

Returns the interrupt mask currently stored within the DDB.

For COMET devices, all mask structure arrays within pmask except for the HDLC interrupt mask
arrays use only one element as there is only one framer present on the device. There are three
HDLC controllers on the COMET and the corresponding mask arrays, rdlcEn and tdpr, contain
their interrupt masks as the first three elements of the array.

Prototype INT4 cometqGetMask(sCMQ_HNDL deviceHandle,
sCMQ_ISR_MASK *pmask)

Inputs deviceHandle : device Handle (from cometqAdd)
pmask : (pointer to) mask structure

Outputs pmask : (pointer to) updated mask structure

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID: PMC-2001401, Issue 2

Setting the Interrupt Enable Mask: cometqSetMask

Sets individual interrupt bits and registers in the COMET or COMET-QUAD device. Any bits
that are set in the passed structure are set in the associated COMET or COMET-QUAD registers.
All other interrupt bits are left unmodified.

For COMET devices, all mask structure arrays within pmask except for the HDLC interrupt mask
arrays use only one element as there is only one framer present on the device. There are three
HDLC controllers on the COMET and the corresponding mask arrays, rdlcEn and tdpr, contain
their interrupt masks as the first three elements of the array.

Prototype INT4 cometqSetMask(sCMQ_HNDL deviceHandle,
sCMQ_ISR_MASK *pmask)

Inputs deviceHandle : device Handle (from cometqAdd)
pmask : (pointer to) mask structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects May change the operation of the ISR / DPR

Clearing the Interrupt Enable Mask: cometqClearMask

Clears individual interrupt bits and registers in the COMET or COMET-QUAD device. Any bits
that are set in the passed structure are cleared in the associated COMET or COMET-QUAD
registers. All other interrupt bits are left unmodified.

For COMET devices, all mask structure arrays within pmask except for the HDLC interrupt mask
arrays use only one element as there is only one framer present on the device. There are three
HDLC controllers on the COMET and the corresponding mask arrays, rdlcEn and tdpr, contain
their interrupt masks as the first three elements of the array.

Prototype INT4 cometqClearMask(sCMQ_HNDL deviceHandle,
sCMQ_ISR_MASK *pmask)

Inputs deviceHandle : device Handle (from cometqAdd)
pmask : (pointer to) mask structure

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124
Document ID: PMC-2001401, Issue 2

Side Effects May change the operation of the ISR / DPR

Polling the Interrupt Status Registers: cometqPoll

Commands the driver to poll the interrupt registers in the device. The call will fail unless the
device was initialized (via cometqInit) or configured (via cometqISRConfig) into polling
mode.

Prototype INT4 cometqPoll(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE

Side Effects None

Interrupt Service Routine: cometqISR

Reads the state of the interrupt registers in the COMET or COMET-QUAD and stores them in an
ISV. Performs whatever functions are needed to clear the interrupt, from simply clearing bits to
complex functions. This routine is called by the application code from within
sysCometqISRHandler. If ISR mode is configured, all interrupts that were detected are
disabled and the ISV is returned to the Application. Note that the Application is then responsible
for sending this buffer to the DPR task. If polling mode is selected, no ISV is returned to the
Application and the DPR is called directly with the ISV.

Prototype void* cometqISR(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns (pointer to) ISV buffer (to send to the DPR) or NULL (pointer)

Valid States CMQ_ACTIVE

Side Effects None

Pseudocode Begin
get an ISV buffer
update ISV with current interrupt status
if no valid interrupt condition
return NULL

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID: PMC-2001401, Issue 2

if in ISR mode
 disable all detected interrupts
 return ISV
else (Polling mode)
call cometqDPR
output NULL

End

Deferred Processing Routine: cometqDPR

Acts on data contained in the passed ISV, allocates one or more DPV buffers (via
sysCometqDPVBufferGet) and invokes one or more callbacks (if defined and enabled). This
routine is called by the application code, within sysCometqDPRTask. Note that the callbacks are
responsible for releasing the passed DPV. It is recommended that this be done as soon as possible
to avoid running out of DPV buffers.

This function operates the same for both COMET and COMET-QUAD devices.

Prototype void cometqDPR(sCMQ_ISV* pisv)

Inputs pisv : (pointer to) ISV buffer

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

Pseudocode Begin
 for each ISV element (section)
 get and fill out a DPV buffer
 if callback (from cometqInit) is not NULL
 invoke (section) callback
 release ISV by calling sysCometqISVBufferRtn
End

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID: PMC-2001401, Issue 2

4.11 Status and Statistics Functions

This section provides access to the on-chip statistics and counts interface. It also provides an
interface to control the transmission of automatic performance reports in the transmit stream
when in T1 ESF mode. The user can enable, disable, and force a manual update of the
performance report as well as read the performance report to examine its contents.

Performance monitoring statistics: cometqForceStatsUpdate

This function forces the performance monitor counters obtained by calling cometqGetStats to
be updated from the internal holding registers. This function must be called before
cometqGetStats is invoked. For COMET-QUAD devices, registers for all four quadrants are
updated. When the values have been loaded from the internal holding registers, an interrupt will
be generated if the performance monitoring transfer indication interrupt is enabled.

Prototype INT4 cometqForceStatsUpdate(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Performance monitoring statistics: cometqGetStats

This function retrieves framing statistics from the hardware T1/E1 performance monitoring
registers. When calling this function, it is assumed that the user forced the registers to update by
calling cometqForceStatsUpdate.

For COMET devices, the arrays within pData use only the first element of the four element
arrays as there is only one framer present on the device.

Prototype INT4 cometqGetStats(sCMQ_HNDL deviceHandle,
sCMQ_FRM_CNTS *pData)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs pData : framer statistics structure

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Framer status: cometqGetStatus

This function retrieves status and alarms information for either the T1 or E1 framers as
appropriate based on the current operating mode. Loss of signal, loss of frame, AIS and yellow
alarm status information is available for T1 and E1. For E1, loss of CRC-4 multiframe, loss of
signaling multiframe, and timeslot 16 RAI indication is also available.

For COMET devices, the arrays within pStatus use only the first element of the four element
arrays as there is only one framer present on the device.

Prototype
INT4 cometqGetStatus(sCMQ_HNDL deviceHandle,
sCMQ_FRM_STATUS *pStatus)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs pStatus : framer status structure

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Status of line clocks: cometqLineClkStatGet

This function provides the clock inputs status as well as the synchronization status of the clock
service unit.

Prototype INT4 cometqLineClkStatGet(sCMQ_HNDL deviceHandle,
UINT2 chan, sCMQ_CLK_STATUS *pclkStat)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pclkStat : clock status structure

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128
Document ID: PMC-2001401, Issue 2

Pattern receive and generation control: cometqPRGDCntGet

This function retrieves the bit error count that is maintained in the pseudo-random
generator/detector within the device.

Prototype INT4 cometqPRGDCntGet(sCMQ_HNDL deviceHandle, UINT2
chan, UINT4 *pcount)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pcount : total bit error count

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Pattern receive and generation control: cometqPRGDGetBitCnt

This function provides the user with the bit count maintained in the PRBS within a COMET
device. This function is supported by the COMET only.

Prototype INT4 cometqPRGDGetBitCnt(sCMQ_HNDL deviceHandle, UINT4
*pcount)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs pcount : current bit count

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Automatic performance report generation: cometqPmonSet

Enable/Disable one second update of Auto Performance Report Monitoring (APRM). This
function is valid only in T1 ESF framing mode. For COMET devices, the user can force a manual
insertion of a performance report into the transmit stream when automatic transmission is
disabled.

Prototype INT4 cometqPmonSet(sCMQ_HNDL deviceHandle, UINT2 chan,
eCMQ_APRM_ACTION action)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129
Document ID: PMC-2001401, Issue 2

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used
action : specifies the action to perform:

 CMQ_AUTO_PMON_UPDATE_DISABLE,
CMQ_AUTO_PMON_UPDATE_ENABLE,

CMQ_AUTO_PMON_UPDATE_MAN (COMET only –
 forces manual update)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE CMQ_INACTIVE

Side Effects None

Automatic performance report generation: cometqPmonReportGet

This API returns the current one second performance report. This function is valid only in T1 ESF
framing mode.

Prototype INT4 cometqPmonReportGet(sCMQ_HNDL deviceHandle, UINT2
chan, sCMQ_STAT_APRM *pPmonReport)

Inputs deviceHandle : device Handle (from cometqAdd)
chan : E1/T1 channel: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

Outputs pPmonReport : performance report structure

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE CMQ_INACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130
Document ID: PMC-2001401, Issue 2

4.12 Device Diagnostics

Register access test: cometqTestReg

This function verifies hardware register integrity by writing and reading back values.

The register test operates on both COMET or COMET-QUAD devices.

Prototype INT4 cometqTestReg(sCMQ_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from cometqAdd)

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_PRESENT

Side Effects None

Framer loopback: cometqLoopFramer

Clears / Sets a loopback of type line, payload, or digital within the E1/T1 framer section of the
device. Note that when performing a line loopback, the transmit jitter attenuators reference and
output clock divisors are set to 0x2F, the transmit timing options register is modified to jitter
attenuated loop timing, and the transmit elastic store is enabled.

Prototype INT4 cometqLoopFramer(sCMQ_HNDL deviceHandle, UINT2
framer, eCMQ_LOOPBACK_TYPE type)

Inputs deviceHandle : device Handle (from cometqAdd)
framer : framer number: COMET-QUAD: 0, 1, 2, or 3

COMET: not used

type : loopback type:
CMQ_LOOPBACK_NONE (disable),
CMQ_LOOPBACK_DIGITAL,
CMQ_LOOPBACK_LINE, or
CMQ_LOOPBACK_PAYLOAD

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131
Document ID: PMC-2001401, Issue 2

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects TJAT reference and output clock divisors, transmit timing options
modified if line loopback specified

DS0 loopback: cometqLoopTslots

This function enables or disables DS0 loopback on specified DS0s. To facilitate DS0 loopback,
the receive elastic store must be bypassed. As such, the current receive backplane configuration
must be clock master otherwise DS0 loopback is not possible.

Prototype INT4 cometqLoopTslots(sCMQ_HNDL deviceHandle, UINT2
framer, UINT4 timeSlot, UINT2 enable)

Inputs deviceHandle : device Handle (from cometqAdd)

framer : framer number: COMET-QUAD: 0, 1, 2, or 3
COMET: not used

timeSlot : bit mask for timeslots to loopback
T1: bit 0-23 : channels 1-24

bit 24-31 : unused
E1: bit 0-31 : timeslots 0-31

enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Analog transmitter bypass: cometqTxAnalogByp

This function enables or disables bypass of the TXRING and TXTIP outputs to use the digital
TDAT and TCLKO lines. This function is for COMET devices only.

Prototype INT4 cometqTxAnalogByp(sCMQ_HNDL deviceHandle, UINT1
enable)

Inputs deviceHandle : device Handle (from cometqAdd)

enable : enable/disable analog bypass

Outputs None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID: PMC-2001401, Issue 2

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

Analog transmitter bypass: cometqRxAnalogByp

This function enables or disables bypass of the RXRING and RXTIP outputs to use the digital
RDAT and RCLK lines. This function is for COMET devices only.

Prototype INT4 cometqRxAnalogByp(sCMQ_HNDL deviceHandle, UINT1
enable)

Inputs deviceHandle : device Handle (from cometqAdd)

enable : enable/disable analog bypass

Outputs None

Returns Success = CMQ_SUCCESS
Failure = <COMET-QUAD ERROR CODE>

Valid States CMQ_ACTIVE, CMQ_INACTIVE

Side Effects None

4.13 Callback Functions

The COMET-QUAD driver has the capability to callback to functions within the USER code
when certain events occur. These events and their associated callback routine declarations are
detailed below. There is no USER code action that is required by the driver for these callbacks –
the USER is free to implement these callbacks in any manner or else they can be deleted from the
driver.

The names given to the callback functions are given as examples only. The addresses of the
callback functions invoked by the cometqDPR function are passed during the cometqInit call
(inside a DIV). However the USER shall use the exact same prototype. The Application is left
responsible for releasing the passed DPV as soon as possible (to avoid running out of DPV
buffers) by calling sysCometqDPVBufferRtn either within the callback function or later inside
the Application code.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133
Document ID: PMC-2001401, Issue 2

Calling Back to the Application due to Interface events: cometqCbackIntf

This callback function is provided by the USER and is used by the DPR to report significant
Interface section events back to the application. This function should be non-blocking. Typically,
the callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. NOTE: the callback function’s addresses are passed to the driver doing
the cometqInit call. If the address of the callback function was passed as a NULL at
initialization no callback will be made.

Prototype void cometqCbackIntf (sCMQ_USR_CTXT usrCtxt, sCMQ_DPV
*pdpv)

Inputs usrCtxt : user context (from cometqAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

Calling Back to the Application due to T1 / E1 Framer events:
cometqCbackFramer

This callback function is provided by the USER and is used by the DPR to report significant
Framer section events back to the application. This function should be non-blocking. Typically,
the callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. NOTE: the callback function’s addresses are passed to the driver doing
the cometqInit call. If the address of the callback function was passed as a NULL at
initialization no callback will be made.

Prototype void cometqCbackFramer (sCMQ_USR_CTXT usrCtxt,
sCMQ_DPV *pdpv)

Inputs usrCtxt : user context (from cometqAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID: PMC-2001401, Issue 2

Calling Back to the Application due to Signal Insertion / Extraction events:
cometqCbackSigInsExt

This callback function is provided by the USER and is used by the DPR to report significant
Signal Insertion/Extraction section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event identifier
and other context information. The task that receives this message can then process this
information according to the system requirements. NOTE: the callback function’s addresses are
passed to the driver doing the cometqInit call. If the address of the callback function was
passed as a NULL at initialization no callback will be made.

Prototype void cometqCbackSigInsExt (sCMQ_USR_CTXT usrCtxt,
sCMQ_DPV *pdpv)

Inputs usrCtxt : user context (from cometqAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

Calling Back to the Application due to Performance Monitoring events:
cometqCbackPMon

This callback function is provided by the USER and is used by the DPR to report significant
Performance Monitoring section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event identifier
and other context information. The task that receives this message can then process this
information according to the system requirements. NOTE: the callback function’s addresses are
passed to the driver doing the cometqInit call. If the address of the callback function was
passed as a NULL at initialization no callback will be made.

Prototype void cometqCbackPMon (sCMQ_USR_CTXT usrCtxt, sCMQ_DPV
*pdpv)

Inputs usrCtxt : user context (from cometqAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID: PMC-2001401, Issue 2

Calling Back to the Application due to Alarm Inband Communications
events: cometqCbackAlarmInBand

This callback function is provided by the USER and is used by the DPR to report significant
Alarm Inband Communications section events back to the application. This function should be
non-blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then process this
information according to the system requirements. NOTE: the callback function’s addresses are
passed to the driver doing the cometqInit call. If the address of the callback function was
passed as a NULL at initialization no callback will be made.

Prototype void cometqCbackAlarmInBand (sCMQ_USR_CTXT usrCtxt,
sCMQ_DPV *pdpv)

Inputs usrCtxt : user context (from cometqAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

Calling Back to the Application due to Serial Controller events:
cometqCbackSerialCtl

This callback function is provided by the USER and is used by the DPR to report significant
Serial Controller section events back to the application. This function should be non-blocking.
Typically, the callback routine sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this information
according to the system requirements. NOTE: the callback function’s addresses are passed to the
driver doing the cometqInit call. If the address of the callback function was passed as a NULL
at initialization no callback will be made.

Prototype void cometqCbackSerialCtl (sCMQ_USR_CTXT usrCtxt,
sCMQ_DPV *pdpv)

Inputs usrCtxt : user context (from cometqAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States CMQ_ACTIVE

Side Effects None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 136
Document ID: PMC-2001401, Issue 2

5 HARDWARE INTERFACE

The COMET-QUAD driver interfaces directly with the USER’s hardware. In this section of the
manual, a listing of each point of interface is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements into the
hardware, either by defining a macro or by writing a function for each item listed. Care should be
taken when matching parameters and return values.

The hardware interface API is device independent and is thus the same for both COMET and
COMET-QUAD devices.

5.1 Device I/O

Reading from a Device Register: sysCometqRead

The most basic hardware connection – reads the contents of a specific register location. This
macro should be UINT1 oriented and should be defined by the user to reflect the target system’s
addressing logic. There is no need for error recovery in this function.

Format #define sysCometqRead(addr)

Prototype UINT1 sysCometqRead(UINT1 *addr)

Inputs addr : register location to be read

Outputs None

Returns value read from the addressed register location

Writing to a Device Register: sysCometqWrite

The most basic hardware connection - writes the supplied value to the specific register location.
This macro should be UINT1 oriented and should be defined by the user to reflect the target
system’s addressing logic. There is no need for error recovery in this function.

Format #define sysCometqWrite(addr, value)

Prototype UINT1 sysCometqWrite(UINT1 *addr, UINT1 value)

Inputs addr : register location to be written
value : data to be written

Outputs None

Returns Value written to the addressed register location

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID: PMC-2001401, Issue 2

5.2 System-Specific Interrupt Servicing

The porting of an ISR routine between platforms is a rather difficult task. There are many
different implementations of these hardware level routines. In this driver, the USER is responsible
for installing an interrupt handler (sysCometqISRHandler) in the interrupt vector table of the
system processor. This handler shall call cometqISR for each device that has interrupt servicing
enabled, to perform the ISR related housekeeping required by each device.

During execution of the API function cometqModuleStart / cometqModuleStop the driver
informs the application that it is time to install / uninstall this shell via
sysCometqISRHandlerInstall / sysCometqISRHandlerRemove.

Note: A device can be initialized with ISR disabled. In that mode, the USER should periodically
invoke a provided ‘polling’ routine (cometqPoll) that in turn calls cometqISR.

Installing the ISR Handler: sysCometqISRHandlerInstall

Installs the USER-supplied Interrupt Service Routine (ISR), sysCometqISRHandler, into the
processor’s interrupt vector table.

Format #define sysCometqISRHandlerInstall(func)

Prototype INT4 sysCometqISRHandlerInstall(void *func)

Inputs func : (pointer to) the function
 sysCometqISRHandler

Outputs None

Returns Success = 0
Failure = <any other value>

Pseudocode Begin
install sysCometqISRHandler in processor’s interrupt vector table

End

ISR Handler: sysCometqISRHandler

This routine is invoked when one or more COMET or COMET-QUAD devices raise the interrupt
line to the microprocessor. This routine invokes the driver-provided routine, cometqISR, for
each device registered with the driver.

Format #define sysCometqISRHandler()

Prototype void sysCometqISRHandler(void)

Inputs None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138
Document ID: PMC-2001401, Issue 2

Outputs None

Returns None

Pseudocode Begin
for each device registered with the driver
 call cometqISR
 if returned ISV buffer is not NULL
 send ISV buffer to the DPR
End

Removing the ISR Handler: sysCometqISRHandlerRemove

Disables interrupt processing for all COMET or COMET-QUAD device. Removes the USER-
supplied Interrupt Service routine (ISR), sysCometqISRHandler, from the processor’s interrupt
vector table.

Format #define sysCometqISRHandlerRemove()

Prototype void sysCometqISRHandlerRemove(void)

Inputs None

Outputs None

Returns None

Pseudocode Begin
remove sysCometqISRHandler from the processor’s interrupt vector
table

End

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID: PMC-2001401, Issue 2

6 RTOS INTERFACE

The COMET-QUAD driver requires the use of some RTOS resources. In this section of the
manual, a listing of each required resource is shown, along with a declaration and any specific
porting instructions. Note that it is the responsibility of the USER to connect these requirements
into the RTOS, either by defining a macro or by writing a function for each item listed. Care
should be taken when matching parameters and return values.

The RTOS interface API is device independent and is thus the same for both COMET and
COMET-QUAD devices.

6.1 Memory Allocation / De-Allocation

Allocating Memory: sysCometqMemAlloc

Allocates specified number of bytes of memory.

Format #define sysCometqMemAlloc(numBytes)

Prototype UINT1* sysCometqMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Success = Pointer to first byte of allocated memory
Failure = NULL pointer (memory allocation failed)

Freeing Memory: sysCometqMemFree

Frees memory that was allocated using sysCometqMemAlloc.

Format #define sysCometqMemFree(pfirstByte)

Prototype void sysCometqMemFree(UINT1* pfirstByte)

Inputs pfirstByte : pointer to first byte of the memory region
 being de-allocated

Outputs None

Returns None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140
Document ID: PMC-2001401, Issue 2

Setting memory: sysCometqMemSet

Sets a specified contiguous block of memory to the given value.

Format #define sysCometqMemSet(pmem, val, sz)

Prototype void sysCometqMemSet(UINT1* pmem, UINT1 val, size_t sz)

Inputs pmem : pointer to first byte of memory to set

val : value to set the memory to

sz : number of bytes to set to val starting at pmem

Outputs None

Returns None

Copying memory: sysCometqMemCpy

Copies a given number of bytes from one memory location to another.

Format #define sysCometqMemCpy(pdst, psrc, sz)

Prototype void sysCometqMemCpy(UINT1* pdst, UINT1* psrc, size_t sz)

Inputs pdst : pointer to the destination

psrc : pointer to the source

sz : number of bytes to copy from the source to the destination

Outputs None

Returns None

6.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending and
receiving messages. The following calls, provided by the USER, allow the Driver to Get and
Return buffers from the RTOS. It is the USER’s responsibility to create any special resources or
pools to handle buffers of these sizes during the sysCometqBufferStart call.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141
Document ID: PMC-2001401, Issue 2

Starting Buffer Management: sysCometqBufferStart

Alerts the RTOS that the time has come to make sure ISV buffers and DPV buffers are available
and sized correctly. This may involve the creation of new buffer pools and it may involve
nothing, depending on the RTOS.

Format #define sysCometqBufferStart()

Prototype INT4 sysCometqBufferStart(void)

Inputs None

Outputs None

Returns Success = 0
Failure = <any other value>

Getting an ISV Buffer: sysCometqISVBufferGet

Gets a buffer from the RTOS that will be used by the ISR code to create an Interrupt Service
Vector (ISV). The ISV consists of data transferred from the devices interrupt status registers.

Format #define sysCometqISVBufferGet()

Prototype sCMQ_ISV* sysCometqISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer
Failure = NULL (pointer)

Returning an ISV Buffer: sysCometqISVBufferRtn

Returns an ISV buffer to the RTOS when the information in the block is no longer needed by the
DPR.

Format #define sysCometqISVBufferRtn(pISV)

Prototype void sysCometqISVBufferRtn(sCMQ_ISV* pisv)

Inputs pisv : (pointer to) a ISV buffer

Outputs None

Returns None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID: PMC-2001401, Issue 2

Getting a DPV Buffer: sysCometqDPVBufferGet

Gets a buffer from the RTOS that will be used by the DPR code to create a Deferred Processing
Vector (DPV). The DPV consists of information about the state of the device that is to be passed
to the USER via a callback function.

Format #define sysCometqDPVBufferGet()

Prototype sCMQ_DPV *sysCometqDPVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a DPV buffer
Failure = NULL (pointer)

Returning a DPV Buffer: sysCometqDPVBufferRtn

Returns a DPV buffer to the RTOS when the information in the block is no longer needed by the
DPR.

Format #define sysCometqDPVBufferRtn(pDPV)

Prototype void sysCometqDPVBufferRtn(sCMQ_DPV *pdpv)

Inputs pdpv : (pointer to) a DPV buffer

Outputs None

Returns None

Stopping Buffer Management: sysCometqBufferStop

Alerts the RTOS that the Driver no longer needs any of the ISV buffers or DPV buffers and that if
any special resources were created to handle these buffers, they can be deleted now.

Format #define sysCometqBufferStop()

Prototype void sysCometqBufferStop(void)

Inputs None

Outputs None

Returns None

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 143
Document ID: PMC-2001401, Issue 2

6.3 Timers

Sleeping a Task: sysCometqTimerSleep

Suspends execution of a driver task for a specified number of milliseconds.

Format #define sysCometqTimerSleep(time)

Prototype void sysCometqTimerSleep(UINT4 time)

Inputs time : sleep time in milliseconds

Outputs None

Returns Success = 0
Failure = <any other value>

6.4 Preemption

Disabling Preemption: sysCometqPreemptDis

This routine prevents the calling task from being preempted by both other tasks and any interrupt
requests.

Format #define sysCometqPreemptDis()

Prototype INT4 sysCometqPreemptDis(void)

Inputs None

Outputs None

Returns Preemption key (passed back as an argument in sysCometqPreemptEn)

Re-Enabling Preemption: sysCometqPreemptEn

This routine allows the calling task to be preempted, granting access to both other tasks and
interrupt processing.

Format #define sysCometqPreemptEn(key)

Prototype void sysCometqPreemptEn(INT4 key)

Inputs key : preemption key (returned by

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144
Document ID: PMC-2001401, Issue 2

sysCometqPreemptDis)

Outputs None

Returns None

6.5 System-Specific DPR Routine

The porting of a task between platforms is not always simple. There are many different
implementations of the RTOS level parameters. In this driver, the USER is responsible for
creating a ‘shell’ (sysCometqDPRTask) that in turn calls cometqDPR with an ISV to perform
the ISR related processing that is required by each interrupting device.

During execution of the API functions cometqModuleStart and cometqModuleStop, the
driver informs the application that it is time to install and uninstall this shell via the functions
sysCometqDPRTaskInstall and sysCometqDPRTaskRemove, that needs to be supplied by
the USER.

Installing the DPR Task: sysCometqDPRTaskInstall

Installs the DPR task as the function sysCometqDPRTask.

Format #define sysCometqDPRTaskInstall(func)

Prototype INT4 sysCometqDPRTaskInstall(void *func)

Inputs func : (pointer to) the function cometqDPR

Outputs None

Returns Success = 0
Failure = <any other value>

Pseudocode Begin
install sysCometqDPRTask in the RTOS as a task

End

DPR Task: sysCometqDPRTask

This routine is installed as a separate task within the RTOS. It waits for messages from the
cometqISR that provide interrupt event notification and then invokes cometqDPR for the
appropriate device.

Format #define sysCometqDPRTask()

Prototype void sysCometqDPRTask(void)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID: PMC-2001401, Issue 2

Inputs None

Outputs None

Returns None

Pseudocode Begin
do
wait for an ISV buffer (sent by cometqISR)
call cometqDPR with that ISV
loop forever

End

Removing the DPR Task: sysCometqDPRTaskRemove

Informs the application that it is time to remove (suspend) the USER supplied task
sysCometqDPRTask.

Format #define sysCometqDPRTaskRemove()

Prototype void sysCometqDPRTaskRemove(void)

Inputs None

Outputs None

Returns None

Pseudocode Begin
remove/suspend sysCometqDPRTask
End

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Porting the COMET-QUAD Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146
Document ID: PMC-2001401, Issue 2

7 PORTING THE COMET-QUAD DRIVER

This section of the manual outlines how to port the COMET and COMET-QUAD device driver to
your hardware and RTOS platform. However, this manual can offer only guidelines for porting
the COMET and COMET-QUAD driver as each platform and application is unique.

7.1 Driver Source Files

The C source files listed in the following table contain the code for the COMET and COMET-
QUAD driver. You may need to modify the existing code or develop additional code. The code is
in the form of constants, macros, and functions. For the ease of porting, the code is grouped into
source files (src) and header files (inc). The src files contain the functions and the inc files
contain the constants and macros.

Directory File Description

cmq_api.c Device and module management

cmq_diag.c Diagnostics functions

cmq_hw.c Hardware specific functions

cmq_isr.c ISR processing functions

cmq_rtos.c RTOS specific functions

cmq_stats.c Status and statistics functions

cmq_util.c Miscellaneous functions

cmq_frm.c Framer configuration functions

cmq_sig.c Signaling interface

cmq_ser.c Serial control functions

cmq_inbd.c Alarms and inband communications

src

cmq_intf.c Interface configuration functions

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Porting the COMET-QUAD Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147
Document ID: PMC-2001401, Issue 2

cmq_api.h API function prototypes

cmq_defs.h Constants, macros and enumerated
types

cmq_err.h Driver error codes

cmq_fns.h Non-API function prototypes

cmq_hw.h Hardware specific constants, macros
and function prototypes

cmq_rtos.h RTOS specific constants, macros and
function prototypes

cmq_strs.h Driver structures

inc

cmq_typs.h Standard types

7.2 Driver Porting Procedures

The following procedures summarize how to port the COMET-QUAD driver to your platform.

To port the COMET and COMET-QUAD driver to your platform:

Step 1: Port the driver’s RTOS extensions (page 147)

Step 2: Port the driver to your hardware platform (page 148)

Step 3: Port the driver’s application-specific elements (page 149)

Step 4: Build the driver (page 151)

Step 1: Porting Driver RTOS Extensions

The RTOS extensions encapsulate all RTOS specific services and data types used by the driver.
These RTOS extensions include:

• Memory management

• Task management

• Message queues, semaphores and timers

The compiler-specific data type definitions are located in cmq_typs.h. The cmq_rtos.h and
cmq_rtos.c files contain macros and functions for RTOS specific services.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Porting the COMET-QUAD Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 148
Document ID: PMC-2001401, Issue 2

To port the driver’s RTOS extensions:

1. Modify the data types in cmq_typs.h. The number after the type identifies the data-type
size. For example, UINT4 defines a 4-byte (32-bit) unsigned integer. Substitute the compiler
types that yield the desired types as defined in this file.

2. Modify the RTOS specific macros in cmq_rtos.h:

Service Type Macro Name Description

sysCometqMemAlloc Allocates the memory block

sysCometqMemFree Frees the memory block

sysCometqMemCpy Copies the memory block from src to
dest

Memory

sysCometqMemSet Sets each character in the memory
buffer

3. Modify the RTOS specific functions in cmq_rtos.c:

Service
Type

Function Name Description

Interrupt sysCometqDPRTask Deferred interrupt-processing
routine (DPR)

Timer sysCometqTimerSleep Sleeps a task

sysCometqBufferStart Start buffer management

sysCometqISVBufferGet Gets a ISV buffer

sysCometqISVBufferRtn Returns a ISV buffer

sysCometqDPVBufferGet Gets a DPV buffer

sysCometqDPVBufferRtn Returns a DPV buffer

Buffer

sysCometqBufferStop Stops buffer management

Step 2: Porting Drivers to Hardware Platforms

Step 2 describes how to modify the COMET-QUAD driver for your hardware platform.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Porting the COMET-QUAD Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 149
Document ID: PMC-2001401, Issue 2

To port the driver to your hardware platform:

1. Modify the hardware specific functions in cmq_hw.c:

Service Type Function Name Description

sysCometqISRHandlerInstall Installs the interrupt handler
into the processor’s interrupt
vector table and spawns the
DPR task

sysCometqISRHandlerRemove Removes the interrupt
handler from the RTOS and
deletes the DPR task

Interrupt

sysCometqISRHandler Interrupt handler for the
COMET or COMET-QUAD
device

sysCometqRead Reads from a device registerDevice I/O

sysCometqWrite Writes to a device register

Step 3: Porting Driver Application Specific Elements

Application specific elements are configuration constants used by the API for developing an
application. This section of the manual describes how to modify the application specific elements
in the COMET-QUAD driver.

To port the driver’s application specific elements:

1. Modify the type definition for the user context in cmq_typs.h. The user context is used to
identify a device in your application callbacks.

2. Modify the value of the base error code (CMQ_ERR_BASE) in cmq_err.h. This ensures that
the driver error codes do not overlap other error codes used in your application.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Porting the COMET-QUAD Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 150
Document ID: PMC-2001401, Issue 2

3. Define the application-specific constants for your hardware configuration in cmq_defs.h:

Device Constant Description Default

CMQ_MAX_DEVS The maximum number of
COMET or COMET-QUAD
devices on each card

5

CMQ_MAX_INIT_PROFS The maximum number of
COMET or COMET-QUAD
initialization profiles

5

4. Define the following application-specific constants for your RTOS-specific services in
cometq_rtos.h:

Task Constant Description Default

CMQ_MAX_ISV_BUF The maximum number of ISV
buffers

50

CMQ_MAX_DPV_BUF The maximum number of DPV
buffers

950

CMQ_MAX_MSGS The maximum number of
messages in the message queue

250

CMQ_DPR_TASK_PRIORITY Deferred Task (DPR) task
priority

85

CMQ_DPR_TASK_STACK_SZ DPR task stack size, in bytes 8192

5. Code the callback functions according to your application. There are sample callback
functions in cmq_app.c. The driver will call these callback functions when an event occurs
on the device. These functions must conform to the following prototype (cback should be
replaced with your callback function name):

void cback(sCMQ_USR_CTXT usrCtxt, sCMQ_DPV *pdpv)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Porting the COMET-QUAD Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 151
Document ID: PMC-2001401, Issue 2

Step 4: Building the Driver

Step 4 describes how to build the COMET or COMET-QUAD driver.

To build the driver:

1. Ensure that the directory variable names in the makefile reflect your actual driver and
directory names.

2. Compile the source files and build the COMET or COMET-QUAD driver using your make
utility.

3. Link the COMET or COMET-QUAD driver to your application code.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 152
Document ID: PMC-2001401, Issue 2

APPENDIX A: CODING CONVENTIONS

This section of the manual describes the coding conventions used to implement PMC driver
software.

Variable Type Definitions

Table 50: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte

UINT2 unsigned integer – 2 bytes

UINT4 unsigned integer – 4 bytes

INT1 signed integer – 1 byte

INT2 signed integer – 2 bytes

INT4 signed integer – 4 bytes

Naming Conventions

Table 51 summarizes the naming conventions followed by PMC-Sierra driver software. Detailed
descriptions are then provided in the following sub-sections.

The names used in the drivers are detailed enough to make their purpose fairly clear. Note that the
device name appears in prefix.

Table 51: Naming Conventions

Type Naming convention Examples

Macros Uppercase, prefix with “m” and
device abbreviation

mCMQ_REG_ADDR

mCMQ_[BLK]_<PURPOSE>

Enumerated
Types

Uppercase, prefix with “e” and
device abbreviation

eCMQ_MOD_STATE

eCMQ_<OBJECT>

Constants Uppercase, prefix with device
abbreviation

CMQ_SUCCESS

CMQ_[CATEGORY]_<OBJECT>

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 153
Document ID: PMC-2001401, Issue 2

Type Naming convention Examples

Structures Uppercase, prefix with “s” and
device abbreviation

sCMQ_DDB

sCMQ_<PURPOSE>_<BLK>_[OBJECT]

API Functions Hungarian notation, prefix with
device abbreviation

cometqAdd()

cometqTestReg()

Porting
Functions and
Macros

Hungarian notation, prefix with
“sys” and device abbreviation

sysCometqRead()

sysCometqISVBufferGet()

sysCometq[Object]<Action>()

Non-API
Functions

Hungarian notation utilCometqReset()

<blk>Cometq<Action>[Object]()

Variables Hungarian notation maxDevs

Pointers to
variables

Hungarian notation, prefix variable
name with “p”

pmaxDevs

Global variables Hungarian notation, prefix with
device abbreviation

cometqMdb

File Organization

Table 52 presents a summary of the file naming conventions. All file names start with the device
abbreviation, followed by an underscore and the actual file name. File names convey their
purpose with a minimum number of characters.

Table 52: File Naming Conventions

File Type File Name Description

API (Module and Device
Management)

cmq_api.c Generic driver API block, contains
Module & Device Management API
such as installing/de-installing driver
instances, read/writes, and
initialization profiles.

API (ISR) cmq_isr.c Interrupt processing is handled by this
block. This includes both ISR and
DPR management

API (Diagnostics) cmq_diag.c Device diagnostic functions

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 154
Document ID: PMC-2001401, Issue 2

File Type File Name Description

API (Status and statistics) cmq_stats.c Data collection block for all device
results/counts not monitored through
interrupt processing

API (Interface
configuration)

cmq_intf.c T1/E1 line and transmit and receive
backplane configuration functions

API (Device specific
blocks)

cmq_frm.c,
cmq_ser.c,
cmq_inbd.c,
cmq_sig.c

Device specific configuration
functions defined in the driver
architecture

Hardware Dependent cmq_hw.c,
cmq_hw.h

Hardware specific functions,
constants and macros

RTOS Dependent cmq_rtos.c,
cmq_rtos.h

RTOS specific functions, constants
and macros.

Other cmq_util.c Utility functions

Header file cmq_api.h Prototypes for all the API functions of
the driver

Header file cmq_err.h Return codes

Header file cmq_defs.h Constants and macros, registers and
bitmaps, enumerated types

Header file cmq_typs.h Standard types definition (UINT1,
UINT2, etc.)

Header file cmq_fns.h Prototypes for all the non-API
functions used in the driver

Header file cmq_strs.h Structures definitions

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix B: COMET-QUAD Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 155
Document ID: PMC-2001401, Issue 2

APPENDIX B: COMET-QUAD ERROR CODES

This section of the manual describes the error codes used in the COMET-QUAD device driver.

Table 53: COMET-QUAD Error Codes

Error Code Description

CMQ_SUCCESS Success

CMQ_FAILURE Failure

CMQ_ERR_MEM_ALLOC Memory allocation failure

CMQ_ERR_INVALID_ARG Invalid argument

CMQ_ERR_INVALID_MODULE_STATE Invalid module state

CMQ_ERR_INVALID_MIV Invalid Module Initialization Vector

CMQ_ERR_PROFILES_FULL Maximum number of profiles already added

CMQ_ERR_INVALID_PROFILE Invalid profile

CMQ_ERR_INVALID_PROFILE_NUM Invalid profile number

CMQ_ERR_INVALID_DEVICE_STATE Invalid device state

CMQ_ERR_DEVS_FULL Maximum number of devices already added

CMQ_ERR_DEV_ALREADY_ADDED Device already added

CMQ_ERR_INVALID_DEV Invalid device handle

CMQ_ERR_INVALID_DIV Invalid Device Initialization Vector

CMQ_ERR_INT_INSTALL Error while installing interrupts

CMQ_ERR_INVALID_MODE Invalid ISR/polling mode

CMQ_ERR_INVALID_REG Invalid register number

CMQ_ERR_POLL_TIMEOUT Time-out while polling

CMQ_ERR_FIFO_OVERRUN RDLC FIFO has overrun.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix B: COMET-QUAD Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 156
Document ID: PMC-2001401, Issue 2

Error Code Description

CMQ_ERR_PACKET_COMPLETE A complete HDLC packet has been written into
the buffer.

CMQ_ERR_CHANGE_OF_LINK_STATE A change of HDLC link state event has been
detected by the RDLC.

CMQ_ERR_FIFO_UNDERRUN A TDPR underrun event has occurred.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 157
Document ID: PMC-2001401, Issue 2

APPENDIX C: COMET-QUAD EVENTS

This section of the manual describes the events used in the COMET-QUAD device driver. Table
54 below describes the masks that are required to interpret the bit fields within a DPV structure.
Table 55 to Table 60 describe the events associated with each callback function.

Table 54: COMET-QUAD DPV Event bit masks

DPV Event
Field

Bit Event

0 CMQ_EVENT_CDRC_LCV

1 CMQ_EVENT_CDRC_LOS

2 CMQ_EVENT_CDRC_LINE_CODE_SIG

3 CMQ_EVENT_CDRC_CON_16ZERO

4 CMQ_EVENT_CDRC_ALT_LOS

5 CMQ_EVENT_RJAT_FIFO_UNDRUN

6 CMQ_EVENT_RJAT_FIFO_OVRRUN

7 CMQ_EVENT_TJAT_FIFO_UNDRUN

8 CMQ_EVENT_TJAT_FIFO_OVRRUN

9 CMQ_EVENT_PDVD_CON_16ZERO_VIOLT

10 CMQ_EVENT_PDVD_PULSE_DENSITY_VIOLT

11 CMQ_EVENT_XPDE_BIT_STUFF

12 CMQ_EVENT_XPDE_CON_16ZERO_VIOLT

13 CMQ_EVENT_XPDE_PULSE_DENSITY_VIOLT

14 CMQ_EVENT_RLPS_ALOS

15 CMQ_EVENT_RX_ELST_SLIP_EMPTY

16 CMQ_EVENT_RX_ELST_SLIP_FULL

17 CMQ_EVENT_TX_ELST_SLIP_EMPTY

event1

18 CMQ_EVENT_TX_ELST_SLIP_FULL

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 158
Document ID: PMC-2001401, Issue 2

DPV Event
Field

Bit Event

19 CMQ_EVENT_BTIF_DATA_PAR_ERR

20 CMQ_EVENT_BTIF_SIG_PAR_ERR

21 CMQ_EVENT_RX_ELST_CCS_SLIP_FULL

22 CMQ_EVENT_RX_ELST_CCS_SLIP_EMPTY

23 CMQ_EVENT_TX_ELST_CCS_SLIP_FULL

24 CMQ_EVENT_TX_ELST_CCS_SLIP_EMPTY

25 CMQ_EVENT_SIGX_COS_STATE

26 CMQ_EVENT_APRM_DATA_RDY

27 CMQ_EVENT_PMON_XFER_CNT_UPD

28 CMQ_EVENT_PMON_XFER_CNT_OVRRUN

29 CMQ_EVENT_PRBS_PAT_SYNC

30 CMQ_EVENT_PRBS_BIT_ERR

31 CMQ_EVENT_PRBS_XFER_UPD

0 CMQ_EVENT_E1_FRMR_RAI_ALARM

1 CMQ_EVENT_E1_FRMR_RMAI_ALARM

2 CMQ_EVENT_E1_FRMR_AIS_ALARM

3 CMQ_EVENT_E1_FRMR_AISD_ALARM

4 CMQ_EVENT_E1_FRMR_FEBE_ALARM

5 CMQ_EVENT_E1_FRMR_CRC_ALARM

6 CMQ_EVENT_E1_FRMR_OOF_ALARM

7 CMQ_EVENT_E1_FRMR_RAI_CONT_CRC_ALARM

8 CMQ_EVENT_E1_FRMR_CONT_FEBE_ALARM

9 CMQ_EVENT_E1_FRMR_V52LINKID_ALARM

event2

10 CMQ_EVENT_E1_FRMR_BR_FRM_PLS_ALARM

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 159
Document ID: PMC-2001401, Issue 2

DPV Event
Field

Bit Event

11 CMQ_EVENT_E1_FRMR_CRC_SUBMFRM_PLS_ALARM

12 CMQ_EVENT_E1_FRMR_CRC_MFRM_PLS_ALARM

13 CMQ_EVENT_E1_FRMR_MFRM_PLS_ALARM

14 CMQ_EVENT_E1_FRMR_RED_ALARM

15 CMQ_EVENT_E1_FRMR_CRC2NCRC

16 CMQ_EVENT_E1_FRMR_OOF

17 CMQ_EVENT_E1_FRMR_OOF_SMFRM

18 CMQ_EVENT_E1_FRMR_OOF_CRC_MFRM

19 CMQ_EVENT_E1_FRMR_COFA

20 CMQ_EVENT_E1_FRMR_ERR

21 CMQ_EVENT_E1_FRMR_SMFRM_ERR

22 CMQ_EVENT_E1_FRMR_CRC_MFRM_ERR

23 CMQ_EVENT_E1_FRMR_SA4_IND

24 CMQ_EVENT_E1_FRMR_SA5_IND

25 CMQ_EVENT_E1_FRMR_SA6_IND

26 CMQ_EVENT_E1_FRMR_SA7_IND

27 CMQ_EVENT_E1_FRMR_SA8_IND

28 Unused

29 Unused

30 Unused

31 Unused

0 CMQ_EVENT_E1_TRAN_SIGMFRM_BNDRY

1 CMQ_EVENT_E1_TRAN_NFAS_BNDRY

event 3

2 CMQ_EVENT_E1_TRAN_MFRM_BNDRY

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 160
Document ID: PMC-2001401, Issue 2

DPV Event
Field

Bit Event

3 CMQ_EVENT_E1_TRAN_SUBMFRM_BNDRY

4 CMQ_EVENT_E1_TRAN_FRM_BNDRY

5 CMQ_EVENT_T1_FRMR_COFA

6 CMQ_EVENT_T1_FRMR_ERR

7 CMQ_EVENT_T1_FRMR_BIT_ERR

8 CMQ_EVENT_T1_FRMR_SER_FRM

9 CMQ_EVENT_T1_FRMR_MIMIC_FRM

10 CMQ_EVENT_T1_FRMR_INFRM

11 CMQ_EVENT_IBCD_LPBCK_ACT_CODE

12 CMQ_EVENT_IBCD_LPBCK_DEACT_CODE

13 CMQ_EVENT_T1_RBOC_IDLE

14 CMQ_EVENT_T1_RBOC_DETECT

15 CMQ_EVENT_T1_XBOC_REPEAT

16 CMQ_EVENT_RDLC_EVENT

17 CMQ_EVENT_TDPR_FIFO_FILL_LOWLVL_THRESH

18 CMQ_EVENT_TDPR_FIFO_UNDRUN

19 CMQ_EVENT_TDPR_FIFO_OVRRUN

20 CMQ_EVENT_TDPR_FIFO_FULL

21 CMQ_EVENT_TDPR_PMON_RPT_RDY

22 CMQ_EVENT_ALMI_YELLOW_ALARM

23 CMQ_EVENT_ALMI_RED_ALARM

24 CMQ_EVENT_ALMI_AIS_ALARM

25 Unused

26 Unused

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 161
Document ID: PMC-2001401, Issue 2

DPV Event
Field

Bit Event

27 Unused

28 Unused

29 Unused

30 Unused

31 Unused

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 162
Document ID: PMC-2001401, Issue 2

Table 55: COMET-QUAD Events for Interface Callbacks

Event Name Field Description

CMQ_EVENT_CDRC_LCV Clock & data recovery line code
violation

CMQ_EVENT_CDRC_LOS Clock & data recovery loss of
signal

CMQ_EVENT_CDRC_CON_16ZERO Clock & data recovery 16
consecutive zeros detected

CMQ_EVENT_CDRC_LINE_CODE_SIG Clock & data recovery line code
signature detected

CMQ_EVENT_CDRC_ALT_LOS Alternate loss of signal detected

CMQ_EVENT_RJAT_FIFO_OVRRUN Receive jitter attenuation FIFO
overrun

CMQ_EVENT_RJAT_FIFO_UNDRUN Receive jitter attenuation FIFO
underrun

CMQ_EVENT_TJAT_FIFO_OVRRUN Transmit jitter attenuation FIFO
overrun

CMQ_EVENT_TJAT_FIFO_UNDRUN Transmit jitter attenuation FIFO
underrun

CMQ_EVENT_PDVD_PULSE_DENSITY_VIOLT Receive pulse density rule
violation

CMQ_EVENT_PDVD_CON_16ZERO_VIOLT Receive pulse density 16
consecutive zeros violation

CMQ_EVENT_XPDE_BIT_STUFF Transmit pulse density bit stuff

CMQ_EVENT_XPDE_PULSE_DENSITY_VIOLT Transmit pulse density rule
violation

CMQ_EVENT_XPDE_CON_16ZERO_VIOLT Transmit pulse density 16
consecutive zeros violation

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 163
Document ID: PMC-2001401, Issue 2

Event Name Field Description

CMQ_EVENT_RLPS_ALOS Receive line analog signal loss

CMQ_EVENT_RX_ELST_SLIP_EMPTY Receive elastic store slip buffer
is empty

CMQ_EVENT_RX_ELST_SLIP_FULL Receive elastic store slip buffer
is full

CMQ_EVENT_RX_ELST_CCS_SLIP_EMPTY Receive elastic store CCS slip
buffer is empty (COMET-QUAD
only)

CMQ_EVENT_RX_ELST_CCS_SLIP_FULL Receive elastic store CCS slip
buffer is full (COMET-QUAD
only)

CMQ_EVENT_TX_ELST_SLIP_EMPTY Transmit elastic store slip buffer
is empty

CMQ_EVENT_TX_ELST_SLIP_FULL Transmit elastic store slip buffer
is full

CMQ_EVENT_TX_ELST_CCS_SLIP_EMPTY Transmit elastic store CCS slip
buffer is empty (COMET-QUAD
only)

CMQ_EVENT_TX_ELST_CCS_SLIP_FULL Transmit elastic store CCS slip
buffer is full (COMET-QUAD
only)

CMQ_EVENT_BTIF_DATA_PAR_ERR Backplane transmit data parity
error

CMQ_EVENT_BTIF_SIG_PAR_ERR Backplane transmit signal parity
error

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 164
Document ID: PMC-2001401, Issue 2

Table 56: COMET-QUAD Events for Framer Callbacks

Event Name Field Description

CMQ_EVENT_T1_FRMR_COFA T1 receive framer change of
frame alignment indicator

CMQ_EVENT_T1_FRMR_ERR T1 receive framer bit Error

CMQ_EVENT_T1_FRMR_BIT_ERR T1 receive framer payload bit
error

CMQ_EVENT_T1_FRMR_SER_FRM T1 receive framer severely
errored frame

CMQ_EVENT_T1_FRMR_MIMIC_FRM T1 receive framer mimic framing
bits detected

CMQ_EVENT_T1_FRMR_INFRM T1 receive framer established
frame sync

CMQ_EVENT_E1_TRAN_SIGMFRM_BNDRY E1 transmit signal multiframe
boundary

CMQ_EVENT_E1_TRAN_NFAS_BNDRY E1 transmit national frame
alignment signal boundary
alignment achieved

CMQ_EVENT_E1_TRAN_MFRM_BNDRY E1 transmit multiframe boundary
alignment achieved

CMQ_EVENT_E1_TRAN_SUBMFRM_BNDRY E1 transmit multiframe boundary
alignment achieved

CMQ_EVENT_E1_TRAN_FRM_BNDRY E1 transmit frame boundary
alignment achieved

CMQ_EVENT_E1_FRMR_RAI_ALARM E1 Remote Alarm Indication

CMQ_EVENT_E1_FRMR_RMAI_ALARM E1 Remote Multiframe Alarm
Indication

CMQ_EVENT_E1_FRMR_AIS_ALARM E1 Alarm Indication signal (all
ones)

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 165
Document ID: PMC-2001401, Issue 2

Event Name Field Description

CMQ_EVENT_E1_FRMR_AISD_ALARM E1 Alarm Indication signal (
max zero density)

CMQ_EVENT_E1_FRMR_FEBE_ALARM E1 Far End Block Error

CMQ_EVENT_E1_FRMR_CRC_ALARM E1 Frame CRC error

CMQ_EVENT_E1_FRMR_OOF_ALARM E1 Out of Frame

CMQ_EVENT_E1_FRMR_RAI_CONT_CRC_ALARM E1 RAI continuous CRC

CMQ_EVENT_E1_FRMR_CONT_FEBE_ALARM E1 continuous Far End Block
Error

CMQ_EVENT_E1_FRMR_V25LINKID_ALARM E1 V2.5 Link ID detection alarm

CMQ_EVENT_E1_FRMR_BR_FRM_PLS_ALARM E1 framer backplane receive
frame pulse indication alarm

CMQ_EVENT_E1_FRMR_CRC_SUBMFRM_PLS_AL
ARM

E1 Framer CRC SubMultiFrame
pulse indicator alarm

CMQ_EVENT_E1_FRMR_CRC_MFRM_PLS_ALARM E1 framer CRC MultiFrame
pulse indicator alarm

CMQ_EVENT_E1_FRMR_MFRM_PLS_ALARM E1 framer MultiFrame pulse
indicator alarm

CMQ_EVENT_E1_FRMR_RED_ALARM E1 framer red alarm

CMQ_EVENT_E1_FRMR_CRC2NCRC E1 receive framer CRC to non-
CRC network or non-CRC to
CRC network mode switch

CMQ_EVENT_E1_FRMR_OOF E1 receive framer out of frame
alignment

CMQ_EVENT_E1_FRMR_OOF_SMFRM E1 receive framer signaling out
of frame

CMQ_EVENT_E1_FRMR_OOF_CRC_MFRM E1 receive framer CRC
multiframe out of frame

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 166
Document ID: PMC-2001401, Issue 2

Event Name Field Description

CMQ_EVENT_E1_FRMR_COFA E1 receive framer Change of
Frame Alignment

CMQ_EVENT_E1_FRMR_ERR E1 receive framer error

CMQ_EVENT_E1_FRMR_SMFRM_ERR E1 receive framer signaling
multiframe error

CMQ_EVENT_E1_FRMR_CRC_MFRM_ERR E1 receive framer CRC
MultiFrame error

CMQ_EVENT_E1_FRMR_SA4_IND E1 receive framer national bit Sa4
updated

CMQ_EVENT_E1_FRMR_SA5_IND E1 receive framer national bit Sa5
updated

CMQ_EVENT_E1_FRMR_SA6_IND E1 receive framer national bit Sa6
updated

CMQ_EVENT_E1_FRMR_SA7_IND E1 receive framer national bit Sa7
updated

CMQ_EVENT_E1_FRMR_SA8_IND E1 receive framer national bit Sa8
updated

Table 57: COMET-QUAD Events for Alarm and InBand Communications Callbacks

Event Name Field Description

CMQ_EVENT_IBCD_LPBCK_ACT_CODE Inband Communications detect
loopback activate code

CMQ_EVENT_IBCD_LPBCK_DEACT_CODE Inband Communications detect
loopback deactivate code

CMQ_EVENT_ALMI_YELLOW_ALARM T1 Alarm Management Interface
yellow alarm

CMQ_EVENT_ALMI_RED_ALARM T1 Alarm Management Interface
red alarm

CMQ_EVENT_ALMI_AIS_ALARM T1 Alarm Management Interface
alarm indication signal

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 167
Document ID: PMC-2001401, Issue 2

Event Name Field Description

CMQ_EVENT_T1_RBOC_IDLE T1 receive Bit Oriented Code Idle
detect

CMQ_EVENT_T1_RBOC_DETECT T1 receive Bit Oriented Code
match detect

CMQ_EVENT_T1_XBOC_REPEAT T1 Bit Oriented Code
consecutively repeated (COMET-
QUAD only)

CMQ_EVENT_TDPR_FIFO_FILL_LOWLVL_THR
ESH

Transmit Datalink Performance
Report below FIFO low fill level
threshold

CMQ_EVENT_TDPR_FIFO_UNDRUN Transmit Datalink Performance
Report FIFO underrun

CMQ_EVENT_TDPR_FIFO_OVRRUN Transmit Datalink Performance
Report FIFO overrun

CMQ_EVENT_TDPR_FIFO_FULL Transmit Datalink Performance
Report FIFO full

CMQ_EVENT_TDPR_PMON_RPT_RDY Transmit Datalink Performance
Monitor Report ready

CMQ_EVENT_RDLC_EVENT Receive Data Link event

Table 58: COMET-QUAD Events for Signal Extraction Callbacks

Event Name Field Description

CMQ_EVENT_SIGX_COS_STATE Receive signaling change of state

Table 59: COMET-QUAD Events for Performance Monitoring Callbacks

Event Name Field Description

CMQ_EVENT_PMON_XFER_CNT_UPD Performance monitoring count
transfer update

CMQ_EVENT_PMON_XFER_CNT_OVRRUN Performance monitoring count
transfer overrun

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Appendix C: COMET-QUAD Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 168
Document ID: PMC-2001401, Issue 2

Event Name Field Description

CMQ_EVENT_APRM_DATA_RDY Automatic Performance Report
Management data ready

Table 60: COMET-QUAD Events for Serial Controller Callbacks

Event Name Field Description

CMQ_EVENT_PRBS_PAT_SYNC Pseudo Random Binary sequence
pattern sync

CMQ_EVENT_PRBS_BIT_ERR Pseudo Random Binary sequence
pattern bit error detected

CMQ_EVENT_PRBS_XFER_UPD Pseudo Random Binary sequence
pattern count update

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 169
Document ID: PMC-2001401, Issue 2

LIST OF TERMS

APPLICATION: Refers to protocol software used in a real system as well as validation software
written to validate the COMET-QUAD driver on a validation platform.

API (Application Programming Interface): Describes the connection between this MODULE and
the USER’s Application code.

ISR (Interrupt Service Routine): A common function for intercepting and servicing DEVICE
events. This function is kept as short as possible because an Interrupt preempts every other
function starting the moment it occurs, and gives the service function the highest priority while
running. Data is collected, Interrupt indicators are cleared and the function ended.

DPR (Deferred Processing Routine): This function is installed as a task, at a USER configurable
priority, that serves as the next logical step in Interrupt processing. Data that was collected by the
ISR is analyzed and then calls are made into the Application that inform it of the events that
caused the ISR in the first place. Because this function is operating at the task level, the USER
can decide on its importance in the system, relative to other functions.

DEVICE: ONE COMET-QUAD Integrated Circuit. There can be many Devices, all served by
this ONE Driver MODULE:

• DIV (DEVICE Initialization Vector): Structure passed from the API to the DEVICE during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical DEVICE being initialized.

• DDB (DEVICE Data Block): Structure that holds the Configuration Data for each DEVICE.

MODULE: All of the code that is part of this driver. There is only ONE instance of this
MODULE connected to ONE OR MORE COMET-QUAD chips.

• MIV (MODULE Initialization Vector): Structure passed from the API to the MODULE
during initialization. It contains parameters that identify the specific characteristics of the
Driver MODULE being initialized.

• MDB (MODULE Data Block): Structure that holds the Configuration Data for this
MODULE.

RTOS (Real Time Operating System): The host for this Driver.

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 170
Document ID: PMC-2001401, Issue 2

ACRONYMS

API: Application programming interface

DDB: Device data block

DIV: Device initialization vector

DPR: Deferred processing routine

DPV: Deferred processing (routine) vector

FIFO: First in, first out

MDB: Module data block

MIV: Module initialization vector

ISR: Interrupt service routine

ISV: Interrupt service (routine) vector

RTOS: Real-time operating system

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 171
Document ID: PMC-2001401, Issue 2

INDEX

A

activate
cometqActivate, 77

add
cometqAdd, 65, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 116, 117, 118, 121, 122, 123,
124, 125, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 154

cometqAddInitProfile, 73

Application Programming Interface, 13, 15, 44,
71, 170

B

buffer
start

sysCometqBufferStart, 66, 141, 142, 149

Buffer
stop

sysCometqBufferStop, 143, 149

buffer management, 149

C

callback functions, 21, 27, 65, 67, 133, 151

callbacks
cbackAlarmInBand, 30, 31, 66
cbackFramer, 30, 31, 65
cbackIntf, 30, 31, 65
cbackPMon, 30, 31, 66
cbackSerialCtl, 30, 31, 66
cbackSigInsExt, 30, 31, 66
cometqCbackAlarmInBand, 136
cometqCbackFramer, 134
cometqCbackIntf, 134
cometqCbackPMon, 135
cometqCbackSerialCtl, 136
cometqCbackSigInsExt, 135

coding conventions, 153

configuration
cometqAutoAlarmCfg, 102
cometqBOCRxCfg, 112
cometqBOCTxCfg, 112
cometqBRIFAccessCfg, 90
cometqBRIFFrmCfg, 90
cometqBTIFAccessCfg, 89
cometqBTIFFrmCfg, 89
cometqE1RxFramerCfg, 95
cometqHDLCRxCfg, 104
cometqHDLCTxCfg, 105
cometqHMVIPCfg, 91
cometqIBCDActLpBkCfg, 110
cometqIBCDDeActLpBkCfg, 111
cometqIBCDTxCfg, 111
cometqISRConfig, 123, 125
cometqLineClkSvcCfg, 88
cometqLineRxClkCfg, 88
cometqLineRxJatCfg, 87
cometqLineTxJatCfg, 87
cometqPRGDCtlCfg, 118
cometqPRGDErrInsCfg, 122
cometqPRGDPatCfg, 119, 121
cometqRDLCFIFOThreshCfg, 108
cometqRxElstStCfg, 91
cometqRxTrnkCfg, 118
cometqT1RxFramerCfg, 94
cometqT1TxFramerCfg, 93
cometqTxElstStCfg, 91, 92
cometqTxTrnkCfg, 117

constants, 13, 29, 147, 148, 150, 151, 155

D

data
dataLinkBitMask, 61
dataMode, 53
dataRate, 53

data structures, 1, 2, 23, 71

deactivate
cometqDeActivate, 77

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 172
Document ID: PMC-2001401, Issue 2

Deferred Processing Vector, 67, 143

delete
cometqDelete, 27, 71, 72, 75
cometqDeleteInitProfile, 74

device
initialization

initDevice, 30, 31, 32, 75
state

stateDevice, 29, 65, 70

Device Data Block, 23, 63, 64, 65, 70, 75, 76

device diagnostics, 20

Device Initialization Vector, 29, 30, 31, 73, 76,
156

device management, 16, 18, 74

device states, 18, 74

deviceHandle, 66, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 116, 117, 118,
121, 122, 123, 124, 125, 127, 128, 129,
130, 131, 132, 133

DPR
cometqDPR, 18, 26, 27, 28, 125, 126, 133,

145, 146
task

sysCometqDPRTask, 26, 27, 28, 126, 145,
146, 149

task install
sysCometqDPRTaskInstall, 145

task remove
sysCometqDPRTaskRemove, 145, 146

DPV
buffer get

sysCometqDPVBufferGet, 126, 143, 149
buffer return

sysCometqDPVBufferRtn, 133, 143, 149

E

enable

cometqHDLCEnable, 104

error
errDevice, 65, 70, 74
errModule, 30, 64, 70

F

fifo
fifoEmptyInd, 43
fifoOvrInd, 43
FIFOselfCenter, 44, 45

flag
cometqFlag, 66, 74

force stats
cometqForceStatsUpdate, 127

H

Hardware Interface, 15, 137

I

initialization
cometqInit, 30, 75, 76, 92, 125, 126, 133, 134,

135, 136

initialization profile
cometqGetInitProfile, 73
cometqSetInitProfile, 30

interface configuration, 84, 89, 90, 91

Interrupt Service Functions, 122

Interrupt Service Vector, 27, 28, 66, 142

interrupt servicing, 23, 30, 122, 138

ISR
cometqISR, 18, 26, 27, 28, 125, 138, 139,

145, 146
handler

sysCometqISRHandler, 26, 27, 28, 125,
138, 139, 150

handler install
sysCometqISRHandlerInstall, 27, 138, 150

handler remove

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 173
Document ID: PMC-2001401, Issue 2

sysCometqISRHandlerRemove, 138, 139,
150

ISR Handler, 138, 139

ISV
buffer get

sysCometqISVBufferGet, 66, 142, 149, 154
buffer return

sysCometqISVBufferRtn, 66, 126, 142, 149

M

mask
clearing

cometqClearMask, 124
cometqSetMask, 35, 124

Mask
cometqGetMask, 35, 123

MDB
cometqMdb, 70, 154

memory
allocation, 140

sysCometqMemAlloc, 140, 149
copy

sysCometqMemCpy, 141, 149
free

sysCometqMemFree, 140, 149
set

sysCometqMemSet, 141, 149

module
close

cometqModuleClose, 71, 72
open

cometqModuleOpen, 29, 71
start

cometqModuleStart, 72, 138, 145
state

stateModule, 29, 64, 70
stop

cometqModuleStop, 72, 138, 145

Module Data Block, 23, 63, 64, 70

Module Initialization Vector, 23, 29, 30, 71, 156

module management, 71, 147

module states, 22, 71

N

naming conventions, 29, 153, 154

O

operating mode
cometqSetOperatingMode, 92, 93

P

poll
cometqPoll, 28, 30, 123, 125, 138
pollISR, 30, 31, 65

preemption
sysCometqPreemptDis, 144
sysCometqPreemptEn, 144

R

read
cometqRead, 78
cometqReadBlock, 79
cometqReadFr, 80
cometqReadFrInd, 82
cometqReadRLPS, 82, 83
sysCometqRead, 78, 79, 80, 82, 83, 137, 150,

154

reset
cometqReset, 76

RTOS Interface, 140

S

serial controller, 20, 113, 114, 115, 116

signal extraction, 101

software architecture, 2, 13, 14

statistics
cometqGetStats, 127

status
cometqGetStatus, 128

COMET (PM4351) and COMET-QUAD (PM4354) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 174
Document ID: PMC-2001401, Issue 2

status and statistics functions, 23

T

T1 /E1 Framers, 92

timer sleep
sysCometqTimerSleep, 144, 149

U

update

cometqUpdate, 76

W

write
cometqWrite, 78, 79
cometqWriteBlock, 80
cometqWriteFr, 81
cometqWriteFrInd, 82, 83
cometqWriteRLPS, 82, 84
sysCometqWrite, 78, 80, 81, 82, 84, 137, 150

