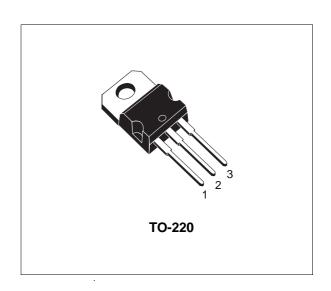
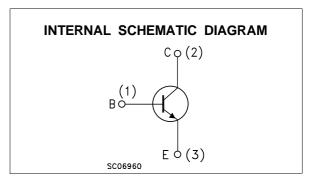


BUL1102E

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED


APPLICATIONS


■ FOUR LAMP ELECTRONIC BALLAST FOR: 120 V MAINS IN PUSH-PULL CONFIGURATION; 277 V MAINS IN HALF BRIDGE CURRENT FEED CONFIGURATION.

DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

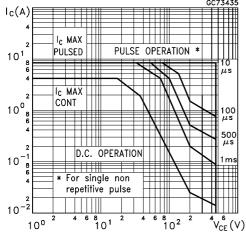
Thanks to an increased intermediate layer, it has an intrinsic ruggedness which enables the transistor to withstand a high collector current level during Breakdown condition, without using the transil protection usually necessary in typical converters for lamp ballast.

ABSOLUTE MAXIMUM RATINGS

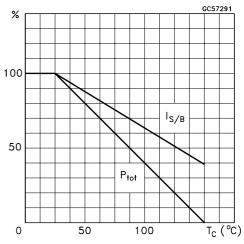
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	1100	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	12	V
Ic	Collector Current	4	А
I _{CM}	Collector Peak Current (t _p <5 ms)	8	Α
I _B	Base Current	2	А
I _{BM}	Base Peak Current (t _p <5 ms)	4	Α
P _{tot}	Total Dissipation at T _c = 25 °C	70	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

March 2003 1/6

THERMAL DATA

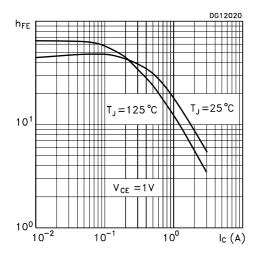

R _{thj-case} Thermal Resistance Junction-Case	Max	1.78	°C/W	
--	-----	------	------	--

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

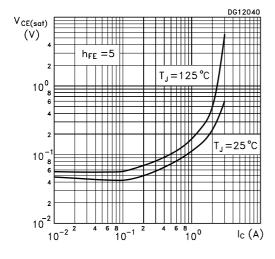

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1100 V				100	μА
I _{EBO}	Emitter Cut-off Current (I _B = 0)	V _{EB} = 12 V				1	mA
$V_{\text{CEO(sus)}^{*}}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA		450			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 2 A	I _B = 400 mA			1.5	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A	I _B = 400 mA			1.5	V
h _{FE} *	DC Current Gain	I _C = 250 mA I _C = 2 A	V _{CE} = 5 V V _{CE} = 5 V	35 12		70 20	
t _s	RESISTIVE LOAD Storage Time Fall Time	I _C = 2.5 A I _{B1} = 0.5 A T _P = 30 μs				2.5 300	μs ns
Ear	Avalanche Energy	$L = 2 \text{ mH}$ $I_{BR} \le 2.5 \text{A}$ (see figure 1)	C = 1.8 nF 25°C < T _C <125°C	6			mJ

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

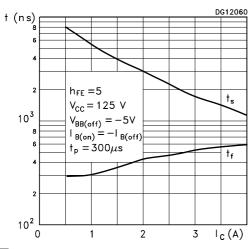
Safe Operating Areas

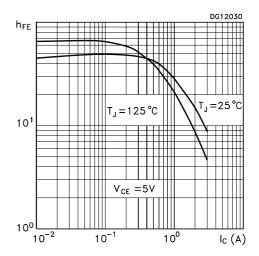


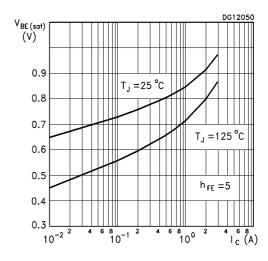
Derating Curve

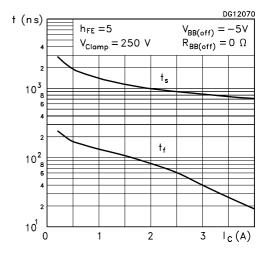


2/6


DC Current Gain


Collector Emitter Saturation Voltage


Switching Time Resistive Load


DC Current Gain

Base Emitter Saturation Voltage

Switching Time Inductive Load

477

Reverse Biased SOA

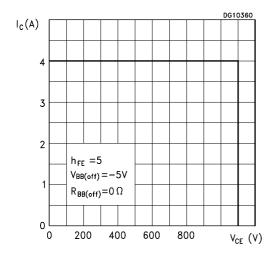
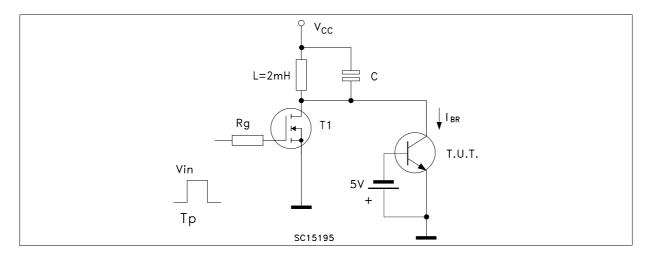
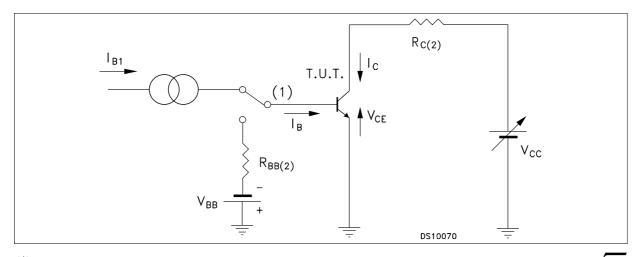
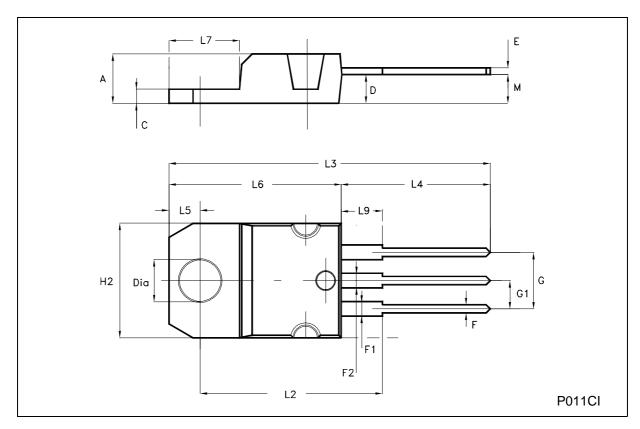


Figure 1: Energy Rating Test Circuit


Figure 2: Resistive Load Switching Test Circuit

4/6

TO-220 MECHANICAL DATA

DIM	mm			inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.052	
D	2.40		2.72	0.094		0.107	
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.202	
G1	2.40		2.70	0.094		0.106	
H2	10.00		10.40	0.394		0.409	
L2		16.40			0.645		
L4	13.00		14.00	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.20		6.60	0.244		0.260	
L9	3.50		3.93	0.137		0.154	
М		2.60			0.102		
DIA.	3.75		3.85	0.147		0.151	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

47/