## 16-bit Proprietary Microcontroller

## CMOS

## F²MC-16F MB90F244

## MB90F244

## - DESCRIPTION

The MB90F244 is a 16 -bit microcontroller optimized for applications in mechatronics such as HDD units. The architecture of the MB90F244 is based on the MB90242A, and embedded with a 128-Kbyte flash memory.

The instruction set is based on the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}$ family, with additional high-level language supporting instruction, expanded addressing modes, enhanced multiplication and division instructions, and improved bit processing instructions. In addition, long-word data can now be processed due to the inclusion of a 32-bit accumulator.

The MB90F244 includes a variety of peripherals on chip, such as the device is equipped with 8-channel 8/10-bit A/D converter, UART, 3-channel 16-bit reload timers, 1-channel 16-bit timer, 4-channel 16-bit input capture and 4-channel DTP/external interrupts.

Differences between the MB90F244 and MB90F243 to meet the $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ power supply voltage are that the power consumption of the MB90F244 is about 10\% less than that of the MB90F243 and the operating frequency of the MB90F244 is up to 50 MHz from 32 MHz of the MB90F243.

* : F²MC stands for FUJITSU Flexible Microcontroller.


## PACKAGE



## MB90F244

## FEATURES

- Minimum execution time (target): 40.0 ns at 50 MHz oscillation ( $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ )
- Instruction set optimized for controller applications

Variety of data types: bit, byte, word, long-word
Expanded addressing modes: 25 types
High coding efficiency
Improvement of high-precision arithmetic operations through use of 32-bit accumulator
Enhanced multiplication and division instructions (signed arithmetic operations)

- Instruction set supports high-level language (C language) and multitasking

Inclusion of system stack pointer
Variety of pointers
High instruction set symmetry
Barrel shift instruction
Stack check function

- Improved execution speed: 8-byte queue
- Powerful interrupt functions

Interrupt processing time: $0.64 \mu \mathrm{~s}$ at 50 MHz oscillation
Priority levels: 8 levels (programmable)
External interrupt inputs: 4 channels

- Automatic transfer function independent of CPU

Extended intelligent I/O service: Max. 15 channels

- 128-Kbyte flash memory

Access time (min.) : 80 ns
Sector structure of $16 \mathrm{~K}+512 \times 2+7 \mathrm{~K}+8 \mathrm{~K}+32 \mathrm{~K}+64 \mathrm{~K}$
Program/erase operations from both EPROM programmer and CPU through built-in flash memory interface circuit
Built-in programming booster circuit for flash memory

- Internal RAM: 1.152 kbyte

According to mode settings, data stored on RAM can be executed as CPU instructions.

- General-purpose ports: Max. 63 channels (single-chip mode)

Max. 38 channels (external bus mode)

- 18 -bit timebase timer
- Watchdog timer
- UART: 8 bits $\times 1$ channel
- $8 / 16$-bit l/O simple serial interface (max. 12.5 Mbps ): 1 channel
- 8/10-bit A/D converter: Analog inputs: 8 channels

Resolution: 10 bits (switchable to 8 bits/10 bits)
Conversion time: Min. $1 \mu \mathrm{~s}$
Conversion result store register: 4 channels

- 16-bit I/O timer

16-bit free-run timer: 1 channel (operating clock: $0.16 \mu \mathrm{~s}$ )
16-bit input capture: 4 channels

- 16 -bit reload timer: 3 channels
- Low-power consumption modes

Sleep mode
Stop mode
Hardware standby mode

- Packages: TQFP-80 (FPT-80P-M15)
(For more information about the package, see section "■ Package Dimensions.")


## MB90F244

## (Continued)

- PLL clock multiple function
- CMOS technology
- Power supply voltage: $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ or $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
(Varies with conditions such as the operating frequency. See section "■ Electrical Characteristics.")


## MB90F244

## PIN ASSIGNMENT

(Top view)


## PIN DESCRIPTION

| Pin no. | Pin name | Circuit <br> type |  |
| :---: | :--- | :---: | :--- |
| TQFP-80* | Function |  |  |


| Pin no. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 19 | P41 | F | General-purpose I/O port <br> This function is valid when the upper address control register specification is "port". |
|  | A17 |  | External address bus output pin of the bit 17 This function is valid when the corresponding bit of the upper address control register specification is "address". |
|  | AQ17 |  | Address input pin for each operation command This function is valid in the flash memory mode. |
| 20 | P42 | F | General-purpose I/O port <br> This function is valid when the corresponding bit of the upper address control register specification is "port". |
|  | A18 |  | External address bus output pin of the bit 18 This function is valid when the corresponding bit of the upper address control register specification is "address". |
|  | SID0 |  | UART \#0 data input pin <br> During UART \#O input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
|  | AQ18 |  | Address input pin for each operation command This function is valid in the flash memory mode. |
| 21 | P43 | G | General-purpose I/O port This function is valid when the UART \#0 data output is disabled and the corresponding bit of the upper address control register specification is "port". |
|  | A19 |  | External address bus output pin of the bit 19 This function is valid when the UART \#0 data output is disabled and the corresponding bit of the upper address control register specification is "address". |
|  | SOD0 |  | UART \#0 data output pin This function is valid when the UART \#0 data output is enabled. |
| 22 | P44 | G | General-purpose I/O port This function is valid when the UART \#0 clock output is disabled and the corresponding bit of the upper address control register specification is "port". |
|  | A20 |  | External address bus output pin of the bit 20 This function is valid when the UART \#0 clock output is disabled and the corresponding bit of the upper address control register specification is "address". |
|  | SCKO |  | UART \#0 clock I/O pin |


| Pin no. TQFP-80* | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 23 | P45 | G | General-purpose I/O port This function is valid when the corresponding bit of the upper address control register specification is "port". |
|  | A21 |  | External address bus output pin of the bit 21 This function is valid when the corresponding bit of the upper address control register specification is "address". |
|  | ASR0 |  | 16-bit input capture \#0 data input pin During 16-bit input capture \#0 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
|  | TINO |  | 16-bit timer \#0 data input pin During 16-bit timer \#0 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
| 24 | P46 | G | General-purpose I/O port <br> This function is valid when the corresponding bit of the upper address control register specification is "port". |
|  | A22 |  | External address bus output pin of the bit 22 <br> This function is valid when the corresponding bit of the upper address control register specification is "address". |
|  | ASR1 |  | 16-bit input capture \#1 data input pin During 16-bit input capture \#1 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
|  | TIN1 |  | 16-bit timer \#1 data input pin During 16-bit timer \#1 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
| 25 | P47 | G | General-purpose I/O port <br> This function is valid when the corresponding bit of the upper address control register specification is "port". |
|  | A23 |  | External address bus output pin for the bit 23 This function is valid when the corresponding bit of the upper address control register specification is "address". |
|  | ASR2 |  | 16-bit input capture \#2 data input pin During 16-bit input capture \#2 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
|  | TIN2 |  | 16-bit timer \#2 data input pin During 16-bit timer \#2 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |


| Pin no. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 53 | P51 | H | General-purpose I/O port This function is valid when the ready function is disabled. |
|  | RDY |  | Ready input pin This function is valid when the ready function is enabled. |
| 54 | P52 | H | General-purpose I/O port This function is valid when the hold function is disabled. |
|  | $\overline{\text { HAK }}$ |  | Hold acknowledge output pin This function is valid when the hold function is enabled. |
| 55 | P53 | H | General-purpose I/O port This function is valid when the hold function is disabled. |
|  | HRQ |  | Hold request input pin This function is valid and when the hold function is enabled. |
| 56 | P54 | F | General-purpose I/O port This function is valid in external bus 8 -bit mode, or when $\overline{\text { WRH }}$ pin output is disabled. |
|  | $\overline{\text { WRH }}$ |  | Write strobe output pin for the upper 8 bits of the data bus This function is valid in modes where the external bus 16 -bit mode is enabled, and WRH pin output is enabled. |
|  | $\overline{\text { WE }}$ |  | Write enable input pin <br> This function is valid in the flash memory mode. |
| 57 | P55 | F | General-purpose I/O port This function is valid when WRL pin output is disabled. |
|  | $\overline{\mathrm{WRL}} / \overline{\mathrm{WR}}$ |  | Write strobe output pin for the lower 8 bits of the data bus This function is valid WRL pin output is enabled. |
|  | $\overline{\mathrm{OE}}$ |  | Output enable input pin for each operation command This function is valid in the flash memory mode. |
| 58 | P56 | F | General-purpose I/O port |
|  | $\overline{\mathrm{RD}}$ |  | Read strobe output pin for the data bus |
|  | $\overline{\mathrm{CE}}$ |  | Chip enable input pin for each operation command This function is valid in the flash memory mode. |
| 59 | P57 | F | General-purpose I/O port |
|  | ASR3 |  | 16-bit input capture \#3 data input pin During 16 -bit input capture \#3 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
|  | INT3 |  | DTP/external interrupt \#3 data input pin During DTP/external interrupt \#3 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
|  | $\overline{\text { BYTE }}$ |  | Byte access control input pin This function is valid in the flash memory mode. |


| $\begin{gathered} \hline \text { Pin no. } \\ \hline \text { TQFP-80* } \end{gathered}$ | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 30, \\ & 31, \\ & 33, \\ & 34, \\ & 35, \\ & 36, \\ & 37 \end{aligned}$ | $\begin{aligned} & \hline \text { P60, } \\ & \text { P61, } \\ & \text { P62, } \\ & \text { P63, } \\ & \text { P66, } \\ & \text { P67, } \\ & \text { P65, } \end{aligned}$ | 1 | N -ch open-drain type I/O ports <br> When bits corresponding to the ADER are set to " 0 ", reading instructions other than the read-modify-write group returns the pin level. The value written on the data register is output to this pin directly. |
|  | ANO, <br> AN1, <br> AN2, <br> AN3, <br> AN6, <br> AN7, <br> AN5 |  | 8/10-bit A/D converter analog input pins Use this function after setting bits corresponding to the ADER to " 1 " and setting corresponding bits of the data register to " 1 ". |
| 43 | P70 | J | General-purpose I/O port <br> This function is valid when the bit corresponded to ADER is set to " 0 " and also the output of 16 -bit timer \#0 is disabled. |
|  | TOTO |  | 16-bit timer output pin <br> This function is valid when the bit corresponded to ADER is set to " 0 " and also the output of 16 -bit timer \#0 is enabled. |
|  | AN4 |  | 8/10-bit AD converter analog input pin This function can be used when the bit corresponded to ADER is set to "1" and also the bit correponded to the data resister is set to "1". |
| $\begin{aligned} & 44 \\ & 45 \end{aligned}$ | $\begin{aligned} & \hline \text { P70, } \\ & \text { P72 } \end{aligned}$ | G | General-purpose I/O port This function is valid when the reload timer \#1, and \#2 output is disabled. |
|  | $\begin{aligned} & \text { TOT1, } \\ & \text { TOT2 } \end{aligned}$ |  | 16-bit timer output pins <br> This function is valid when the 16-bit timer \#1, and \#2 output is enabled. |
| 46 | P73 | G | General-purpose I/O port This function is valid when the SSI \#1 clock output is disabled. |
|  | SCK1 |  | SSI \#1 clock output I/O pin |
| 47 | P74 | G | General-purpose I/O port This function is always valid. |
|  | SID1 |  | SSI \#1 data input pin <br> During SSI \#1 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
| 48 | P75 | G | General-purpose I/O port This function is valid when the SSI \#1 data output is disabled. |
|  | SOD1 |  | SSI \#1 data output pin This function is valid when the SSI \#1 data output is disabled. |

(Continued)

| $\begin{array}{c\|} \hline \text { Pin no. } \\ \hline \text { TQFP-80* } \\ \hline \end{array}$ | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 49, \\ & 50 \end{aligned}$ | $\begin{aligned} & \text { P80, } \\ & \mathrm{CoO} \end{aligned}$ | G | General-purpose I/O port This function is always valid. |
|  | INTO, INT1 |  | DTP/external interrupt input pin When external interrupts are enabled, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. |
| 51 | P82 | G | General-purpose I/O port This function is always valid. |
|  | INT2 |  | DTP/external interrupt input pin <br> When external interrupts are enabled, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. <br> Because an input to this pin is clamped to Low when the CPU stops, use INT0 or INT1 to wake up the system from the stop mode. |
|  | $\overline{\text { ATG }}$ |  | 8/10-bit A/D converter trigger input pin When $8 / 10$-bit $A / D$ converter is waiting for activation, this input may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately. |
| 52 | CLK | G | CLK output pin |
|  | RY/BY |  | Open-drain pin output ready/busy signal in the program deleting operation <br> This function is valid in the flash memory mode. |
| 38 | V cc | Power supply | Digital circuit power supply pin |
| 64 | Vcc5 | Power supply | Power supply voltage (5.0 V) input pin for flash memory |
| $\begin{gathered} 9, \\ 32, \\ 61 \end{gathered}$ | Vss | Power supply | Digital circuit power supply (GND) pin |
| 26 | AV ${ }_{\text {cc }}$ | Power supply | Analog circuit power supply pin This power supply must only be turned on or off when electric potential of AVcc or greater is applied to V cc. |
| 27 | AVRH | Power supply | 8/10-bit A/D converter external reference voltage input pin This pin must only be turned on or off when electric potential of AVRH or greater is applied to AVcc . |
| 28 | AVRL | Power supply | 8/10-bit A/D converter external reference voltage input pin |
| 29 | AVss | Power supply | Analog circuit power supply (GND) pin |

*: FPT-80P-M15

## I/O CIRCUIT TYPE

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | - 50 MHz <br> - Oscillation feedback resistor: Approximately $1 \mathrm{M} \Omega$ |
| B |  | - CMOS-level hysteresis input (without standby control) <br> - Pull-up resistor: Approximately $50 \mathrm{k} \Omega$ |
| C |  | - CMOS-level input <br> - High voltage control for flash memory testing |
| D |  | - CMOS-level hysteresis input (without standby control) |

(Continued)

## MB90F244

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| E |  | - CMOS-level output <br> - TTL-level input (with standby control) |
| F |  | - CMOS-level output <br> - CMOS-level hysteresis input <br> - TTL-level input (flash memory mode) (with standby control) |
| G |  | - CMOS-level output <br> - CMOS-level hysteresis input (with standby control) |
| H |  | - CMOS-level output <br> - TTL-level input (with standby control) |

(Continued)

## MB90F244

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: | :---: |
| I |  | • N-ch open-drain CMOS-level output <br> CMOS-level hysteresis input <br> (analog input) <br> (with analog input control) |

## MB90F244

## HANDLING DEVICES

## 1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $\mathrm{Vcc}_{\text {cc }}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to the input or output pins other than medium-and high-voltage pins or if higher than the voltage which shown on " 1 . Absolute Maximum Ratings" in section "■ Electrical Characteristics"is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

In addition, for the same reasons take care to prevent the analog power supply from exceeding the digital power supply.

## 2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistors.

## 3. Precautions when Using an External Clock

When an external clock is used, drive X0 only.

- For example an external clock



## 4. Power Supply Pins

When there are several $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\text {ss }}$ pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latch-up. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ with the lowest possible impedance.

Finally, it is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ between $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\text {ss }}$ near this device as a bypass capacitor.

## 5. Crystal Oscillation Circuit

Noise in the vicinity of the X 0 and X 1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0 and X1 pins and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible.
In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

## 6. Sequence for Applying the A/D Converter Power Supply and the Analog Inputs

Always be sure to apply the digital power supply ( $\mathrm{V}_{\mathrm{cc}}$ ) before applying the $\mathrm{A} / \mathrm{D}$ converter power supply ( $\mathrm{A} \mathrm{V}_{\mathrm{cc}}$, AVRH, and AVRL) and the analog inputs (AN0 to AN7).
In addition, when the power is turned off, turn off the A/D converter power supply and the analog inputs first, and then turn off the digital power supply. (Turning on or off the analog and digital power supplies simultaneously will not cause any problems.)

Whether applying or cutting off the power, be certain that AVRH does not exceed $A V c c$.

## 7. External Reset Input

To reliably reset the controller by inputting an " $L$ " level to the $\overline{R S T}$ pin, ensure that the " $L$ " level is applied for at least five machine cycles.

## 8. HST Pin

When turning on the system, be sure to set the HST pin to "H" level. Never set the HST pin to "L" level while the $\overline{R S T}$ pin is in "L" level.

## 9. CLK Pin



## MB90F244

## 10.Specifed Interrupt Sequence

When the interrupt stack area is allocated to the external memory, even if the higher priority level interrupt may generate while the former interrupt is waiting in the stack area, the latter higher priority level interrupt routine has to wait untill the former interrupt routine is excuted. In this case the former interrupt routine is excuted in the latter higher priority level.


## BLOCK DIAGRAM



## F²MC-16L CPU PROGRAMMING MODEL

| - Dedicated registers | AH | AL | Accumulator <br> User stack pointer <br> System stack pointer <br> Processor status <br> Program counter <br> User stack upper limit register <br> System stack upper limit register <br> User stack lower limit register <br> System stack lower limit register <br> Direct page register <br> Program bank register <br> Data bank register <br> User stack bank register <br> System stack bank register <br> Additional data bank register |
| :---: | :---: | :---: | :---: |
|  |  | USP |  |
|  |  | SSP |  |
|  |  | PS |  |
|  |  | PC |  |
|  |  | USPCU |  |
|  |  | SSPCU |  |
|  |  | USPCL |  |
|  |  | SSPCL |  |
|  |  | DPR |  |
|  |  | PCB |  |
|  |  | DTB |  |
|  |  | USB |  |
|  |  | SSB |  |
|  |  | ADB |  |
|  |  |  |  |

- General-purpose registers

Max. 32 banks


## - Processor status (PS)



## MEMORY MAP



I/O MAP

| Address | Register name | Register | Read/ write | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000000н | PDR0 | Port 0 data register | R/W | Port 0 | XXXXXXXX |
| 000001н | PDR1 | Port 1 data register | R/W | Port 1 | XXXXXXXX |
| 000002н | PDR2 | Port 2 data register | R/W | Port 2 | XXXXXXXX |
| 000003н | PDR3 | Port 3 data register | R/W | Port 3 | XXXXXXXX |
| 000004н | PDR4 | Port 4 data register | R/W | Port 4 | XXXXXXXX |
| 000005н | PDR5 | Port 5 data register | R/W | Port 5 | XXXXXXX-в |
| 000006н | PDR6 | Port 6 data register | R/W | Port 6 | 111-1111в |
| 000007н | PDR7 | Port 7 data register | R/W | Port 7 | --ХХХХХХв |
| 000008н | PDR8 | Port 8 data register | R/W | Port 8 | -----XXX |
| $\begin{aligned} & 000009 \mathrm{H} \\ & \text { to } \\ & 00000 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | (Vacancy) |  |  |  |  |
| 000010н | DDR0 | Port 0 data direction register | R/W | Port 0 | 00000000 в |
| 000011н | DDR1 | Port 1 data direction register | R/W | Port 1 | 00000000 в |
| 000012н | DDR2 | Port 2 data direction register | R/W | Port 2 | 0000000 в |
| 000013н | DDR3 | Port 3 data direction register | R/W | Port 3 | 0000000 в |
| 000014 | DDR4 | Port 4 data direction register | R/W | Port 4 | 0000000 в |
| 000015 ${ }^{\text {H }}$ | DDR5 | Port 5 data direction register | R/W | Port 5 | 0000000-в |
| 000016 | ADER | Analog input enable register | R/W | Analog input enabled | 11111111 B |
| 000017 ${ }^{\text {H }}$ | DDR7 | Port 7 data direction register | R/W | Port 7 | --000000 в |
| 000018н | DDR8 | Port 8 data direction register | R/W | Port 8 | -----000 в |
| $\begin{array}{\|c\|} \hline 000019 \mathrm{H} \\ \text { to } \\ 00001 \mathrm{FH}_{\mathrm{H}} \end{array}$ | (Vacancy) |  |  |  |  |
| 000020н | SCR1 | Serial control status register 1 | R/W | 8/16-bit I/O simple serial interface ch. 1 | 10000000 в |
| 000021н | SSR1 | Serial status register 1 | R/W |  | ------00 в |
| 000022н | SDR1L | Serial data register 1 (L) | R/W |  | XXXXXXXX |
| 000023н | SDR1H | Serial data register 1 (H) | R/W |  | XXXXXXXX |
| $\begin{gathered} 000024_{\mathrm{H}} \\ \text { to } \\ 000027_{\mathrm{H}} \end{gathered}$ | (Vacancy) |  |  |  |  |
| 000028 + | UMC0 | Mode control register 0 | R/W | UART ch. 0 | 00000100 в |
| 000029н | USRO | Status register 0 | R/W |  | 00010000 в |
| 00002Aн | UIDRO/ UODRO | Input data register $0 /$ output data register 0 | R/W |  | XXXXXXXX |
| 00002Вн | URD0 | Rate and data register 0 | R/W |  | 00000000 в |
| $\begin{gathered} \text { 00002CH } \\ \text { to } \\ 00002 \text { Eн }^{2} \end{gathered}$ | (Vacancy) |  |  |  |  |


| Address | Register name | Register | Read/ write | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00002F\% | CKSCR | Clock selection register | R/W | PLL | ----1100в |
| 000030 ${ }^{\text {H }}$ | ENIR | DTP/interrupt enable register | R/W | DTP/external interrupt | ----0000в |
| 000031н | EIRR | DTP/interrupt source register | R/W |  | ----0000в |
| 000032 ${ }^{\text {H }}$ | ELVR | Request level setting register | R/W |  | 00000000в |
| $\begin{gathered} 000033 \mathrm{H} \\ \text { to } \\ 00003 \mathrm{~F}_{\mathrm{H}} \end{gathered}$ | (Vacancy) |  |  |  |  |
| 000040н | TMCSR0 | Timer control status register \#0 | R/W | 16-bit timer \#0 | 00000000в |
| 000041н |  |  | R/W |  | ----0000в |
| 000042н | TMR0 | 16-bit timer register \#0 | R |  | XXXXXXXX |
| 000043н |  |  | R |  | XXXXXXXXв |
| 000044н | TMRLR0 | 16-bit reload register \#0 | W |  | XXXXXXXXB |
| 000045 |  |  | W |  | XXXXXXXX |
| 000046 ${ }^{\text {H }}$ | (Vacancy) |  |  |  |  |
| 000047 ${ }^{\text {H }}$ |  |  |  |  |  |  |  |
| 000048н | TMCSR1 | Timer control status register \#1 | R/W | 16-bit timer \#1 | 00000000в |
| 000049 |  |  | R/W |  | ----0000в |
| 00004Ан | TMR1 | 16-bit timer register \#1 | R |  | XXXXXXXX |
| 00004B |  |  | R |  | XXXXXXXXв |
| 00004CH | TMRLR1 | 16-bit reload register \#1 | W |  | XXXXXXXXB |
| 00004D |  |  | W |  | XXXXXXXX |
| 00004Eн | (Vacancy) |  |  |  |  |
| 00004F\% |  |  |  |  |  |  |  |
| 000050н | TMCSR2 | Timer control status register \#2 | R/W | 16-bit timer \#2 | 00000000в |
| 000051н |  |  | R/W |  | ----0000в |
| 000052н | TMR2 | 16-bit timer register \#2 | R |  | ХХХХХХХХХв |
| 000053н |  |  | R |  | XXXXXXXX |
| 000054н | TMRLR2 | 16-bit reload register \#2 | W |  | XXXXXXXX |
| 000055 |  |  | W |  | XXXXXXXX |
| $\begin{gathered} \text { 000056н } \\ \text { to } \\ 00005 \mathrm{~F}_{\mathrm{H}} \end{gathered}$ | (Vacancy) |  |  |  |  |
| 000060н | ICP0 | Input capture register 0 | R | 16-bit input capture 0 and 1 | XXXXXXXXв |
| 000061н |  |  | R |  | XXXXXXXX |
| 000062н | ICP1 | Input capture register 1 | R |  | XXXXXXXX |
| 000063н |  |  | R |  | XXXXXXXX |
| 000064н | ICSO | Input capture control status register 0 and 1 | R/W |  | 00000000в |
| 000065 |  | (Vacancy) |  |  |  |

(Continued)

| Address | Register name | Register | Read/ write | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000066н | ICP2 | Input capture register 2 | R | 16-bit input capture 2 and 3 | ХХХХХХХХв |
| 000067н |  |  |  |  | XXXXXXXX |
| 000068н | ICP3 | Input capture register 3 | R |  | XXXXXXXX |
| 000069н |  |  |  |  | XXXXXXXX |
| 00006Ан | ICS1 | Input capture control status register 2 and 3 | R/W |  | 00000000в |
| 00006Вн |  | (Vacan |  |  |  |
| 00006Cн | TCDT | Timer data register | R | 16-bit freerun timer | 00000000в |
| 00006D ${ }^{\text {H }}$ |  |  | R |  | 00000000 в |
| 00006Ен | TCCS | Timer control status register | R/W |  | 00000000в |
| 00006Fн | (Vacancy) |  |  |  |  |
| 000070н | ADCS 1 | A/D control status register 1 | R/W | 8/10-bit A/D converter | 000-0000в |
| 000071н | ADCS 2 | A/D control status register 2 | R/W |  | -000--00в |
| 000072н | ADCT 1 | Conversion time setting register 1 | R/W |  | XXXXXXXX |
| 000073н | ADCT 2 | Conversion time setting register 2 | R/W |  | XXXXXXXX |
| 000074н | ADTL0 | A/D data register 0 (L) | R |  | XXXXXXXX ${ }_{\text {B }}$ |
| 000075 | ADTH0 | A/D data register 0 (H) | R |  | $-----X^{\prime}$ |
| 000076н | ADTL1 | A/D data register 1 (L) | R |  | XXXXXXXX |
| 000077 | ADTH1 | A/D data register 1 (H) | R |  | ------XX |
| 000078н | ADTL2 | A/D data register 2 (L) | R |  | XXXXXXXX |
| 000079н | ADTH2 | A/D data register 2 (H) | R |  |  |
| 00007 Ан | ADTL3 | A/D data register 3 (L) | R |  | XXXXXXXX ${ }_{\text {¢ }}$ |
| 00007Вн | ADTH3 | A/D data register 3 (H) | R |  | ------XX |
| $\begin{gathered} 00007 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 00008 \mathrm{~F}_{\mathrm{H}} \end{gathered}$ | (Vacancy) |  |  |  |  |
| $\begin{gathered} \hline 000090_{\mathrm{H}} \\ \text { to } \\ 00009 \mathrm{E}_{\mathrm{H}} \end{gathered}$ | $($ System reserved area)*1 |  |  |  |  |
| 00009Fн | DIRR | Delayed interrupt source generation/ release register | R/W | Delayed interrupt generation module | ------- 0 в |
| 0000AOн | STBYC | Standby control register | R/W | Low-power consumption mode | 0001 XXXX в |
| 0000А3н | MACR | Middle address control register | W | External pin | *2 |
| 0000A4н | HACR | High address control register | W |  | *2 |
| 0000A5 ${ }_{\text {H }}$ | EPCR | External pin control register | W |  | *2 |

(Continued)
(Continued)

| Address | Register name | Register | Read/ write | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000A8н | WTC | Watchdog timer control register | R/W | Watchdog timer | XXXXXXXX |
| 0000A9н | TBTC | Timebase timer control register | R/W | Timebase timer | 0XX00000в |
| 0000АЕн | FMCS | Control status register | R/W | Flash memory | 000×0--0в |
| 0000ВОн | ICROO | Interrupt control register 00 | R/W*3 |  | 00000111 в |
| 0000B1н | ICR01 | Interrupt control register 01 | R/W*3 |  | 00000111 в |
| 0000В2н | ICR02 | Interrupt control register 02 | R/W*3 |  | 00000111 в |
| 0000ВЗн | ICR03 | Interrupt control register 03 | R/W*3 |  | 00000111 B |
| 0000B4н | ICR04 | Interrupt control register 04 | R/W*3 |  | 00000111 в |
| 0000В5н | ICR05 | Interrupt control register 05 | R/W*3 |  | 00000111 в |
| 0000В6н | ICR06 | Interrupt control register 06 | R/W*3 |  | 00000111 в |
| 0000B7н | ICR07 | Interrupt control register 07 | R/W*3 | Interrupt | 00000111 в |
| 0000В8н | ICR08 | Interrupt control register 08 | R/W*3 | controller | 00000111 в |
| 0000B9н | ICR09 | Interrupt control register 09 | R/W*3 |  | 00000111 в |
| 0000ВАн | ICR10 | Interrupt control register 10 | R/W*3 |  | 00000111 в |
| 0000ВВн | ICR11 | Interrupt control register 11 | R/W*3 |  | 00000111 в |
| 0000BC ${ }_{\text {H }}$ | ICR12 | Interrupt control register 12 | R/W*3 |  | 00000111 B |
| 0000BD ${ }_{\text {н }}$ | ICR13 | Interrupt control register 13 | R/W*3 |  | 00000111 в |
| 0000ВЕн | ICR14 | Interrupt control register 14 | R/W*3 |  | 00000111 в |
| 0000BFн | ICR15 | Interrupt control register 15 | R/W*3 |  | 00000111 в |
| $\begin{aligned} & 0000 \mathrm{COH}_{\mathrm{H}} \\ & \text { to } \\ & 000 \mathrm{FFFH}_{\mathrm{H}} \end{aligned}$ | (External area)*3 |  |  |  |  |

Explanation of read/write
R/W : Readable and writable
R : Read only
W : Write only
Explanation of initial values
0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X$ : The initial value of this bit is undefined.

- : This bit is unused. No initial value is defined.
*1: Access prohibited.
*2: The initial values are changed depending on a bus mode.
*3: The only area available for the external access below address 0000FFH is this area. Addresses not explained in the table are "(reserved area)"; accesses to these areas are handled accesses to internal areas. No access signal is generated for the external bus.
Note: Do not use any "(vacancy)".


## ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| $(\mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V})$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Value |  | Unit | Remarks |
|  |  | Min. | Max. |  |  |
| Power supply voltage | V cc | Vss -0.3 | Vss +4.0 | V |  |
|  | Vcc5 | Vss-0.3 | Vss +7.0 | V | *1 |
|  | AV ${ }_{\text {cc }}$ | Vss-0.3 | Vss +4.0 | V | *2 |
|  | AVRH | Vss -0.3 | Vss +4.0 | V | *2 |
|  | AVRL | Vss-0.3 | Vss +4.0 | V | *2 |
| Input voltage | V11 | Vss-0.3 | Vcc +0.3 | V | *3 |
|  | $\mathrm{V}_{12}$ | Vss-0.3 | $V_{c c} 5+0.3$ | V | *4 |
| Output voltage | Vo | Vss -0.3 | $\mathrm{Vcc}+0.3$ | V | *3 |
| "L" level maximum output current | loL | - | 10 | mA |  |
| "L" level average output current | lolav | - | 3 | mA |  |
| "L" level total maximum output current | Elo | - | 60 | mA |  |
| "L" level total average output current | Elolav | - | 30 | mA |  |
| "H" level maximum output current | Іон | - | -10 | mA |  |
| " H " level average output current | lohav | - | -3 | mA |  |
| "H" level total maximum output current | ᄃloh | - | -60 | mA |  |
| "H" level total average output current | Elohav | - | -30 | mA |  |
| Power consumption | PD | - | 350 | mW |  |
| Operating temperature | TA | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |  |

*1: Vcc5 must always exceed Vcc.
*2: AVcc, AVRH and AVRL must not exceed $V \mathrm{cc}$. Also AVRL must not exceed AVRH.
*3: $\mathrm{V}_{11}$ and $\mathrm{V}_{\mathrm{o}}$ must not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$.
*4: $V_{12}$ must not exceed $V_{c c} 5+0.3 \mathrm{~V}$.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

## 2. Recommended Operating Conditions

| Parameter |  |  |  |  | $\left(\mathrm{AVss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Symbol | Value |  | Unit |  |
|  |  | Min. | Max. |  | Remarks |
| Power supply voltage | V cc | 3.0 | 3.6 | V | Normal operation |
|  | Vcc | 3.0 | 3.6 | V | Maintaining the stop status |
|  | Vcc5 | 4.5 | 5.5 | V |  |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

## 3. DC Characteristics

$\left(\mathrm{Vcc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| "H" level input voltage | $\mathrm{V}_{\mathbf{H} 2}$ | - | - | 0.7 Vcc | Vcc5 +0.3 | V | TTL input |
|  | $\mathrm{V}_{\text {His }}$ | $\begin{aligned} & \text { P60 to P63, } \\ & \text { P65 to P67, } \\ & \text { P70 } \end{aligned}$ |  | 0.8 Vcc | $\mathrm{V} \mathrm{cc}+0.3$ | V | CMOS hysteresis input |
|  | $\mathrm{V}_{1+2 \mathrm{~S}}$ | - |  | 0.8 Vcc | Vcc5 + 0.3 | V | CMOS hysteresis input |
|  | VIH2S5 | $\overline{\mathrm{RST}}, \overline{\mathrm{HST}}$ |  | 0.8 Vcc 5 | Vcc5 + 0.3 | V | CMOS hysteresis input |
|  | Vнм | MD0 to MD2 |  | 0.7 Vcc 5 | V cc5 +0.3 | V | CMOS input |
| "L" level input voltage | VIL2 | - |  | Vss -0.3 | 0.2 Vcc | V | TTL input |
|  | VIL1s | $\begin{aligned} & \text { P60 to P63, } \\ & \text { P65 to P67, } \\ & \text { P70 } \end{aligned}$ |  | Vss - 0.3 | 0.2 Vcc | V | CMOS hysteresis input |
|  | VIL2S | - |  | Vss - 0.3 | 0.2 Vcc | V | CMOS hysteresis input |
|  | VIL2s5 | $\overline{\mathrm{RST}}, \mathrm{HST}$ |  | Vss - 0.3 | 0.2 Vcc 5 | V | CMOS hysteresis input |
|  | VILM | MD0 to MD2 |  | Vss - 0.3 | 0.2 Vcc 5 | V | CMOS input |
| "H" level output voltage | Vон | All ports except port 6 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$ | Vcc-0.3 | - | V |  |
| "L" level output voltage | Voı | All ports | $\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$ | - | 0.4 | V |  |
| " H " level input current | ${ }_{1+1}$ | MD0 to MD2 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc} 5}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=0.7 \mathrm{~V} \mathrm{Cc} 5 \end{aligned}$ | - | -10 | $\mu \mathrm{A}$ | CMOS input |
|  | ІНг | - | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{c} 5}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=2.2 \mathrm{~V} \end{aligned}$ | - | -10 | $\mu \mathrm{A}$ | TTL input |
|  | Інз | Except port 6, RST, HST | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} 5=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=0.8 \mathrm{~V} \mathrm{Cc} \end{aligned}$ | - | -10 | $\mu \mathrm{A}$ | CMOS hysteresis input |
|  | І1н4 | P60 to P63, P65 to P67 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} 5=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=0.7 \mathrm{~V} \mathrm{Vc} \end{aligned}$ | - | -10 | $\mu \mathrm{A}$ | CMOS hysteresis input Only port 6 |
| "L" level input current | IL1 | MD0 to MD2 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc} 5}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0.3 \mathrm{~V} \mathrm{cc} 5 \end{aligned}$ | - | 10 | $\mu \mathrm{A}$ | CMOS input |
|  | IL2 | - | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} 5=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$ | - | 10 | $\mu \mathrm{A}$ | TTL input |
|  | Іเз | Except port 6, RST, HST | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} 5=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.2 \mathrm{~V} \mathrm{Cc} \end{aligned}$ | - | 10 | $\mu \mathrm{A}$ | CMOS hysteresis input |
|  | 11.4 | P60 to P63, P65 to P67 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} 5=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.3 \mathrm{~V} \mathrm{Vc} \end{aligned}$ | - | 10 | $\mu \mathrm{A}$ | CMOS hysteresis input Only port 6 |

(Continued)
(Continued)

$$
\left(\mathrm{V} \mathrm{cc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{Vs}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

| Parameter | Symbol | Pin name | Condition |  | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min. | Typ. | Max. |  |  |
| Power supply current* ${ }^{*}$ | Icc 1 | V cc | CPU normal mode at 25 MHz | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.15 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$ | - | - | 50 | mA | Flash memory read state |
|  | Iccı | V cc |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ & \pm 0.15 \mathrm{~V} \end{aligned}$ | - | - | 45 | mA | Flash memory read state |
|  | Icc51 | Vcc5 |  | - | - | - | 33 | mA | Flash memory read state |
|  | Icc2 | V cc | CPU normal mode at 25 MHz | $\begin{aligned} & \mathrm{Vcc}=3.15 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$ | - | - | 50 | mA | Flash memory program/erase state |
|  | Icc2 | V cc |  | $\begin{aligned} & V_{c c}=3.3 \mathrm{~V} \\ & \pm 0.15 \mathrm{~V} \end{aligned}$ | - | - | 45 | mA | Flash memory program/erase state |
|  | Icc52 | Vcc5 |  | - | - | - | 53 | mA | Flash memory program/erase state |
|  | Iccs | V cc | CPU sleep mode At 25 MHz |  | - | - | 20 | mA |  |
|  | Icc5s | Vcc5 |  |  | - | - | 5 | mA |  |
|  | Icch | Vcc | CPU stop mode$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | - | - | 100 | $\mu \mathrm{A}$ |  |
|  | ICC5H | Vcc5 |  |  | - | - | 100 | $\mu \mathrm{A}$ |  |
| Input capacitance | Cin | Except Vcc, Vcc5, Vss |  | - | - | 10 | - | pF |  |
| Pull-up resistor | Rpulı | $\overline{\text { RST }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ & \mathrm{~V} c \mathrm{C} 5=5.0 \mathrm{~V} \end{aligned}$ |  | 22 | - | 220 | $\mathrm{k} \Omega$ |  |
| Open-drain output leakage voltage | Ileak | Port 6 |  | - | - | - | 10 | $\mu \mathrm{A}$ |  |
| Low Vcc5 lock voltage*2 | Vıко | - |  | - | TBD | - | 3.6 | V |  |

*1: Because the current values are tentative values, they are subject to change without notice due to our efforts to improve the characteristics of these devices.
*2: To prevent improper commands from being activated during rise and fall of $\mathrm{V}_{\mathrm{cc}} 5$, the internal $\mathrm{V}_{\mathrm{cc}} 5$ detection circuit of the flash memory allows only read accesses and ignores write accesses while $\mathrm{V}_{\mathrm{cc}} 5$ is lower than VLko.

## MB90F244

## 4. Flash Memory Programming/Eraseing Characteristics

$$
\left(\mathrm{V} \mathrm{cc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{Vs}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

| Parameter | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |
| Sector eraseing time | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V} C \mathrm{C}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{c} 5}=5.0 \mathrm{~V} \end{aligned}$ | - | 1.5 | 13.5 | sec | Except for the write time before internal erase operation |
| Chip eraseing time |  | - | - | 27.0 | sec | Except for the write time before internal erase operation |
| Byte programmimg time |  | - | 16 | - | $\mu \mathrm{S}$ | Except for the over head time of the system |
| Chip programming time |  | - | 2.1 | - | sec | Except for the over head time of the system |
| Erase/program cycle | - | 100 | - | - | cycles |  |

*: The internal automatic algorithm continues operations for up to 48 ms , for each 1-byte writing operation.

## MB90F244

## 5. AC Characteristics

## (1) Clock Timing

$$
\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Clock frequency | Fc | X0, X1 | $\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}$ to 3.6 V | - | 50 | MHz |  |
|  | Fc | X0, X1 | $\mathrm{V} c \mathrm{c}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | - | 40 | MHz |  |
| Clock cycle time | tc | X0, X1 | - | 1/Fc | - | ns |  |
| Input clock pulse width | $\begin{aligned} & \text { Pw, } \\ & \text { Pw } \end{aligned}$ | X0 |  | 10 | - | ns |  |
| Input clock rising/falling time | $\begin{aligned} & \mathrm{tcR}, \\ & \text { tcF } \end{aligned}$ | X0 |  | - | 8 | ns |  |

- Clock timing

- Relationship between clock frequency and power supply voltage



## MB90F244

(2) Clock Output Timing

$$
\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Cycle time | tovc | CLK | - | 2 tc* | - | ns |  |
| CLK $\uparrow \rightarrow$ CLK $\downarrow$ | tchcl | CLK |  | 1 torc/2-15 | 1 tcrc/2 + 15 | ns |  |

*: For information on tc (clock cycle time), see "(1) Clock Timing."

(3) Reset and Hardware Standby Input

| $\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
|  |  |  |  | Min. | Max. |  |  |
| Reset input time | trstı | $\overline{\text { RST }}$ | - | 5 tcrc* | - | ns |  |
| Hardware standby input time | thstı | HST |  | 5 tcrc* | - | ns |  |

*: For information on tcrc (cycle time), see "(2) Clock Output Timing."
Note: When hardware standby input is given, the machine cycle is simultaneously selected to be divide-by-32.


## MB90F244

(4) Power-on Reset

| $\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
|  |  |  |  | Min. | Max. |  |  |
| Power supply rising time | tr | Vcc, V cc 5 | - | - | 30 | ms | * |
| Power supply cut-off time | toff | Vcc, $\mathrm{V}_{\mathrm{cc}} 5$ |  | 1 | - | ms |  |

*: Before the power supply rising, Vcc must be lower than 0.2 V .
Note: The above standards are the values needed in order to activate a power-on reset.


If power supply voltage needs to be changed in the course of operation, a smooth voltage rise is recommended by suppressing the voltage variation as shown below.


## (5) Bus Read Timing

$\left(\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Vcc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Address cycle time | tacyc | AN23 to AN00 | - | 2 tcyc* -10 | - | ns |  |
| Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time | tavRL | AN23 to AN00 |  | 1 tcrc $^{*} / 2-13$ | - | ns |  |
| $\overline{\mathrm{RD}}$ pulse width | trLRH | $\overline{\mathrm{RD}}$ |  | 1 tcyc* -20 | - | ns |  |
| $\overline{\mathrm{RD}} \downarrow \rightarrow$ data read time | treov | D15 to D00 |  | - | 1 tcrc* -30 | ns |  |
| Valid address $\rightarrow$ data read time | tavov | D15 to D00 |  | - | 3 tcrc*/2-30 | ns |  |
| $\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time | trhox | D15 to D00 |  | 0 | - | ns |  |
| $\overline{\mathrm{RD}} \uparrow \rightarrow$ address valid time | trhax | AN23 to AN00 |  | 1 tcrc $^{*} / 2-20$ | - | ns |  |
| Valid address $\rightarrow$ CLK $\uparrow$ time | tavch | AN23 to ANOO, CLK |  | 1 tcrc*/2-20 | - | ns |  |
| $\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK $\downarrow$ time | tricl | RD, CLK |  | 1 tcyc*/2-20 | - | ns |  |

* : For information on tcyc (cycle time), see "(2) Clock Output Timing."



## (6) Bus Write Timing

$\left(\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Vcc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time | tavwL | AN23 to AN00 | - | 1 tcrc*$^{*} / 2-13$ | - | ns |  |
| $\overline{\text { WR }}$ pulse width | twlwh | WRL, WRH |  | $1 \mathrm{tcrc}^{*}-20$ | - | ns |  |
| Write data $\rightarrow \overline{\mathrm{WR}} \uparrow$ time | toww | D15 to D00 |  | 1 tcrc* -33 | - | ns |  |
| $\overline{\mathrm{WR}} \uparrow \rightarrow$ Data hold time | twhox | D15 to D00 |  | 1 tcrc $^{*} / 2-15$ | - | ns |  |
| $\overline{\mathrm{WR}} \uparrow \rightarrow$ Address valid time | twhax | AN23 to AN00 |  | 1 tcrc*/2-15 | - | ns |  |
| $\overline{\mathrm{WR}} \uparrow \rightarrow$ CLK $\downarrow$ time | twlcl | $\begin{aligned} & \text { WRL, } \overline{\text { WRH, }} \\ & \text { CLK } \end{aligned}$ |  | 1 tcrc $^{*} / 2-20$ | - | ns |  |

*: For information on tcyc (cycle time), see "(2) Clock Output Timing."


## MB90F244

(7) Ready Input Timing
$\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| RDY setup time | tryHs | RDY | Source oscillation 50 MHz | 15 | 38 | ns |  |
| RDY hold time | try ${ }^{\text {ar }}$ | RDY |  | 0 | 38 | ns |  |

Note: If the RDY setup time is insufficient, use the auto ready function.

(8) Hold Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Pin floating $\rightarrow \overline{\text { HAK }} \downarrow$ time | txhaL | $\overline{\text { HAK }}$ | - | 30 | 1 tcrc* | ns |  |
| $\overline{\text { HAK }}$ time $\uparrow \rightarrow$ Pin valid time | thatv | HAK |  | 1 tcyc* | 2 tcrc* | ns |  |

*: For information on tcrc (cycle time), see "(2) Clock Output Timing."
Note: At least one cycle is required from the time when HRQ is fetched until HAK changes.


## MB90F244

## (9) UART Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Serial clock cycle time | tscyc | - | For internal shift clock mode output pin, $C \mathrm{~L}=80 \mathrm{pF}$ | 8 tcrc* | - | ns |  |
| SCK $\downarrow \rightarrow$ SOD delay time | tsıov | - |  | -80 | 80 | ns |  |
| Valid SID $\rightarrow$ SCK $\uparrow$ | tvsh | - |  | 100 | - | ns |  |
| SCK $\uparrow \rightarrow$ Valid SID hold time | tshix | - |  | 60 | - | ns |  |
| Serial clock "H" pulse width | tsHSL | - | For external shift clock mode output pin, $\mathrm{CL}=80 \mathrm{pF}$ | 4 tcrc* | - | ns |  |
| Serial clock "L" pulse width | tsısh | - |  | 4 tcrc* | - | ns |  |
| SCK $\downarrow \rightarrow$ SOD delay time delay time | tsıov | - |  | - | 150 | ns |  |
| Valid SID $\rightarrow$ SCK $\uparrow$ | tivsh | - |  | 60 | - | ns |  |
| SCK $\uparrow \rightarrow$ Valid SID hold time | tshix | - |  | 60 | - | ns |  |

*: For information on tcyc (cycle time), see "(2) Clock Output Timing."
Notes: - These are the AC characteristics for CLK synchronous mode.

- $\mathrm{C}_{\llcorner }$is the load capacitance added to pins during testing.


## MB90F244

- Internal shift clock mode

- External shift clock mode



## MB90F244

(10) Serial I/O Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Serial clock cycle time | tscyc | - | For internal shift clock mode output pin, $\mathrm{CL}=80 \mathrm{pF}$ | 2 tcrc* | - | ns |  |
| SCK $\uparrow \rightarrow$ SOD delay time | tstov | - |  | - | 1 tcrc**/2 $^{\text {a }}$ | ns |  |
| Valid SID $\rightarrow$ SCK $\uparrow$ | tivsh | - |  | -15 | - | ns |  |
| SCK $\uparrow \rightarrow$ Valid SID hold time | tshix | - |  | 1/2 tcrc* | - | ns |  |

*: For information on tcyc (cycle time), see "(2) Clock Output Timing."
Note: CL is the load capacitance added to pins during testing.

- Internal shift clock mode



## MB90F244

(11) Timer Input Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Input pulse width | tтiwh, ttiwn | ASR0 to ASR3, TINO to TIN2 | - | 4 tcrc* | - | ns |  |

* : For information on tcyc (cycle time), see "(2) Clock Output Timing."

(12) Timer Output Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| CLK $\uparrow \rightarrow$ Change time | to | TOT0 to TOT2 | $\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | - | 40 | ns |  |

## CLK

TOT0 to TOT2


## MB90F244

## (13) Trigger Input Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Input pulse width | ttrgh, ttrgl | $\overline{\text { ATG, }}$ INT0 to INT3 | - | 5 tcrc* | - | ns |  |

* : For information on tcrc (cycle time), see "(2) Clock Output Timing."



## 6. A/D Converter Electrical Characteristics

$\left(\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} c c 5=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{AV} \mathrm{Vs}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| Resolution | - | AN0 to AN3, AN5 to AN7 | - | - | 8,10 | 10 | bit |  |
|  | - | AN4 |  | - | 8 | 8 | bit |  |
| Total error | - | - |  | - | - | T.B.D | LSB | Target: $\pm 4.0$ |
| Linearity error | - | - |  | - | - | T.B.D | LSB | Target: $\pm 2.0$ |
| Differential linearity error | - | - |  | - | - | T.B.D | LSB | Target: $\pm 1.9$ |
| Zero transition voltage | $\mathrm{V}_{\text {от }}$ | ANO to AN3, AN5 to AN7 |  | $\begin{gathered} \hline \text { AVRL } \\ -1.0 \mathrm{LSB} \end{gathered}$ | $\begin{gathered} \text { AVRL } \\ +1.0 \mathrm{LSB} \end{gathered}$ | $\begin{gathered} \hline \text { AVRL } \\ +4.0 \mathrm{LSB} \end{gathered}$ | mV |  |
|  | $\mathrm{V}_{\text {от }}$ | AN4 |  | $\begin{gathered} \hline \text { AVRL } \\ -1.0 \mathrm{LSB} \end{gathered}$ | $\begin{gathered} \text { AVRL } \\ +1.0 \mathrm{LSB} \end{gathered}$ | $\begin{gathered} \hline \text { AVRL } \\ +1.5 \mathrm{LSB} \end{gathered}$ | mV | 8-bit precision in calculation |
| Full-scale transition voltage | $V_{\text {fst }}$ | ANO to AN3, AN5 to AN7 |  | $\begin{gathered} \text { AVRH } \\ -4.0 \text { LSB } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { AVRH } \\ -1.0 \text { LSB } \end{array}$ | $\begin{gathered} \hline \text { AVRH } \\ +1.0 \mathrm{LSB} \end{gathered}$ | mV |  |
|  | $V_{\text {fst }}$ | AN4 |  | $\begin{gathered} \hline \text { AVRH } \\ -2.0 \text { LSB } \end{gathered}$ | $\begin{gathered} \hline \text { AVRH } \\ -1.0 \mathrm{LSB} \end{gathered}$ | $\begin{array}{c\|} \hline \text { AVRH } \\ +1.0 \mathrm{LSB} \end{array}$ | mV | 8-bit precision in calculation |
| Conversion time | - | - | Setup by ADCT register $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}^{* 1}$ | 1.00 | - | - | $\mu \mathrm{s}$ |  |
| Sampling period | - | - |  | 440 | - | - | ns |  |
| Conversion period a | - | - |  | 120 | - | - | ns |  |
| Conversion period b | - | - |  | 120 | - | - | ns |  |
| Conversion period c | - | - |  | 200 | - | - | ns |  |
| Analog port input current | Iain | AN0 to AN7 | - | - | 0.1 | 3 | $\mu \mathrm{A}$ |  |
| Analog input voltage | - | AN0 to AN7 |  | AVRL | - | AVRH | V |  |
| Reference voltage | - | AVRH | AVRH - AVRL 22.7 | AVRL + 2.7 | - | AV ${ }_{\text {cc }}$ | V |  |
|  | - | AVRL |  | 0 | - | AVRH-2.7 | V |  |
| Power supply current | IA | AV ${ }_{\text {cc }}$ | $\mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | - | 7 | 9 | mA |  |
|  |  |  | $\mathrm{AV} \mathrm{Cc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$ | - | 7 | 8 | mA |  |
|  | IAs*2 | - | $\mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}$ <br> Stop mode | - | - | 5 | $\mu \mathrm{A}$ |  |
| Reference voltage supply current | IR | AVRH | AV cc $=3.3 \mathrm{~V}$ Stop mode | - | 1.0 | 1.5 | mA |  |
|  | IRs*2 | AVRH |  | - | - | 5 | $\mu \mathrm{A}$ |  |
| Interchannel disparity | - | ANO to AN3, AN5 to AN7 | - | - | - | 4 | LSB | No rating for AN4 because of calculated by 8 -bit precision |

*1: When $\mathrm{Fc}_{\mathrm{c}}=50 \mathrm{MHz}$ (frequency), and the machine cycle is 4.0 ns .
The minimum value of the ADCT resister is \#A224, differs from that of the MB90F243.
*2: Current when the A/D converter is not operating and the CPU is stopped.
Notes: • The smaller | AVRH - AVRL |, the greater the error would become relatively.

- If the output impedance of the external circuit for the analog input is high, sampling period might be insufficient. When the sampling period set at near the minimum value, the output impedance of the external circuit should be less than approximately $300 \Omega$.


## MB90F244

## - Analog input circuit model diagram



## MB90F244

## 6. A/D Converter Glossary

## - Resolution

Analog changes that are identifiable with the $A / D$ converter.
When the number of bits is 10 , analog voltage can be divide into $2^{10}$.

## - Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " $\leftrightarrow$ "00 00000001 ") with the full-scale transition point ("11 11111110" $\leftrightarrow$ "11 11111111") from actual conversion characteristics

## - Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

## - Total error (unit: LSB)

The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, non-linearity error, differential linearity error, and noise


## INSTRUCTIONS (412 INSTRUCTIONS)

Table 1 Explanation of Items in Table of Instructions

| Item | Explanation |
| :---: | :---: |
| Mnemonic | Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. <br> Numbers after lower-case letters: Indicate the bit width within the instruction. |
| \# | Indicates the number of bytes. |
| $\sim$ | Indicates the number of cycles. <br> See Table 4 for details about meanings of letters in items. |
| B | Indicates the correction value for calculating the number of actual cycles during execution of instruction. <br> The number of actual cycles during execution of instruction is summed with the value in the "cycles" column. |
| Operation | Indicates operation of instruction. |
| LH | Indicates special operations involving the bits 15 through 08 of the accumulator. <br> Z: Transfers " 0 ". <br> X : Extends before transferring. <br> -: Transfers nothing. |
| AH | Indicates special operations involving the high-order 16 bits in the accumulator. <br> *: Transfers from AL to AH. <br> -: No transfer. <br> Z: Transfers 00 н to AH . <br> X: Transfers 00 н or FF н to AH by extending AL. |
| I | Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). <br> *: Changes due to execution of instruction. <br> -: No change. <br> S : Set by execution of instruction. <br> $R$ : Reset by execution of instruction. |
| S |  |
| T |  |
| N |  |
| Z |  |
| V |  |
| C |  |
| RMW | Indicates whether the instruction is a read-modify-write instruction (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.). <br> *: Instruction is a read-modify-write instruction <br> -: Instruction is not a read-modify-write instruction <br> Note: Cannot be used for addresses that have different meanings depending on whether they are read or written. |

Table 2 Explanation of Symbols in Table of Instructions

| Symbol | Explanation |
| :---: | :--- |
| A | 32-bit accumulator <br> The number of bits used varies according to the instruction. <br> Byte: Low order 8 bits of AL <br> Word: 16 bits of AL <br> Long: 32 bits of AL, AH |
| AH | High-order 16 bits of A |
| AL | Low-order 16 bits of A |
| SP | Stack pointer (USP or SSP) |
| PC | Program counter |
| SPCU | Stack pointer upper limit register |
| SPCL | Stack pointer lower limit register |
| PCB | Program bank register |
| DTB | Data bank register |
| ADB | Additional data bank register |
| SSB | System stack bank register |
| USB | User stack bank register |
| SPB | Current stack bank register (SSB or USB) |
| DPR | Direct page register |
| brg1 | DTB, ADB, SSB, USB, DPR, PCB, SPB |
| brg2 | DTB, ADB, SSB, USB, DPR, SPB |
| Ri | R0, R1, R2, R3, R4, R5, R6, R7 |
| RWi | RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7 |
| RWj | RW0, RW1, RW2, RW3 |
| RLi | RL0, RL1, RL2, RL3 |
| dir <br> addr16 <br> addr24 <br> addr24 0 to 15 <br> addr24 16 to 23 | Compact direct addressing <br> Direct addressing <br> io <br> Physical direct addressing <br> Bits 15 of addr24 to 23 of addr24 <br> Bits |
| I/O area (000000H to 0000FFH) |  |

(Continued)
(Continued)

| Symbol | Explanation |
| :---: | :--- |
| \#imm4 | 4-bit immediate data |
| \#imm8 | 8-bit immediate data |
| \#imm16 | 16-bit immediate data |
| \#imm32 | 32-bit immediate data |
| ext (imm8) | 16-bit data signed and extended from 8-bit immediate data |
| disp8 | 8-bit displacement |
| disp16 | 16-bit displacement |
| bp | Bit offset value |
| vct4 | Vector number (0 to 15) |
| vct8 | Vector number (0 to 255) |
| ( )b | Bit address |
| rel | Branch specification relative to PC |
| ear | Effective addressing (codes 00 to 07) |
| eam | Effective addressing (codes 08 to 1F) |
| rlst | Register list |

Table 3 Effective Address Fields

| Code | Notation | Address format | Number of bytes in address extemsion* |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 04 \\ & 05 \\ & 06 \\ & 07 \end{aligned}$ | R0 RW0 RL0 <br> R1 RW1 (RL0) <br> R2 RW2 RL1 <br> R3 RW3 (RL1) <br> R4 RW4 RL2 <br> R5 RW5 (RL2) <br> R6 RW6 RL3 <br> R7 RW7 (RL3) | Register direct "ea" corresponds to byte, word, and long-word types, starting from the left | - |
| 08 <br> 09 <br> 0A <br> 0B |  | Register indirect | 0 |
| $\begin{aligned} & 0 C \\ & 0 D \\ & 0 E \\ & 0 \mathrm{OF} \end{aligned}$ | @RW0 + @RW1 + @RW2 + @RW3 + | Register indirect with post-increment | 0 |
| $\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$ | @RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8 | Register indirect with 8-bit displacement | 1 |
| $\begin{aligned} & 18 \\ & 19 \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$ | @RW0 + disp16 <br> @RW1 + disp16 <br> @RW2 + disp16 <br> @RW3 + disp16 | Register indirect with 16-bit displacemen | 2 |
| $\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$ | @RW0 + RW7 @RW1 + RW7 @PC + dip16 addr16 | Register indirect with index Register indirect with index PC indirect with 16 -bit displacement Direct address | $\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ |

*: The number of bytes for address extension is indicated by the " + " symbol in the " " (number of bytes) column in the Table of Instructions.

Table 4 Number of Execution Cycles for Each Form of Addressing

| Code | Operand | (a) ${ }^{\star}$ |
| :---: | :--- | :---: |
|  |  | Number of execution cycles for each from of addressing |
| 00 to 07 | Ri | Listed in Table of Instructions |
|  | RWi |  |
| RLi |  |  |
| 08 to 0 B | $@ \mathrm{RWj}$ | 1 |
| 0 C to 0 F | $@ \mathrm{RWj}+$ | 4 |
| 10 to 17 | $@ \mathrm{RWi}+$ disp8 | 1 |
| 18 to 1 B | @RWj + disp16 | 1 |
| 1 C | @RW0 + RW7 | 2 |
| 1 D | @RW1 + RW7 | 2 |
| 1 E | @PC + dip16 | 2 |
| 1 F | @addr16 | 1 |

* : "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

| Operand | (b)* |  | (c)* |  | (d)* |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | byte |  | word |  | long |  |
| Internal register | + | 0 | + | 0 | + | 0 |
| Internal RAM even address | + | 0 | + | 0 | + | 0 |
| Internal RAM odd address | + | 0 | + | 1 | + | 2 |
| Even address not in internal RAM | + | 1 | + | 1 | + | 2 |
| Odd address not in internal RAM | + | 1 | + | 3 | + | 6 |
| External data bus (8 bits) | + | 1 | + | 3 | + | 6 |

*:"(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Table 6 Transfer Instructions (Byte) [50 Instructions]

| Mnemonic | \# | ~ | B | Operation | LH | AH | 1 | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOV A, dir | 2 | 2 | (b) | byte $(\mathrm{A}) \leftarrow$ (dir) | Z |  | - | - | - | * | * | - | - | - |
| MOV A, addr16 | 3 | 2 | (b) | byte $(A) \leftarrow$ (addr16) | Z | * | - | - | - | * | * | - | - | - |
| MOV A, Ri | 1 | 1 | 0 | byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$ | Z |  | - | - | - | * | * | - | - | - |
| MOV A, ear | 2 | 1 | 0 | byte $(A) \leftarrow$ (ear) | Z |  | - | - | - | * | * | - | - | - |
| MOV A, eam | 2+ | $2+(\mathrm{a})$ | (b) | byte $(A) \leftarrow$ (eam) | Z | * | - | - | - | * | * | - | - | - |
| MOV A, io | 2 | 2 | (b) | byte $(A) \leftarrow$ (io) | Z | * | - | - | - | * | * | - | - | - |
| MOV A, \#imm8 | 2 | 2 | 0 | byte $(\mathrm{A}) \leftarrow$ imm8 | Z | * | - | - | - | * | * | - | - | - |
| MOV A, @A | 2 | 2 | (b) | byte $(A) \leftarrow((A))$ | Z | - | - | - | - | * | * | - | - | - |
| MOV A, @RLi+disp8 | 3 | 6 | (b) | byte $(A) \leftarrow(($ RLi $)$ )+disp8) | Z | * | - | - | - | * | * | - | - | - |
| MOV A, @SP+disp8 | 3 | 3 | (b) | byte $(A) \leftarrow((S P)+$ disp8) | Z | * | - | - | - | * | * | - | - | - |
| MOVP A, addr24 | 5 | 3 | (b) | byte $(A) \leftarrow($ addr24) | Z | * | - | - | - | * | * | - | - | - |
| MOVP A, @A | 2 | 2 | (b) | byte $(A) \leftarrow((A))$ | Z | - | - | - | - | * | * | - | - | - |
| MOVN A, \#imm4 | 1 | 1 | 0 | byte $(A) \leftarrow$ imm4 | Z | * | - | - | - | R | * | - | - | - |
| MOVX A, dir | 2 | 2 | (b) | byte $(\mathrm{A}) \leftarrow$ (dir) | $X$ | * | - | - | - | * | * | - | - | - |
| MOVX A, addr16 | 3 | 2 | (b) | byte $(\mathrm{A}) \leftarrow$ (addr16) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, Ri | 2 | 1 | 0 | byte $(A) \leftarrow($ Ri) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, ear | 2 | 1 | 0 | byte $(A) \leftarrow$ (ear) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, eam | 2+ | $2+(\mathrm{a})$ | (b) | byte $(A) \leftarrow$ (eam) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, io | 2 | 2 | (b) | byte $(\mathrm{A}) \leftarrow$ (io) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, \#imm8 | 2 | 2 | 0 | byte $(\mathrm{A}) \leftarrow$ imm8 | X | * | - | - | - |  | * | - | - | - |
| MOVX A, @A | 2 | 2 | (b) | byte $(A) \leftarrow((A))$ | X | - | - | - | - | * | * | - | - | - |
| MOVX A,@RWi+disp8 | 2 | 3 | (b) | byte $(\mathrm{A}) \leftarrow(($ RWi) $)+$ disp8) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, @RLi+disp8 | 3 | 6 | (b) | byte $(\mathrm{A}) \leftarrow((\mathrm{RLi}))$ +disp8) | X | * | - | - | - | * | * | - | - | - |
| MOVX A, @SP+disp8 | 3 | 3 | (b) | byte $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8) | X | * | - | - | - | * | * | - | - | - |
| MOVPX A, addr24 | 5 | 3 | (b) | byte $(A) \leftarrow($ addr24) | X | * | - | - | - | * | * | - | - | - |
| MOVPX A, @A | 2 | 2 | (b) | byte $(A) \leftarrow((A))$ | X | - | - | - | - | * | * | - | - | - |
| MOV dir, A | 2 | 2 | (b) | byte ( dir) $\leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOV addr16, A | 3 | 2 | (b) | byte (addr16) $\leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOV Ri, A | 1 | 1 | 0 | byte $(\mathrm{Ri}) \leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOV ear, A | 2 | 2 | 0 | byte (ear) $\leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOV eam, A | 2+ | $2+$ (a) | (b) | byte (eam) $\leftarrow(A)$ | - | - | - | - | - | * | * | - | - | - |
| MOV io, A | 2 | 2 | (b) | byte (io) $\leftarrow(A)$ | - | - | - | - | - | * | * | - | - | - |
| MOV @RLi+disp8, A | 3 | 6 | (b) | byte $((\mathrm{RLi}))+$ disp8) $\leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOV @SP+disp8, A | 3 | 3 | (b) | byte ((SP)+disp8) $\leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOVP addr24, A | 5 | 3 | (b) | byte (addr24) $\leftarrow(\mathrm{A})$ | - | - | - | - | - | * | * | - | - | - |
| MOV Ri, ear | 2 | 2 | 0 | byte (Ri) $\leftarrow$ (ear) | - | - | - | - | - | * | * | - | - | - |
| MOV Ri, eam | 2+ | $3+(\mathrm{a})$ | (b) | byte $($ Ri) $\leftarrow$ (eam) | - | - | - | - | - | * | * | - | - | - |
| MOVP @A, Ri | 2 | 3 | (b) | byte $((\mathrm{A})) \leftarrow(\mathrm{Ri})$ | - | - | - | - | - | * | * | - | - | - |
| MOV ear, Ri | 2 | 3 | 0 | byte (ear) $\leftarrow(\mathrm{Ri})$ | - | - | - | - | - | * | * | - | - | - |
| MOV eam, Ri | 2+ | $3+(\mathrm{a})$ | (b) | byte (eam) $\leftarrow(\mathrm{Ri})$ | - | - | - | - | - | * | * | - | - | - |
| MOV Ri, \#imm8 | 2 | 2 | 0 | byte (Ri) $\leftarrow$ imm8 | - | - | - | - | - | * | * | - | - | - |
| MOV io, \#imm8 | 3 | 3 | (b) | byte (io) $\leftarrow$ imm8 | - | - | - | - | - | - | - | - | - | - |
| MOV dir, \#imm8 | 3 | 3 | (b) | byte (dir) $\leftarrow$ imm8 | - | - | - | - | - | - | - | - | - | - |
| MOV ear, \#imm8 | 3 | 2 | 0 | byte (ear) $\leftarrow$ imm8 | - | - | - | - | - | * | * | - | - | - |
| MOV eam, \#imm8 | 3+ | $2+$ (a) | (b) | byte (eam) $\leftarrow$ imm8 | - | - | - | - | - | - | - | - | - | - |
| MOV @AL, AH | 2 | 2 | (b) | byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$ | - | - | - | - | - | * | * | - | - | - |

## MB90F244

(Continued)

|  | Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XCH | A, ear | 2 | 3 | 0 | byte (A) $\leftrightarrow$ (ear) | Z | - | - | - | - | - | - | - | - | - |
| XCH | A, eam | 2+ | $3+(a)$ | $2 \times$ (b) | byte (A) $\leftrightarrow$ (eam) | Z | - | - | - | - | - | - | - | - | - |
| XCH | Ri, ear | 2 | 4 | 0 | byte (Ri) $\leftrightarrow$ (ear) | - | - | - | - | - | - | - | - | - | - |
| XCH | Ri, eam | 2+ | $5+(\mathrm{a})$ | $2 \times$ (b) | byte (Ri) $\leftrightarrow$ (eam) | - | - | - | - | - | - | - | - | - | - |

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 7 Transfer Instructions (Word) [40 Instructions]

| Mnemonic | \# |  | B | Operation | LH |  | AH | 1 | S | T | N | Z | v | C | RM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOVW A, dir | 2 | 2 | (c) | word (A) $\leftarrow$ ( dir) |  |  |  | - | - | - |  |  | - | - | - |
| MOVW A, addr | 3 | 2 | (c) | word $(A) \leftarrow$ (addr16) | - |  |  | - | - | - | * |  | - | - |  |
| MOVW A, SP | 1 | 2 | ) | word (A) $\leftarrow$ (SP) | - |  | * | - | - | - |  |  | - | - | - |
| MOVW A, RWi | 1 | 1 | 0 | word (A) $\leftarrow($ RWi) | - |  | * | - | - | - |  | * | - | - | - |
| MOVW A, ear |  | 1 | 0 | word $(A) \leftarrow($ ear $)$ | - |  | * | - | - | - |  | * | - | - | - |
| MOVW A, eam | $2+$ | 2+ (a) | (c) | word $(A) \leftarrow($ eam $)$ | - |  | * | - | - | - |  | * | - | - | - |
| MOVW A, io | 2 | , | (c) | word (A) $\leftarrow$ (io) |  |  | * | - | - | - |  | * | - | - | - |
| MOVW A, @A | 2 | 2 | (c) | word $(\mathrm{A}) \leftarrow((\mathrm{A})$ ) | - |  | - | - | - | - |  |  | - | - | - |
| MOVW A, \#imm16 | 3 | 2 | 0 | word $(A) \leftarrow$ imm16 | - |  |  | - | - | - |  |  | - | - | - |
| MOVW A, @RWi+disp8 | 2 | 3 | (c) | word $(A) \leftarrow(($ RWi $)+$ disp8) | - |  |  | - | - | - |  | * | - | - | - |
| MOVW A, @RLi+disp8 | 3 | 6 | (c) | word $(A) \leftarrow((\mathrm{RLL})+$ disp8) | - |  |  | - | - | - |  | * | - | - | - |
| MOVW A, @SP+disp8 | 3 | 3 | (c) | word $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8 | - |  |  | - | - | - | * |  | - | - |  |
| MOVPWA, addr24 | 5 | 3 | (c) | word $(A) \leftarrow$ (addr24) | - |  |  | - | - | - |  |  | - | - |  |
| MOVPWA, @A | 2 | 2 | (c) | word $(A) \leftarrow((A))$ | - |  | - | - | - | - |  |  | - |  | - |
| MOVW dir, A | 2 | 2 | (c) | word ( dir) $\leftarrow(\mathrm{A})$ |  |  |  | - | - | - |  |  |  | - |  |
| MOVW addr16, A | 3 | 2 | (c) | word (addr16) $\leftarrow(A)$ |  |  | - | - | - | - |  | * | - | - |  |
| MOVW SP, \# imm16 | 4 | 2 | 0 | word (SP) $\leftarrow$ imm16 |  |  | - | - | - | - |  | * | - | - |  |
| MOVW SP, A | 1 | 2 | 0 | word (SP) $\leftarrow(\mathrm{A})$ | - |  | - | - | - | - |  |  | - | - |  |
| MOVW RWi, A | 1 | 1 | 0 | word (RWi) $\leftarrow(A)$ | - |  | - | - | - | - |  |  | - | - |  |
| MOVW ear, A | 2 | 2 | 0 | word (ear) $\leftarrow(A)$ | - |  | - | - | - | - |  |  | - | - |  |
| MOVW eam, A | $2+$ | 2+ (a) | (c) | word (eam) $\leftarrow(A)$ | - |  | - | - | - | - |  |  | - | - |  |
| MOVW io, A | + | 2 | (c) | word (io) $\leftarrow$ (A) |  |  | - | - | - | - |  |  | - | - |  |
| MOVW @RWi+disp8, A | 2 | 3 | (c) | word $(($ RWi) + disp8) $\leftarrow$ (A) | - |  | - | - | - | - |  |  | - | - | - |
| MOVW @RLi+disp8, A | 3 | 6 | (c) | word ((RLi) +disp8) $\leftarrow(\mathrm{A})$ | - |  | - | - | - | - |  |  | - | - | - |
| MOVW @SP+disp8, A | 3 | 3 | (c) | word ( $(\mathrm{SP})+$ +disp8) $\leftarrow(\mathrm{A})$ | - |  | - | - | - | - |  |  | - | - | - |
| MOVPWaddr24, A | 5 | 3 | (c) | word (addr24) $\leftarrow(\mathrm{A})$ |  |  | - | - | - | - |  |  | - | - | - |
| MOVPW@A, RWi | 2 | 3 | (c) | word $((A)) \leftarrow(R W i)$ |  |  | - | - | - | - |  |  | - | - | - |
| MOVW RWi, ear | 2 | 2 | 0 | word (RWi) $\leftarrow$ (ear) |  |  | - | - | - | - |  |  | - | - | - |
| MOVW RWi, eam | $2+$ | $3+$ (a) | (c) | word $(\mathrm{RWi}) \leftarrow($ eam $)$ |  |  | - | - | - | - |  |  | - | - | - |
| MOVW ear, RWi |  | 3 | 0 | word (ear) $\leftarrow(\mathrm{RWi})$ |  |  | - | - | - | - |  |  | - |  |  |
| MOVW eam, RWi | $2+$ | $3+$ (a) | (c) | word (eam) $\leftarrow(\mathrm{RWi})$ |  |  | - | - | - | - |  |  |  |  |  |
| MOVW RWi, \#imm16 | 3 | 2 | 0 | word (RWi) $\leftarrow$ imm16 |  |  | - | - | - | - |  |  |  |  |  |
| MOVW io, \#imm16 | 4 | 3 | (c) | word (io) $\leftarrow$ imm16 |  |  | - | - | - | - | - | - |  | - |  |
| MOVW ear, \#imm16 | 4 | 2 | 0 | word (ear) $\leftarrow$ imm16 |  |  | - | - | - | - |  |  |  | - |  |
| MOVW eam, \#imm16 | 4+ | 2+ (a) | (c) | word (eam) $\leftarrow$ imm16 | - |  |  | - |  | - |  |  |  |  |  |
| MOVW @AL, AH | 2 | 2 | (c) | word $((A)) \leftarrow(A H)$ |  |  | - | - | - | - |  |  | - |  |  |
| XCHW A, ear | 2 | 3 | 0 | word $(\mathrm{A}) \leftrightarrow(\mathrm{ear})$ |  |  | - |  | - | - | - | - |  |  |  |
| XCHW A, eam | $2+$ | $3+$ (a) | $2 \times$ (c) | word (A) $\leftrightarrow$ (eam) | - |  | - | - | - | - | - | - | - | - | - |
| XCHW RWi, ear | 2 | 4 | 0 | word (RWi) $\leftrightarrow$ (ear) | - |  | - | - | - | - | - | - | - | - | - |
| XCHW RWi, eam | 2+ | 5+ (a) | $2 \times$ (c) | word (RWi) $\leftrightarrow$ (eam) | - |  | - | - | - | - | - | - | - |  | - |

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Long Word) [11 Instructions]

| Mnemonic | \# |  | B | Operation | LH | A | 1 |  | s | T | N | Z | v | c | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOVL A, ear | 2 | 1 | 0 | long | - | - |  |  | - | - |  |  | - | - |  |
| MOVL A, eam | $2+$ | $3+(\mathrm{a})$ | (d) | long $(A) \leftarrow($ eam $)$ | - | - | - | - | - | - |  |  |  | - |  |
| MOVL A, \# imm32 | 5 | 3 | 0 | long $(A) \leftarrow$ imm32 | - | - | - |  | - | - | * |  | - | - | - |
| MOVL A, @SP + disp8 | 3 | 4 | (d) | long $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8) | - | - | - |  | - | - | * |  | - | - | - |
| MOVPL A, addr24 | 5 | 4 | (d) | long $(\mathrm{A}) \leftarrow($ addr24) | - | - |  |  | - | - | * | * | - | - | - |
| MOVPL A, @A | 2 | 3 | (d) | long $(A) \leftarrow((A))$ | - | - |  |  | - | - | * | * | - | - | - |
| MOVPL@A, RLi | 2 | 5 | (d) | long $((\mathrm{A})) \leftarrow(\mathrm{RLi})$ | - | - |  |  | - | - | * | * | - | - | - |
| MOVL @SP + disp8, A | 3 | 4 | (d) | long $((\mathrm{SP})+$ disp8 $) \leftarrow(\mathrm{A})$ | - | - | - |  | - | - | * |  | - | - | - |
| MOVPL addr24, A | 5 | 4 | (d) | long (addr24) $\leftarrow$ ( A$)$ | - | - | - |  | - | - | * | * | - | - | - |
| MOVL ear, A | 2 | 2 | 0 | long (ear) $\leftarrow$ ( A ) | - | - | - |  | - | - | * | * | - | - | - |
| MOVL eam, A | 2+ | $3+(\mathrm{a})$ | (d) | long (eam) $\leftarrow(A)$ | - | - |  |  | - | - | * | * | - | - | - |

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

## MB90F244

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADD A, \#imm8 | 2 | 2 | 0 | byte $(A) \leftarrow(A)+$ imm8 | Z | - | - | - | - |  | * | * | * | - |
| ADD A, dir | 2 | 3 | (b) | byte $(A) \leftarrow(A)+$ (dir $)$ | Z | - | - | - | - | * | * | * | * | - |
| ADD A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)+$ (ear $)$ | Z | - | - | - | - | * | * | * | * | - |
| ADD A, eam | 2+ | $3+(a)$ | (b) | byte $(A) \leftarrow(A)+($ eam $)$ | Z | - | - | - | - |  | * | * | * | - |
| ADD ear, A | 2 | (a) | 0 | byte (ear) $\leftarrow($ ear $)+(\mathrm{A})$ | - | - | - | - | - | * | * | * | * |  |
| ADD eam, A | 2+ | $3+$ (a) | $2 \times$ (b) | byte (eam) $\leftarrow($ eam $)+(A)$ | Z | - | - | - | - | * | * | * | * |  |
| ADDC A | 1 | 2 | 0 | byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ | Z | - | - | - | - | * | * | * | * | - |
| ADDC A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)+($ ear $)+(C)$ | Z | - | - | - | - | * | * | * | * | - |
| ADDC A, eam | 2+ | $3+$ (a) | (b) | byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+(\mathrm{C})$ | Z | - | - | - | - | * | * | * | * |  |
| ADDDC A | 1 | 3 | 0 | byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})($ Decimal $)$ | Z | - | - | - | - | * | * | * | * | - |
| SUB A, \#imm8 | 2 | 2 | 0 | byte $(A) \leftarrow(A)-$ imm8 | Z | - | - | - | - | * | * | * | * |  |
| SUB A, dir | 2 | 3 | (b) | byte $(A) \leftarrow(A)-$ (dir) | Z | - | - | - | - | * | * | * | * | - |
| SUB A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)-$ (ear) | Z | - | - | - | - | * | * | * | * | - |
| SUB A, eam | 2+ | $3+$ (a) | (b) | byte $(A) \leftarrow(A)-$ (eam) | Z | - | - | - | - |  | * | * |  | - |
| SUB ear, A | 2 | 2 | 0 | byte (ear) $\leftarrow$ (ear) - (A) | - | - | - | - | - |  | * | * | * |  |
| SUB eam, A | 2+ | $3+$ (a) | $2 \times$ (b) | byte (eam) $\leftarrow($ eam $)-(A)$ | - | - | - | - | - | * | * | * | * |  |
| SUBC A | 1 | 2 | 0 | byte $(A) \leftarrow(A H)-(A L)-(C)$ | Z | - | - | - | - |  | * | * |  |  |
| SUBC A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)-$ (ear $)-(C)$ | Z | - | - | - | - | * | * | * | * |  |
| SUBC A, eam | 2+ | $3+$ (a) | (b) | byte $(A) \leftarrow(A)-($ eam $)-(C)$ | Z | - | - | - | - | * | * | * | * | - |
| SUBDC A | 1 | 3 | 0 | byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})($ Decimal $)$ | Z | - | - | - | - | * | * | * | * | - |
| ADDW A | 1 | 2 | 0 | word $(A) \leftarrow(A H)+(A L)$ | - | - | - | - | - | * | * | * | * | - |
| ADDW A, ear | 2 | 2 | 0 | word $(A) \leftarrow(A)+$ (ear) | - | - | - | - | - | * | * | * | * | - |
| ADDW A, eam | 2+ | $3+$ (a) | (c) | word $(A) \leftarrow(A)+($ eam $)$ | - | - | - | - | - |  | * | * |  | - |
| ADDW A, \#imm16 | 3 | ? | 0 | word $(A) \leftarrow(A)+$ imm16 | - | - | - | - | - |  | * | * |  | - |
| ADDW ear, A | 2 | 2 | 0 | word (ear) $\leftarrow$ (ear) + (A) | - | - | - | - | - | * | * | * | * |  |
| ADDW eam, A | 2+ | $3+$ (a) | $2 \times$ (c) | word (eam) $\leftarrow($ eam $)+(\mathrm{A})$ | - | - | - | - | - |  | * | * | * |  |
| ADDCW A, ear | 2 | , | 0 | word $(A) \leftarrow(A)+($ ear $)+(C)$ | - | - | - | - | - | * | * | * | * |  |
| ADDCW A, eam | 2+ | $3+(\mathrm{a})$ | (c) | word $(A) \leftarrow(A)+($ eam $)+(C)$ | - | - | - | - | - | * | * | * | * | - |
| SUBW A | 1 | 2 | 0 | word $(A) \leftarrow(A H)-(A L)$ | - | - | - | - | - | * | * | * | * | - |
| SUBW A, ear | 2 | 2 | 0 | word $(A) \leftarrow(A)-$ (ear) | - | - | - | - | - | * | * | * | * | - |
| SUBW A, eam | 2+ | $3+(a)$ | (c) | word $(A) \leftarrow(A)-($ eam $)$ | - | - | - | - | - |  | * | * | , | - |
| SUBW A, \#imm16 | 3 | 2 | 0 | word $(A) \leftarrow(A)-$ imm16 | - | - | - | - | - |  | * | * |  |  |
| SUBW ear, A | 2 | 2 | 0 | word (ear) $\leftarrow($ ear $)-(\mathrm{A})$ | - | - | - | - | - |  | * | * |  |  |
| SUBW eam, A | 2+ | $3+$ (a) | $2 \times$ (c) | word (eam) $\leftarrow($ eam $)-(A)$ | - | - | - | - | - | * | * | * | * |  |
| SUBCW A, ear | 2 | 2 | 0 | word $(A) \leftarrow(A)-$ ear) - (C) | - | - | - | - | - | * | * | * | * | - |
| SUBCW A, eam | 2+ | $3+(\mathrm{a})$ | (c) | word $(A) \leftarrow(A)-($ eam $)-(C)$ | - | - | - | - | - | * | * | * | * | - |
| ADDL A, ear | 2 | 5 | 0 |  | - | - | - | - | - |  |  | * |  |  |
| ADDL A, eam | 2+ | 6+ (a) | (d) | long $(A) \leftarrow(A)+$ (eam) | - | - | - | - | - | * | * | * | * | - |
| ADDL A, \#imm32 | 5 | 4 | 0 | long $(A) \leftarrow(A)+$ imm32 | - | - | - | - | - | * | * | * | * | - |
| SUBL A, ear | 2 | 5 | 0 | long $(A) \leftarrow(A)-$ (ear) | - | - | - | - | - | * | * | * | * | - |
| SUBL A, eam | 2+ | 6+ (a) | (d) | long $(A) \leftarrow(A)-($ eam $)$ | - | - | - | - | - | * | * | * | * | - |
| SUBL A, \#imm32 | 5 | 4 | 0 | long $(A) \leftarrow(A)-$ imm32 | - | - | - | - | - | * | * | * | * | - |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]


For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

| Mnemonic | $\#$ | $\sim$ | B | Operation | LH | AH | I | s | T | N | z | v | C | RMw |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CMP A | 1 | 2 | 0 | byte (AH) - (AL) |  | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ |
| CMP | A, ear | 2 | 2 | 0 | byte (A) - (ear) | - |  |  |  |  |  |  |  |  |
| CMP A, eam | $2+$ | $2+$ (a) | (b) | byte (A) - (eam) | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMP A, \#imm8 | 2 | 2 | 0 | byte (A) - imm8 | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMPW A | 1 | 2 | 0 | word (AH) - (AL) | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMPW A, ear | 2 | 2 | 0 | word (A) - (ear) | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMPW A, eam | $2+$ | $2+$ (a) | (c) | word (A) - (eam) | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMPW A, \#imm16 | 3 | 2 | 0 | word (A) - imm16 | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMPL A, ear | 2 | 3 | 0 | long (A) - (ear) | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |  |
| CMPL A, eam | $2+$ | $4+$ (a) | (d) | long (A) - (eam) | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |
| CMPL A, \#imm32 | 5 | 3 | 0 | long (A) - imm32 | - | - | - | - | - | $*$ | $*$ | $*$ | $*$ | - |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

| Mnem | onic | \# | $\sim$ | B | Operation | LH | AH | I | s | S | T | N | Z | v | c | RM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIVU | A | 1 | *1 | 0 | word (AH) /byte (AL) | - | - | - |  |  | - | - | - | * | * |  |
|  | A, ear | 2 | *2 | 0 | Quotient $\rightarrow$ byte (AL) Remainder $\rightarrow$ byte (AH) word (A)/byte (ear) | - | - | - |  |  | - | - | - | * | * | - |
|  |  |  |  |  | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (ear) |  |  |  |  |  | - |  |  |  |  |  |
| DIVU | A, eam | 2+ | *3 | * 6 | word (A)/byte (eam) | - | - | - |  |  | - | - | - | * | * | - |
|  |  |  |  |  | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (eam) |  |  |  |  |  |  |  |  |  |  |  |
| DIV | A, ea | 2 | *4 | 0 | long (A)/word (ear) <br> Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (ear) | - | - | - |  |  | - | - | - |  | * | - |
| DIVUW | A, eam | 2+ | *5 | *7 | long (A)/word (eam) <br> Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (eam) | - | - | - |  |  | - | - | - | * | * | - |
| MULU | A | 1 | *8 | 0 | byte (AH) $\times$ byte (AL) $\rightarrow$ word (A) | - | - | - |  |  | - | - | - | - |  | - |
| MULU | A, ear | 2 | *9 | 0 | byte (A) $\times$ byte (ear) $\rightarrow$ word (A) | - | - | - |  |  | - | - | - | - | - | - |
| MULU | A, eam | 2+ | *10 | (b) | byte (A) $\times$ byte (eam) $\rightarrow$ word (A) | - | - | - |  |  | - | - | - | - | - | - |
| MULUW | A | 1 | *11 | 0 | word (AH) $\times$ word (AL) $\rightarrow$ long (A) | - | - | - |  | - | - | - | - | - | - | - |
| MULUW | A, ear | 2 | *12 | 0 | word (A) $\times$ word (ear) $\rightarrow$ long (A) | - | - | - | - | - | - | - | - | - | - | - |
| MULUW | A, eam | 2+ | *13 | (c) | word (A) $\times$ word (eam) $\rightarrow$ long (A) | - | - | - | - |  | - | - | - | - |  | - |

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 6 when an overflow occurs, and 14 normally.
*2: 3 when dividing into zero, 5 when an overflow occurs, and 13 normally.
*3: $5+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $17+$ (a) normally.
*4: 3 when dividing into zero, 5 when an overflow occurs, and 21 normally.
*5: $4+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $25+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not 0 .
*9: 3 when byte (ear) is zero, and 7 when byte (ear) is not 0 .
*10: $4+(a)$ when byte (eam) is zero, and $8+(a)$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not 0 .
*12: 3 when word (ear) is zero, and 11 when word (ear) is not 0 .
*13: $4+$ (a) when word (eam) is zero, and $12+$ (a) when word (eam) is not 0 .

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

| Mnem | monic | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | z | v | c | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIV | A | 2 | ${ }^{*}$ | 0 | word (AH) /byte | Z | - | - | - | - | - | - | * |  | - |
| DIV | A, ear | 2 | *2 | 0 | Quotient $\rightarrow$ byte (AL) Remainder $\rightarrow$ byte (AH) word (A)/byte (ear) | Z | - | - | - | - | - | - | * | * | - |
|  |  |  |  |  | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (ear) |  |  |  |  |  |  |  |  |  |  |
| DIV | A, eam | 2+ | *3 | *6 | word (A)/byte (eam) | Z | - | - | - | - | - | - | * | * | - |
| DIVW | A, ea | 2 | *4 | 0 | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (eam) long (A)/word (ear) | - | - | - | - | - | - | - | * | * | - |
|  |  |  |  |  | Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (ear) |  |  |  |  |  |  |  |  |  |  |
| DIVW | A, eam | 2+ | *5 | *7 | long (A)/word (eam) Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (eam) | - | - | - | - | - | - | - | * | * | - |
|  | A | 2 | *8 | 0 | byte (AH) $\times$ byte (AL) $\rightarrow$ word (A) | - | - | - | - | - | - |  |  |  |  |
| MUL | A, ear | 2 | *9 | 0 | byte (A) $\times$ byte (ear) $\rightarrow$ word (A) | - | - | - | - | - | - | - | - | - | _ |
| MUL | A, eam | 2+ | *10 | (b) | byte (A) $\times$ byte (eam) $\rightarrow$ word (A) | - | - | - | - | - | - | - | - | - | - |
| MULW | A | 2 | *11 | 0 | word (AH) $\times$ word (AL) $\rightarrow$ long (A) | - | - | - | - | - | - | - | - | - | - |
| MULW | A, ear | 2 | *12 | 0 | word (A) $\times$ word (ear) $\rightarrow$ long (A) | - | - | - | - | - | - | - | - | - | - |
| MULW | A, eam | 2+ | *13 | (b) | word (A) $\times$ word (eam) $\rightarrow$ long (A) | - | - | - | - | - | - | - | - | - | - |

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
*2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
*3: $4+$ (a) when dividing into zero, $11+$ (a) or $22+$ (a) when an overflow occurs, and $23+$ (a) normally.
*4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
*5: When the dividend is positive: $4+$ (a) when dividing into zero, $11+$ (a) or $30+(a)$ when an overflow occurs, and $31+$ (a) normally.
When the dividend is negative: $4+(a)$ when dividing into zero, $12+(a)$ or $31+(a)$ when an overflow occurs, and $32+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: $4+(a)$ when byte $(e a m)$ is zero, $13+(a)$ when the result is positive, and $14+(a)$ when the result is negative.
*11: 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: $4+(\mathrm{a})$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+$ (a) when the result is negative.
Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

## MB90F244

Table 14 Logical 1 Instructions (Byte, Word) [39 Instructions]

| Mnemonic |  | \# | $\sim$ | B | Operation | LH | AH | I | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AND | A, \#imm8 | 2 | 2 | 0 | byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm8 | - | - | - | - | - |  |  | R | - | - |
| AND | A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)$ and (ear) | - | - | - | - | - | * | * | R | - | - |
| AND | A, eam | 2+ | $3+(a)$ | (b) | byte $(A) \leftarrow(A)$ and (eam) | - | - | - | - | - | * | * | R | - | - |
| AND | ear, A | 2 | 3 | 0 | byte (ear) $\leftarrow$ (ear) and (A) | - | - | - | - | - | * | * | R | - |  |
| AND | eam, A | 2+ | $3+$ (a) | $2 \times(\mathrm{b})$ | byte (eam) $\leftarrow($ eam ) and $(A)$ | - | - | - | - | - | * | * | R | - |  |
| OR | A, \#imm8 | 2 | 2 | 0 | byte $(A) \leftarrow(A)$ or imm8 | - | - | - | - | - | * | * | R | - | - |
| OR | A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)$ or (ear) |  | - | - | - | - |  | * | R | - | - |
| OR | A, eam | 2+ | $3+(a)$ | (b) | byte $(A) \leftarrow(A)$ or (eam) |  | - | - | - | - | * | * | R | - | - |
| OR | ear, A | 2 | 3 | 0 | byte (ear) $\leftarrow$ (ear) or $(A)$ | - | - | - | - | - | * | * | R | - | * |
| OR | eam, A | 2+ | $3+(\mathrm{a})$ | $2 \times$ (b) | byte (eam) $\leftarrow$ (eam) or $(\mathrm{A})$ |  | - | - | - | - | * | * | R | - |  |
| XOR | A, \#imm8 | 2 | 2 | 0 | byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm8 | - | - | - | - | - | * | * | R | - | - |
| XOR | A, ear | 2 | 2 | 0 | byte $(A) \leftarrow(A)$ xor (ear) |  | - | - | - | - |  |  | R | - | - |
| XOR | A, eam | 2+ | $3+(a)$ | (b) | byte $(A) \leftarrow(A)$ xor (eam) |  | - | - | - | - |  | * | R | - | - |
| XOR | ear, A | 2 | 3 | 0 | byte (ear) $\leftarrow$ (ear) xor (A) | - | - | - | - | - |  | * | R | - | * |
| XOR | eam, A | 2+ | $3+$ (a) | $2 \times$ (b) | byte (eam) $\leftarrow($ eam $)$ xor $(A)$ | - | - | - | - | - |  | * | R | - |  |
| NOT | A | 1 | 2 | 0 | byte $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$ |  | - | - | - | - |  | * | R | - | - |
| NOT | ear | 2 | 2 | 0 | byte (ear) $\leftarrow$ not (ear) | - | - | - | - | - | * | * | R | - |  |
| NOT | eam | 2+ | $3+(\mathrm{a})$ | $2 \times$ (b) | byte (eam) $\leftarrow$ not (eam) | - | - | - | - | - | * | * | R | - | $*$ |
| ANDW | A | 1 | 2 | 0 | word $(A) \leftarrow(A H)$ and $(A)$ | - | - | - | - | - |  | * | R | - | - |
| ANDW | A, \#imm16 | 3 | 2 | 0 | word $(A) \leftarrow(A)$ and imm16 | - | - | - | - | - |  | * | R | - | - |
| ANDW | A, ear | 2 | 2 | 0 | word $(A) \leftarrow(A)$ and (ear) | - | - | - | - | - |  | * | R | - | - |
| ANDW | A, eam | 2+ | $3+(a)$ | (c) | word $(A) \leftarrow(A)$ and (eam) | - | - | - | - | - |  | * | R | - | - |
| ANDW | ear, A | 2 | 3 | 0 | word (ear) $\leftarrow$ (ear) and (A) | - | - | - | - | - | * | * | R | - |  |
| ANDW | eam, A | 2+ | $3+(a)$ | $2 \times$ (c) | word $($ eam $) \leftarrow($ eam $)$ and $(A)$ | - | - | - | - | - | * | * | R | - |  |
| ORW | A | 1 | 2 | 0 | word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or $(\mathrm{A})$ | - | - | - | - | - | * | * | R | - | - |
| ORW | A, \#imm16 | 3 | 2 | 0 | word $(A) \leftarrow(A)$ or imm16 | - | - | - | - | - |  |  | R | - | - |
| ORW | A, ear | 2 | 2 | 0 | word $(A) \leftarrow(A)$ or (ear) | - | - | - | - | - |  | * | R | - |  |
| ORW | A, eam | 2+ | $3+(a)$ | (c) | word $(A) \leftarrow(A)$ or (eam) | - | - | - | - | - | * | * | R | - | - |
| ORW | ear, A | 2 | 3 | 0 | word (ear) $\leftarrow$ (ear) or (A) | - | - | - | - | - |  | * | R | - |  |
| ORW | eam, A | 2+ | $3+(\mathrm{a})$ | $2 \times$ (c) | word (eam) $\leftarrow$ (eam) or $(A)$ | - | - | - | - | - | * | * | R | - |  |
| XORW | A | 1 | 2 | 0 | word $(A) \leftarrow(A H)$ xor $(A)$ | - | - | - | - | - | * | * | R | - |  |
| XORW | A, \#imm16 | 3 | 2 | 0 | word $(A) \leftarrow(A)$ xor imm16 | - | - | - | - | - | * | * | R | - |  |
| XORW | A, ear | 2 | 2 | 0 | word $(A) \leftarrow(A)$ xor (ear) | - | - | - | - | - |  | * | R | - | - |
| XORW | A, eam | 2+ | $3+(a)$ | (c) | word $(A) \leftarrow(A)$ xor (eam) | - | - | - | - | - | * | * | R | - | - |
| XORW | ear, A | 2 | 3 | 0 | word (ear) $\leftarrow$ (ear) xor $(\mathrm{A})$ | - | - | - | - | - | * | * | R | - |  |
| XORW | eam, A | 2+ | $3+(\mathrm{a})$ | $2 \times$ (c) | word (eam) $\leftarrow$ (eam) xor $(A)$ | - | - | - | - | - |  | * | R | - |  |
| NOTW |  | 1 | 2 | 0 | word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$ | - | - | - | - | - | * | * | R | - | - |
| NOTW | ear | 2 | (a) | 0 | word (ear) $\leftarrow$ not (ear) | - | - | - | - | - | * | * | R | - | * |
| NOTW | eam | 2+ | $3+(\mathrm{a})$ | $2 \times(\mathrm{c})$ | word (eam) $\leftarrow$ not (eam) | - | - | - | - | - | * | * | R | - |  |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

| Mnemonic |  | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | z | v | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANDL | A, ear | 2 | 5 | 0 | long $(A) \leftarrow(A)$ and (ear) | - | - |  | - | - |  | * | R | - |  |
| ANDL | A, eam | 2+ | $6+$ (a) | (d) | long $(A) \leftarrow(A)$ and (eam) | - | - | - | - | - | * | * | R | - | - |
| ORL | A, ear |  | 5 | 0 | long $(A) \leftarrow(A)$ or (ear) | - | - | - | - | - | * | * | R | - | - |
| ORL | A, eam | 2+ | 6+ (a) | (d) | long $(A) \leftarrow(A)$ or (eam) | - | - | - | - | - | * | * | R | - | - |
| XORL XORL | A, ear A, eam | $\begin{gathered} 2 \\ 2+ \end{gathered}$ | $\begin{gathered} 5 \\ 6+(a) \end{gathered}$ | $\begin{gathered} 0 \\ \text { (d) } \end{gathered}$ | long $(A) \leftarrow(A)$ xor (ear) <br> long $(A) \leftarrow(A)$ xor (eam) | - | - | - | - | - | * | * | $\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$ | - | - |

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | s | T | N | z | v | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEG A | 1 | 2 | 0 | byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$ | X | - | - | - | - | * | * | * | * | - |
| $\begin{array}{ll} \text { NEG } & \text { ear } \\ \text { NEG } & \text { eam } \end{array}$ | $\begin{gathered} 2 \\ 2+ \end{gathered}$ | $\stackrel{2}{2+(a)}$ | $\underset{2 \times(\mathrm{b})}{0}$ | byte (ear) $\leftarrow 0$ - (ear) <br> byte $($ eam $) \leftarrow 0-($ eam $)$ | - | - | - | - | - | * | * | * | * | * |
| NEGW A | 1 | 2 | 0 | word $(A) \leftarrow 0-(A)$ | - | - | - | - | - | * | * | * | * | - |
| NEGW ear NEGW eam | $\begin{gathered} 2 \\ 2+ \end{gathered}$ | $\begin{gathered} 2 \\ 3+(a) \end{gathered}$ | $\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$ | word (ear) $\leftarrow 0$ - (ear) <br> word (eam) $\leftarrow 0-$ (eam) | - | - | - | - | - | * | * | * | * | * |

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Absolute Value Instructions (Byte/Word/Long Word) [3 Insturctions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | s | T | N | z | v | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABS A | 2 | 2 | 0 | byte (A) $\leftarrow$ absolute value (A) | Z | - | - | - | - | * | * | * | - | - |
| ABSW A | 2 | 2 | 0 | word (A) $\leftarrow$ absolute value (A) | - | - | - | - | - | * | * | * | - | - |
| ABSL A | 2 | 4 | 0 | long $(A) \leftarrow$ absolute value (A) | - | - | - | - | - | * | * | * | - | - |

Table 18 Normalize Instructions (Long Word) [1 Instruction]

| Mnemonic | $\#$ | $\sim$ | B | Operation | LH | AH | I | s | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NRML A, R0 | 2 | $*$ | 0 | long $(A) \leftarrow$ Shifts to the position at <br> which " 1 " was set first <br> byte $(R 0)$ <br> $\leftarrow$ current shift count | - | - | - | - | $*$ | - | - | - | - | - |

[^0]Table 19 Shift Instructions (Byte/Word/Long Word) [27 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | I | S | T | N | Z | v | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RORC A | 2 | 2 | 0 | byte $(\mathrm{A}) \leftarrow$ Right rotation with carry | - | - | - | - | - |  | * | - | * | - |
| ROLC A | 2 | 2 | 0 | byte $(A) \leftarrow$ Left rotation with carry |  | - | - | - | - | * | * | - | * | - |
| RORC ear | 2 | 2 | 0 | byte (ear) $\leftarrow$ Right rotation with carry | - | - | - | - | - | * | * | - | * | * |
| RORC eam | 2+ | $3+(\mathrm{a})$ | $2 \times$ (b) | byte (eam) $\leftarrow$ Right rotation with carry | - | - | - | - | - | * | * | - | * | * |
| ROLC ear | 2 | ? | 0 | byte (ear) $\leftarrow$ Left rotation with carry | - | - | - | - | - | * | * | - | * | * |
| ROLC eam | 2+ | $3+(\mathrm{a})$ | $2 \times$ (b) | byte (eam) $\leftarrow$ Left rotation with carry | - | - | - | - | - | * | * | - | * | * |
| ASR A, R0 | 2 | *1 | 0 | byte $(A) \leftarrow$ Arithmetic right barrel shift (A, R0) | - | - | - | - | * | * | * | - | * | - |
| LSR A, R0 | 2 | *1 | 0 | byte $(A) \leftarrow$ Logical right barrel shift (A, RO) | - | - | - | - | * | * | * | - | * | - |
| LSL A, R0 | 2 | ${ }^{*}$ | 0 | byte $(A) \leftarrow$ Logical left barrel shift (A, R0) | - | - | - | - | - | * | * | - | * | - |
| ASR A, \#imm8 | 3 | *3 | 0 | byte (A) $\leftarrow$ Arithmetic right barrel shift (A, imm8) | - | - | - | - | * | * | * | - | * | - |
| LSR A, \#imm8 | 3 | *3 | 0 | byte $(A) \leftarrow$ Logical right barrel shift (A, imm8) | - | - | - | - | * | * | * | - | * | - |
| LSL A, \#imm8 | 3 | *3 | 0 | byte (A) $\leftarrow$ Logical left barrel shift (A, imm8) | - | - | - | - | - | * | * | - | * | - |
| ASRW A | 1 | 2 | 0 | word $(\mathrm{A}) \leftarrow$ Arithmetic right shift (A, 1 bit) | - | - | - | - | * | * | * | - | * | - |
| LSRW A/SHRW A | 1 | 2 | 0 | word $(A) \leftarrow$ Logical right shift (A, 1 bit) | - | - | - | - | * | R | * | - | * | - |
| LSLW A/SHLW A | 1 | 2 | 0 | word $(A) \leftarrow$ Logical left shift (A, 1 bit) | - | - | - | - | - | * | * | - | * | - |
| ASRW A, R0 | 2 | *1 | 0 | word $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift (A, R0) | - | - | - | - | * | * | * | - | * | - |
| LSRW A, RO | 2 | *1 | 0 | word $(A) \leftarrow$ Logical right barrel shift (A, RO) | - | - | - | - | * |  | * | - |  | - |
| LSLW A, RO | 2 | *1 | 0 | word $(A) \leftarrow$ Logical left barrel shift (A, R0) | - | - | - | - | - | * | * | - | * | - |
| ASRW A, \#imm8 | 3 | *3 | 0 | word $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift ( A , imm8) | - | - | - | - | * | * | * | - | * | - |
| LSRW A, \#imm8 | 3 | *3 | 0 | word $(A) \leftarrow$ Logical right barrel shift (A, imm8) | - | - | - | - | * | * | * | - | * | - |
| LSLW A, \#imm8 | 3 | *3 | 0 | word (A) $\leftarrow$ Logical left barrel shift ( A , imm8) | - | - | - | - | - | * | * | - | * | - |
| ASRL A, R0 | 2 | *2 | 0 | long $(A) \leftarrow$ Arithmetic right shift (A, RO) | - | - | - | - | * | * | * | - | * | - |
| LSRL A, R0 | 2 | *2 | 0 | long $(A) \leftarrow$ Logical right barrel shift (A, RO) | - | - | - | - | * | * | * | - | * | - |
| LSLL A, R0 | 2 | *2 | 0 | long $(A) \leftarrow$ Logical left barrel shift (A, R0) | - | - | - | - | - | * | * | - | * | - |
| ASRL A, \#imm8 | 3 | *4 | 0 | long $(A) \leftarrow$ Arithmetic right shift ( $A$, imm8) | - | - | - | - | * | * | * | - | * | - |
| LSRL A, \#imm8 | 3 | *4 | 0 | long $(A) \leftarrow$ Logical right barrel shift (A, imm8) | - | - | - | - | * | * | * | - | * | - |
| LSLL A, \#imm8 | 3 | *4 | 0 | long $(A) \leftarrow$ Logical left barrel shift (A, imm8) | - | - | - | - | - | * | * | - | * | - |

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when $R 0$ is $0,3+(R 0)$ in all other cases.
*2: 3 when R0 is $0,4+(R 0)$ in all other cases.
*3: 3 when imm8 is $0,3+$ (imm8) in all other cases.
*4: 3 when imm8 is $0,4+$ (imm8) in all other cases.

Table 20 Branch 1 Instructions [31 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | A | H | 1 | s | T | N | z | v | c | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BZ/BEQ rel | 2 | * | 0 | Branch when ( $Z$ ) = 1 | - |  |  | - | - | - | - | - | - | - | - |
| BNZ/BNE rel | 2 | *1 | 0 | Branch when $(Z)=0$ | - | - | - | - | - | - | - | - | - | - | - |
| BC/BLO rel | 2 | ${ }^{*}$ | 0 | Branch when (C) = 1 | - | - | - | - | - | - | - | - | - | - | - |
| BNC/BHS rel | 2 | *1 | 0 | Branch when (C) $=0$ | - | - | - | - | - | - | - | - | - | - | - |
| BN rel | 2 | *1 | 0 | Branch when ( N ) $=1$ | - | - | - | - | - | - | - | - | - | - | - |
| BP rel | 2 | *1 | 0 | Branch when ( N ) $=0$ | - | - | - | - | - | - | - | - | - | - | - |
| BV rel | 2 | *1 | 0 | Branch when (V) $=1$ | - | - | - | - | - | - | - | - | - | - | - |
| BNV rel | 2 | *1 | 0 | Branch when (V) $=0$ | - | - | - | - | - | - | - | - | - | - | - |
| BT rel | 2 | ${ }^{*}$ | 0 | Branch when ( T ) $=1$ | - | - | - | - | - | - | - | - | - | - | - |
| BNT rel | 2 | ${ }^{*}$ | 0 | Branch when ( T ) $=0$ | - | - | - | - | - | - | - | - | - | - | - |
| BLT rel | 2 | ${ }^{*}$ | 0 | Branch when (V) xor ( N ) $=1$ | - | - | - | - | - | - | - | - | - | - | - |
| BGE rel | 2 | *1 | 0 | Branch when (V) xor ( N ) $=0$ | - |  | - | - | - | - | - | - | - | - | - |
| BLE rel | 2 | *1 | 0 | ( (V) xor (N) ) or (Z) = 1 | - |  | - | - | - | - | - | - | - | - | - |
| BGT rel | 2 | *1 | 0 | ( (V) $\operatorname{xor}(\mathrm{N})$ ) or (Z) $=0$ | - |  |  | - | - | - | - | - | - | - | - |
| BLS rel | 2 | *1 | 0 | Branch when (C) or $(Z)=1$ | - |  | - | - | - | - | - | - | - | - | - |
| BHI rel | 2 | *1 | 0 | Branch when (C) or $(\mathrm{Z})=0$ | - |  | - | - | - | - | - | - | - | - | - |
| BRA rel | 2 | *1 | 0 | Branch unconditionally | - | - | - | - | - | - | - | - | - | - | - |
| JMP @A | 1 | 2 | 0 | word (PC) $\leftarrow$ ( A$)$ | - |  |  | - | - | - | - | - | - | - | - |
| JMP addr16 | 3 | 2 | 0 | word (PC) $\leftarrow$ addr 16 | - |  | - | - | - | - | - | - | - | - | - |
| JMP @ear | 2 | 3 | 0 | word (PC) $\leftarrow$ (ear) | - |  |  | - | - | - | - | - | - | - |  |
| JMP @eam | $2+$ | $4+$ (a) | (c) | word (PC) $\leftarrow($ eam $)$ | - |  |  | - | - | - | - | - | - | - |  |
| JMPP @ear*3 | 2 | 3 | 0 | word (PC) $\leftarrow($ ear), $(\mathrm{PCB}) \leftarrow(\mathrm{ear}+2)$ | - |  |  | - | - | - | - | - | - | - |  |
| JMPP @eam*3 | 2+ | 4+ (a) | (d) | word $(\mathrm{PC}) \leftarrow(\mathrm{eam}),(\mathrm{PCB}) \leftarrow(\mathrm{eam}+2)$ | - |  | - | - | - | - | - | - | - | - |  |
| JMPP addr24 | 4 | 3 | 0 | word $(P C) \leftarrow$ ad24 0 to 15 $(\mathrm{PCB}) \leftarrow$ ad24 16 to 23 | - |  |  | - | - | - | - | - | - | - | - |
| CALL @ear*4 |  | 4 | (c) | word (PC) $\leftarrow$ (ear) | - | - | - | - | - | - | - | - | - | - | - |
| CALL @eam *4 | $2+$ | $5+$ (a) | $2 \times$ (c) | word (PC) $\leftarrow$ (eam) | - | - | - | - | - | - | - | - | - | - | - |
| CALL addr16*5 | 3 | 5 | (c) | word $(\mathrm{PC}) \leftarrow$ addr 16 | - |  | - | - | - | - | - | - | - | - | - |
| CALLV \#vct4 *5 |  | 5 | $2 \times$ (c) | Vector call linstruction | - |  | - | - | - | - | - | - | - | - | - |
| CALLP @ear *6 | 2 | 7 | $2 \times$ (c) | word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15, $(\mathrm{PCB}) \leftarrow$ (ear) 16 to 23 | - |  |  | - | - | - | - | - | - | - | - |
| CALLP @eam *6 | 2+ | 8+ (a) | *2 | word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15, $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23 | - |  |  | - | - | - | - | - | - | - | - |
| CALLP addr24*7 | 4 | 7 | $2 \times$ (c) | word $(\mathrm{PC}) \leftarrow$ addr 0 to 15 , $(\mathrm{PCB}) \leftarrow$ addr 16 to 23 | - |  |  | - | - | - | - | - | - | - | - |

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when branching, 2 when not branching.
*2: $3 \times(\mathrm{c})+(\mathrm{b})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: Read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: Read (long word) branch address.
*7: Save (long word) to stack.

## MB90F244

Table 21 Branch 2 Instructions [20 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CBNE A, \#imm8, rel | 3 | *1 | 0 | Branch when byte (A) = imm8 | - | - | - | - | - | * | * | * | * | - |
| CWBNE A, \#imm16, rel | 4 | *1 | 0 | Branch when byte $(A) \neq$ imm16 | - | - | - | - | - | * | * | * | * | - |
| CBNE ear, \#imm8, rel | 4 | *1 | 0 | Branch when byte (ear) $=$ imm8 | - | - | - | - | - | * | * | * | * | - |
| CBNE eam, \#imm8, rel | 4+ | *1 | (b) | Branch when byte (eam) $=$ imm8 | - | - | - | - | - | * | * | * | * | - |
| CWBNE ear, \#imm16, rel | 5 | *3 | 0 | Branch when word (ear) $\neq$ imm16 | - | - | - | - | - | * | * | * | * | - |
| CWBNE eam,\#imm16, rel | 5+ | *2 | (c) | Branch when word (eam) $\neq$ imm16 | - | - | - | - | - | * | * | * | * | - |
| DBNZ ear, rel | 3 | *4 | 0 | Branch when byte (ear) = (ear) - 1, and (ear) $\neq 0$ | - | - | - | - | - | * | * | * | - | - |
| DBNZ eam, rel | 3+ | *2 | $2 \times$ (b) | Branch when byte (ear) = (eam) - 1, and (eam) $\neq 0$ | - | - | - | - | - | * | * | * | - | * |
| DWBNZ ear, rel | 3 | *4 | 0 | Branch when word (ear) = (ear) -1 , and (ear) $\neq 0$ | - | - | - | - | - | * | * | * | - | - |
| DWBNZ eam, rel | 3+ | $\begin{aligned} & 14 \\ & 12 \end{aligned}$ | $2 \times$ (c) | Branch when word $($ eam $)=$ (eam) - 1, and (eam) $\neq 0$ | - | - | - | - | - | * | * | * | - | * |
| INT \#vct8 | 2 | 13 | $8 \times$ (c) | Software interrupt | - | - | R | S | - | - | - | - | - | - |
| INT addr16 | 3 | 14 | $6 \times$ (c) | Software interrupt | - | - | R | S | - | - | - | - | - | - |
| INTP addr24 | 4 | 9 | $6 \times$ (c) | Software interrupt | - | - | R | S | - | - | - | - | - | - |
| INT9 | 1 | 11 | $8 \times$ (c) | Software interrupt | - | - | R | S | - | - | - | - | - | - |
| RETI | 1 |  | $6 \times$ (c) | Return from interrupt | - | - | * | * | * | * | * | * | * | - |
| RETIQ *6 | 2 | 6 | *5 | Return from interrupt | - | - | * | * | * | * | * | * | * | - |
| LINK \#imm8 | 2 |  | (c) | At constant entry, save old frame pointer to stack, set | - | - | - | - | - | - | - | - | - | - |
| UNLINK | 1 | 5 4 5 | (c) | new frame pointer, and allocate local pointer area At constant entry, retrieve old frame pointer from stack. | - | - | - | - | - | - | - | - | - | - |
| RET *7 | 1 |  | (c) | Return from subroutine | - | - | - | - | - | - | - | - | - | - |
| RETP *8 | 1 |  | (d) | Return from subroutine | - | - | - | - | - | - | - | - | - | - |

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 4 when branching, 3 when not branching
*2: 5 when branching, 4 when not branching
*3: $5+$ (a) when branching, $4+$ (a) when not branching
*4: $6+$ (a) when branching, $5+$ (a) when not branching
*5: $3 \times(\mathrm{b})+2 \times(\mathrm{c})$ when an interrupt request is generated, $6 \times(\mathrm{c})$ when returning from the interrupt.
*6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.
*7: Return from stack (word)
*8: Return from stack (long word)

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUSHW A | 1 | 3 | (c) | word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$ | - | - | - | - | - | - | - | - | - | - |
| PUSHW AH | 1 | 3 | (c) | word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$ | - | - | - | - | - | - | - | - | - | - |
| PUSHW PS | 1 | 3 | (c) | word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$ | - | - | - | - | - | - | - | - | - | - |
| PUSHW rlst | 2 | *3 | *4 | $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$ | - | - | - | - | - | - | - | - | - | - |
| POPW A | 1 | 3 | (c) | word $(\mathrm{A}) \leftarrow((\mathrm{SP})$ ), (SP) $\leftarrow(\mathrm{SP})+2$ | - | * | - | - | - | - | - | - | - | - |
| POPW AH | 1 | 3 | (c) | word $(\mathrm{AH}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$ | - | - | - | - | - | - | - | - | - | - |
| POPW PS | 1 | 3 | (c) | word (PS) $\leftarrow((\mathrm{SP}) \mathrm{)}$, (SP) $\leftarrow(\mathrm{SP})+2$ | - | - | * | * | * | * | * | * | * | - |
| POPW rlst | 2 | *2 | *4 | $(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})$ | - | - | - | - | - | - | - | - | - | - |
| JCTX @A | 1 | 9 | $6 \times$ (c) | Context switch instruction | - | - | * | * | * | * | * | * | * | - |
| AND CCR, \#imm8 | 2 | 3 | 0 | byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8 | - | - | * | * | * | * | * | * | * | - |
| OR CCR, \#imm8 | 2 | 3 | 0 | byte $(C C R) \leftarrow(C C R)$ or imm8 | - | - | * | * | * | * | * | * | * | - |
| MOV RP, \#imm8 | 2 | 2 | 0 | byte $(\mathrm{RP}) \leftarrow$ imm8 | - | - | - | - | - | - | - | - | - | - |
| MOV ILM, \#imm8 | 2 | 2 | 0 | byte $($ ILM $) \leftarrow$ imm8 | - | - | - | - | - | - | - | - | - | - |
| MOVEA RWi, ear | 2 | 3 | 0 | word (RWi) $\leftarrow$ ear | - | - | - | - | - | - | - | - | - | - |
| MOVEA RWi, eam | 2+ | $2+(a)$ | 0 | word $(\mathrm{RWi}) \leftarrow$ eam | - | - | - | - | - | - | - | - | - | - |
| MOVEA A, ear | 2 | 2 | 0 | word $(A) \leftarrow$ ear | - | * | - | - | - | - | - | - | - | - |
| MOVEA A, eam | 2+ | $1+$ (a) | 0 | word $(A) \leftarrow$ eam | - | * | - | - | - | - | - | - | - | - |
| ADDSP \#imm8 | 2 | 3 | 0 | word (SP) $\leftarrow$ ext (imm8) | - | - | - | - | - | - | - | - | - | - |
| ADDSP \#imm16 | 3 | 3 | 0 | word (SP) $\leftarrow$ imm16 | - | - | - | - | - | - | - | - | - | - |
|  | 2 | *1 | 0 | byte $($ A $) \leftarrow($ brgl $)$ | Z | * | - | - | - | * | * | - | - | - |
| MOV brg2, A | 2 | 1 | 0 | byte (brg2) $\leftarrow(A)$ | - | - | - | - | - | * | * | - | - | - |
| MOV brg2, \#imm8 | 3 | 2 | 0 | byte (brg2) $\leftarrow$ imm8 | - | - | - | - | - | * | * | - | - | - |
| NOP | 1 | , | 0 | No operation | - | - | - | - | - | - | - | - |  | - |
| ADB | 1 | 1 | 0 | Prefix code for AD space access | - | - | - | - | - | - | - | - | - | - |
| DTB | 1 | 1 | 0 | Prefix code for DT space access | - | - | - | - | - | - | - | - | - | - |
| PCB | 1 | 1 | 0 | Prefix code for PC space access | - | - | - | - | - | - | - | - | - | - |
| SPB | 1 | 1 | 0 | Prefix code for SP space access | - | - | - | - | - | - | - | - | - | - |
| NCC | 1 | 1 | 0 | Prefix code for no flag change | - | - | - | - | - | - | - | - | - | - |
| CMR | 1 | 1 | 0 | Prefix code for the common register bank | - | - | - | - | - | - | - | - | - | - |
| MOVW SPCU, \#imm16 | 4 | 2 | 0 | word $($ SPCU $) \leftarrow($ imm16) | - | - | - | - | - | - | - | - | - | - |
| MOVW SPCL, \#imm16 | 4 | 2 | 0 | word (SPCL) $\leftarrow($ imm16) | - | - | - | - | - | - | - | - | - | - |
| SETSPC | 2 | 2 | 0 | Stack check operation enable | - | - | - | - | - | - | - | - | - | - |
| CLRSPC | 2 | 2 | 0 | Stack check operation disable | - | - | - | - | - | - | - | - | - | - |
| BTSCN A | 2 | *5 | 0 | byte (A) $\leftarrow$ position of "1" bit in word (A) | Z | - | - | - | - | - | * | - | - | - |
| BTSCNSA | 2 | *6 | 0 | byte $($ A $) \leftarrow$ position of " 1 " bit in word $(A) \times 2$ | Z | - | - | - | - | - | * | - | - | - |
| BTSCNDA | 2 | *7 | 0 | byte $(\mathrm{A}) \leftarrow$ position of " 1 " bit in word $(\mathrm{A}) \times 4$ | Z | - | - | - | - | - | * | - | - | - |

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.

[^1]*3: $3+4 \times$ (push count)

## MB90F244

Table 23 Bit Manipulation Instructions [21 Instructions]


For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 5 when branching, 4 when not branching
*2: 7 when condition is satisfied, 6 when not satisfied
*3: Undefined count
*4: Until condition is satisfied

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | s | T | N | z | v | c | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWAP | 1 | 3 | 0 | byte (A) 0 to $7 \leftarrow \rightarrow$ (A) 8 to 15 | - | - | - | - | - | - | - | - | - |  |
| SWAPW | 1 | 2 | 0 | word ( AH ) $\leftarrow \rightarrow(\mathrm{AL})$ | - | * | - | - | - | - | - | - | - | - |
| EXT | 1 | 1 | 0 | Byte code extension | X | - | - | - | - | * | * | - | - | - |
| EXTW | 1 | 2 | 0 | Word code extension | - | X | - | - | - | * | * | - | - | - |
| ZEXT | 1 | 1 | 0 | Byte zero extension | Z | - | - | - | - | R | * | - | - | - |
| ZEXTW | 1 | 2 | 0 | Word zero extension | - | Z | - | - | - | R | * | - | - | - |

Table 25 String Instructions [10 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | I | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | 2 | *2 | *3 | Byte transfer @AH+ $\leftarrow$ @AL+, counter = RW0 | - | - | - | - | - | - | - | - | - | - |
| MOVSD | 2 | *2 | *3 | Byte transfer @AH- ¢@AL-, counter = RW0 | - | - | - | - | - | - | - | - | - | - |
| SCEQ/SCEQI | 2 | *1 | *4 | Byte retrieval @AH+ - AL, counter = RW0 | - | - | - | - | - | * | * | * | * | - |
| SCEQD | 2 | *1 | *4 | Byte retrieval @AH- AL, counter = RW0 | - | - | - | - | - | * | * | * | * | - |
| FILS/FILSI | 2 | $5 \mathrm{~m}+3$ | *5 | Byte filling @AH+ $\leftarrow \mathrm{AL}$, counter $=$ RW0 | - | - | - | - | - | * | * | - | - | - |
| MOVSW/MOVSWI | 2 | *2 | *6 | W0 | - | - | - | - | - | - | - | - | - | - |
| MOVSWD | 2 | *2 | *6 | Word transfer @AH- ¢ @AL-, counter = RW0 | - | - | - | - | - | - | - | - | - | - |
| SCWEQ/SCWEQ | 2 | *1 | *7 | Word retrieval @AH+- AL, counter = RW0 | - | - | - | - | - | * | * | * | * | - |
| SCWEQD | 2 | *1 | *7 | Word retrieval @AH-- AL, counter = RW0 | - | - | - | - | - | * | * | * | * | - |
| FILSW/FILSWI | 2 | $5 \mathrm{~m}+3$ | *8 | Word filling @AH $+\leftarrow$ AL, counter $=$ RW0 | - | - | - | - | - | * | * | - | - | - |

m : RW0 value (counter value)
*1: 3 when RW0 is $0,2+6 \times($ RW0 $)$ for count out, and $6 n+4$ when match occurs
*2: 4 when RW0 is $0,2+6 \times($ RW0) in any other case
*3: (b) $\times($ RW0 $)$
*4: (b) $\times n$
*5: (b) $\times($ RW0 $)$
*6: (c) $\times($ RW0)
*7: (c) $\times n$
*8: (c) $\times($ RWO $)$

Table 26 Multiple Data Transfer Instructions [18 Instructions]

| Mnemonic | \# | $\sim$ | B | Operation | LH | AH | 1 | S | T | N | Z | V | C | RMW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOVM @A, @RLi, \#imm8 | 3 | *1 | *3 | Multiple data trasfer byte $((\mathrm{A})) \leftarrow((\mathrm{RLi}))$ |  | - | - | - | - | - | - | - | - |  |
| MOVM @A, eam, \#imm8 | 3+ | *2 | *3 | Multiple data trasfer byte $((\mathrm{A})) \leftarrow$ (eam) | - | - | - | - | - | - | - | - | - | - |
| MOVM addr16, @RLi, \#imm8 | 5 | *1 | *3 | Multiple data trasfer byte (addr16) $\leftarrow(($ RLi) ) | - | - | - | - | - | - | - | - | - | - |
| MOVM addr16, eam, \#imm8 | 5+ | *2 | *3 | Multiple data trasfer byte (addr16) $\leftarrow($ eam ) | - | - | - | - | - | - | - | - | - | - |
| MOVMW @A, @RLi, \#imm8 | 3 | ${ }^{*}$ | *4 | Multiple data trasfer word ((A)) $\leftarrow(($ RLi) $)$ | - | - | - | - | - | - | - | - | - | - |
| MOVMW @A, eam, \#imm8 | 3+ | *2 | *4 | Multiple data trasfer word $((\mathrm{A})) \leftarrow$ (eam) | - | - | - | - | - | - | - | - | - | - |
| MOVMW addr16, @RLi, \#imm8 | 5 | *1 | *4 | Multiple data trasfer word (addr16) $\leftarrow(($ RLi) $)$ | - | - | - | - | - | - | - | - | - | - |
| MOVMW addr16, eam, \#imm8 | 5+ | *2 | *4 | Multiple data trasfer word (addr16) $\leftarrow($ eam ) | - | - | - | - | - | - | - | - | - | - |
| MOVM @RLi, @A, \#imm8 | 3 | *1 | *3 | Multiple data trasfer byte $((\mathrm{RLi})) \leftarrow((\mathrm{A})$ ) | - | - | - | - | - | - | - | - | - | - |
| MOVM eam, @A,\#imm8 | $3+$ | *2 | *3 | Multiple data trasfer byte (eam) $\leftarrow((\mathrm{A})$ ) | - | - | - | - | - | - | - | - | - | - |
| MOVM @RLi, addr16,\#imm8 | 5 | ${ }^{*}$ | *3 | Multiple data transfer byte ((RLi)) $\leftarrow$ (addr16) | - | - | - | - | - | - | - | - | - | - |
| MOVM eam, addr16, \#imm8 | 5+ | *2 | *3 | Multiple data transfer byte (eam) $\leftarrow$ (addr16) | - | - | - | - | - | - | - | - | - | - |
| MOVMW @RLi, @A, \#imm8 | 3 | *1 | *4 | Multiple data trasfer word ((RLi)) $\leftarrow((\mathrm{A}))$ | - | - | - | - | - | - | - | - | - | - |
| MOVMW eam, @A, \#imm8 | 3+ | *2 | *4 | Multiple data trasfer word (eam) $\leftarrow((\mathrm{A})$ ) | - | - | - | - | - | - | - | - | - | - |
| MOVMW @RLi, addr16,\#imm8 | 5 | *1 | *4 | Multiple data transfer word ((RLi)) $\leftarrow$ (addr16) | - | - | - | - | - | - | - | - | - | - |
| MOVMW eam, addr16,\#imm8 | 5+ | *2 | *4 | Multiple data transfer word (eam) $\leftarrow$ (addr16) | - | - | - | - | - | - | - | - | - | - |
| MOVM bnk: addr16, *5 bnk : addr16, \#imm8 | 7 | ${ }^{*}$ | *3 | Multiple data transfer byte (bnk:addr16) $\leftarrow($ bnk:addr16) | - | - | - | - | - | - | - | - | - |  |
| MOVMW bnk:addr16, *5 bnk : addr16, \#imm8 | 7 | *1 | *4 | Multiple data transfer word (bnk:addr16) $\leftarrow$ (bnk:addr16) | - | - | - | - | - | - | - | - | - | - |

*1: $5+\mathrm{imm} 8 \times 5,256$ times when imm8 is zero.
*2: $5+$ imm8 $\times 5+$ (a), 256 times when imm8 is zero.
*3: Number of transfers $\times(\mathrm{b}) \times 2$
*4: Number of transfers $\times(\mathrm{c}) \times 2$
*5: The bank register specified by "bnk" is the same as for the MOVS instruction.

## MB90F244

- ORDERING IMFORMATION

| Part number | Package | Remarks |
| :---: | :---: | :---: |
| MB90F244PFT-G | 80-pin Plastic TQFP <br> (FPT-80P-M15) |  |

## MB90F244

## PACKAGE DIMENSIONS

## 80-pin Plastic TQFP <br> (FPT-80P-M15)


© 1997 FUJTSU LIMTED F80028S-1C-1
Dimensions in mm (inches)

## MB90F244

## FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.


[^0]:    * $: 5$ when the contents of the accumulator are all zeroes, $5+(\mathrm{R} 0)$ in all other cases.

[^1]:    *1: PCB, ADB, SSB, USB, and SPB: 1 cycle DTB: 2 cycles
    DPR: 3 cycles
    *2: $3+4 \times$ (pop count)
    *4: Pop count $\times(\mathrm{c})$, or push count $\times(\mathrm{c})$
    *5: 3 when $A L$ is 0,5 when $A L$ is not 0 .
    *6: 4 when AL is 0,6 when AL is not 0 .
    *7: 5 when AL is 0,7 when AL is not 0 .

