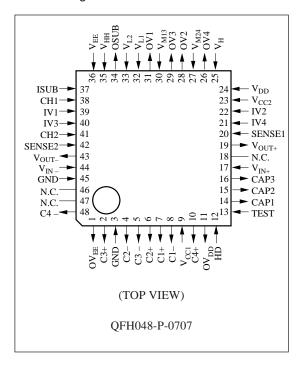
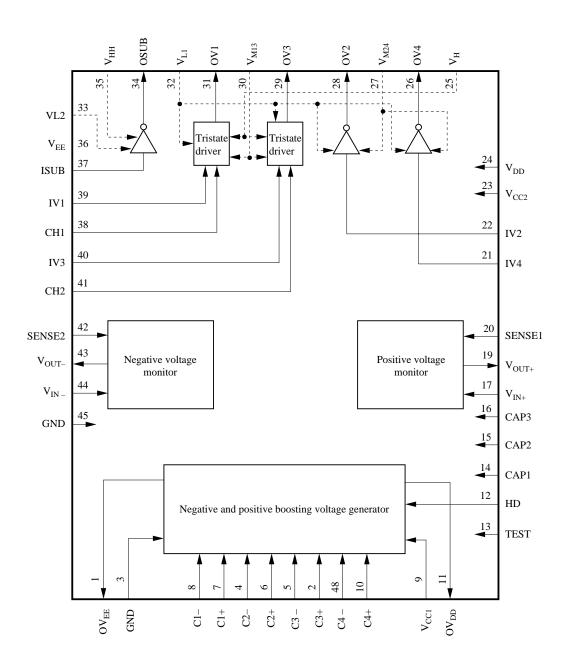
MN3111H

Vertical Driver LSI for Video Camera CCD Area Image Sensor


Overview

The MN3111H is a vertical driver LSI for a two-dimensional interline CCD image sensor. It features a built-in power supply circuit that, in conjunction with such external components as four booster capacitors, six voltage stabilization capacitors, eight Schottky barrier diodes, and two Zener diodes, produces stabilized +15.0V and -10.0V power supplies from a +5.0V input and HD pulses.


Features

- Single 5 volt power supply
- Applications
- Video cameras

■ Pin Assignment

■ Block Diagram

■ Pin Descriptions

Pin No.	Symbol	Pin Name	I/O	Function Description
9	V _{CC1}	"H" level power supply	I	"H" level input for 5 volt circuits
23	V _{CC2}	for input block		
3	GND	"L" level power supply	I	"L" level input for 5 volt circuits
45		for input block		
25	V_{H}	"H" level power supply	I	"H" level input for high-voltage circuits
		for vertical driver		
35	V _{HH}	"H" level power supply	I	"H" level input for high-voltage circuits
		for SUB driver		
30	V_{M13}	"M" level power supply	I	"M" level input for high-voltage circuits
27	V_{M24}	for vertical driver		
32	V_{L1}	"L" level power supply	I	"L" level input for high-voltage circuits
		for vertical driver		
33	V_{L2}	"L" level power supply	I	"L" level input for high-voltage circuits
		for SUB driver		
24	V_{DD}	Driver power supply 1	I	"H" level for high-voltage circuits
36	V _{EE}	Driver power supply 2	I	"L" level for high-voltage circuits
17	V _{IN+}	Voltage input for positive	I	Voltage input pin for positive voltage
		voltage monitor		monitor
44	V _{IN -}	Voltage input for negative	I	Voltage input pin for negative voltage
		voltage monitor		monitor
13	TEST	Test input	I	Test pin (Keep this pin at "H" level.)
12	HD	HD pulse input	I	HD pulse input pin
22	IV2	Transfer pulse input	I	Charge transfer pulse input pin
21	IV4	Transfer pulse input	I	Charge transfer pulse input pin
39	IV1	Transfer pulse input	I	Charge transfer pulse input pin
40	IV3	Transfer pulse input	I	Charge transfer pulse input pin
38	CH1	Charge pulse input	I	Charge readout pulse input pin
41	CH2	Charge pulse input	I	Charge readout pulse input pin
37	ISUB	SUB pulse input	I	Unwanted charge rejection pulse input pin
20	SENSE1	Positive voltage monitor	I	Positive voltage monitor control sensing
		sensing input		pin (Leave this pin open.)
42	SENSE2	Negative voltage monitor	I	Negative voltage monitor control sensing
		sensing input		pin (Leave this pin open.)
7	C1+	C1 connection	0	Booster block voltage charging capacitor
8	C1-			connection pins
6	C2+	C2 connection	0	Booster block voltage charging capacitor
4	C2-			connection pins
2	C3+	C3 connection	О	Booster block voltage charging capacitor
5	C3 –			connection pins
10	C4+	C4 connection	0	Booster block voltage charging capacitor
			1	

■ Pin Descriptions (continued)

Pin No.	Symbol	Pin Name	I/O	Function Description
11	OV_{DD}	Booster block positive	О	Booster block positive voltage
		voltage output		output pin
1	OV _{EE}	Booster block negative	0	Booster block negative voltage
		voltage output		output pin
19	V _{OUT+}	Positive regulated voltage	0	Positive voltage monitor output pin
		output		(Leave this pin open.)
43	V _{OUT} -	Negative regulated voltage	0	Negative voltage monitor output pin
		output		(Leave this pin open.)
26	OV4	Binary transfer pulse	0	Binary (V _{M24} , V _{L1}) transfer pulse
		output		output pin
28	OV2	Binary transfer pulse	0	Binary (V _{M24} , V _{L1}) transfer pulse
		output		output pin
29	OV3	Tristate transfer pulse	0	Tristate (V _H , V _{M13} , V _{L1}) transfer pulse
		output		output pin
31	OV1	Tristate transfer pulse	0	Tristate (V _H , V _{M13} , V _{L1}) transfer pulse
		output		output pin
34	OSUB	SUB pulse output	0	Unwanted charge (V _{HH} , V _{L2}) rejection
				pulse input pin
14	CAP1	Stabilizing capacitor	0	Pins for connecting capacitors for internal
15	CAP2	connection		voltage stabilization circuits
16	CAP3			
18	N.C.	No connection	_	
46				
47				

■ Functional Description

Binary transfer pulses (vertical driver block)

IV2	OV2
IV4	OV4
Н	L
L	M

Tristate transfer pulses (vertical driver block)

CH1	IV1	OV1
CH2	IV3	OV3
	Н	L
Н	L	M
т	Н	L
L	L	Н

^{*1} IV1, IV2, IV3, IV4, CH1, CH2

 $H: V_{CC}$

L: GND

OV1, OV2, OV3, OV4

 $H: V_H$

 $M \colon V_{M13}$, or V_{M24}

 $L: V_{L1}$

Unwanted charge rejection pulses (SUB driver block)

ISUB	OSUB		
Н	L		
L	Н		

^{*1} ISUB

H: V_{CC}

L: GND

OSUB

 $H{:}\ V_{HH}$

 $L \colon V_{L2}$

■ Electrical Characteristics

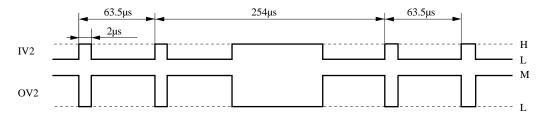
(1) DC characteristics

 $V_{HH}\!\!=\!\!V_{H}\!\!=\!\!15.0V,\,V_{M13}\!\!=\!\!V_{M24}\!\!=\!\!1.0V,\,GND\!\!=\!\!0.0V,$

 $V_{CC1} \!\!=\!\! V_{CC2} \!\!=\!\! 5.0 V \; (=\!\! V_{CC}), \; V_{L1} \!\!=\!\! -7.0 V, \; V_{L2} \!\!=\!\! -10.0 V, \; Ta \!\!=\!\! +25 ^{\circ} C$

Parameter	Symbol	Test conditions	min	typ	max	Unit	
Quiescent supply current	I_{DDST}	V_{I} =GND, V_{CC}			4	mA	
Operating supply current	I_{DDDYN}	V_{I} =GND, V_{CC}			11	mA	
Power supply output pins OV_DD , OV_EE							
Positive voltage stabilization	V _{REG+}	V_I =GND, V_{CC} , I_O =7mA	14.5	15.0	15.5	V	
circuit output voltage							
Negative voltage stabilization	V _{REG-}	V_I =GND, V_{CC} , I_O =-2mA	-10.5	-10.0	-9.5	V	
circuit output voltage							
Input pins	IV1	, IV2, IV3, IV4, CH1, CH2, ISUB, H	D				
"H" level voltage	V _{IH}		3.5		V _{CC}	V	
"L" level voltage	V _{IL}		GND		1.5	V	
Input leak current	I_{LI}	V _I =0 to 5V			±1	μΑ	
Output pins 1 (Binary output) OV	2, OV4					
Output voltage "M" level	V _{OM1}	V_I =GND, V_{CC} , I_{OM1} =-1mA	0.9		V_{M24}	V	
Output voltage "L" level	V _{OL1}	V_I =GND, V_{CC} , I_{OL1} =1mA	V_{L1}		-6.9	V	
Output on resistance "M" level	R _{ONM1}	I _{OM1} =-50mA			40	Ω	
Output on resistance "L" level	R _{ONL1}	I _{OL1} =50mA			40	Ω	
Output pins 2 (Tristate output	t) OV	1, OV3					
Output voltage "H" level	V _{OH2}	V_I =GND, V_{CC} , I_{OH2} = -1mA	14.9		V_{H}	V	
Output voltage "M" level	V _{OM2}	V_I =GND, V_{CC} , I_{OM2} =-1mA	0.9		V_{M13}	V	
Output voltage "L" level	V _{OL2}	V_I =GND, V_{CC} , I_{OL2} =1mA	V_{L1}		-6.9	V	
Output on resistance "H" level	R _{ONH2}	I _{OH2} =-50mA			50	Ω	
Output on resistance "M" level	R _{ONM2}	I _{OM2} =±50mA			40	Ω	
Output on resistance "L" level	R _{ONL2}	I _{OL2} =50mA			40	Ω	
Output pin 3 (SUB output) OSUB							
Output voltage "H" level	V _{OHH3}	V_I =GND, V_{CC} , I_{OHH3} =-1mA	14.9		V_{HH}	V	
Output voltage "L" level	V _{OL3}	V_{I} =GND, V_{CC} , I_{OL3} =1mA	V_{L2}		-9.9	V	
Output on resistance "H" level	R _{ONHH3}	I _{ONHH3} =-50mA			50	Ω	
Output on resistance "L" level	R _{ONL3}	I _{ONL3} =50mA			40	Ω	

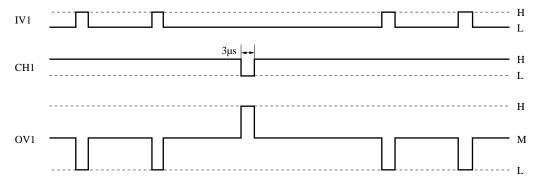
(2) AC characteristics

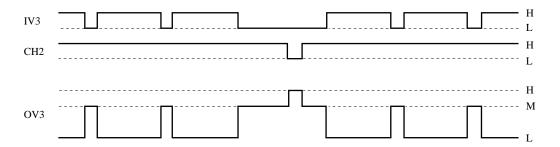

 $V_{HH}\!\!=\!\!V_{H}\!\!=\!\!15.0V,\,V_{M13}\!\!=\!\!V_{M24}\!\!=\!\!1.0V,\,GND\!\!=\!\!0.0V,$

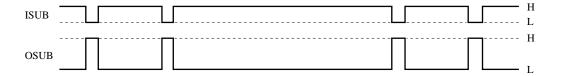
 $V_{CC1} = V_{CC2} = 5.0 \, V \; (=V_{CC}), \; V_{L1} = -7.0 \, V, \; V_{L2} = -10.0 \, V, \; Ta = +25 \, ^{\circ}C$

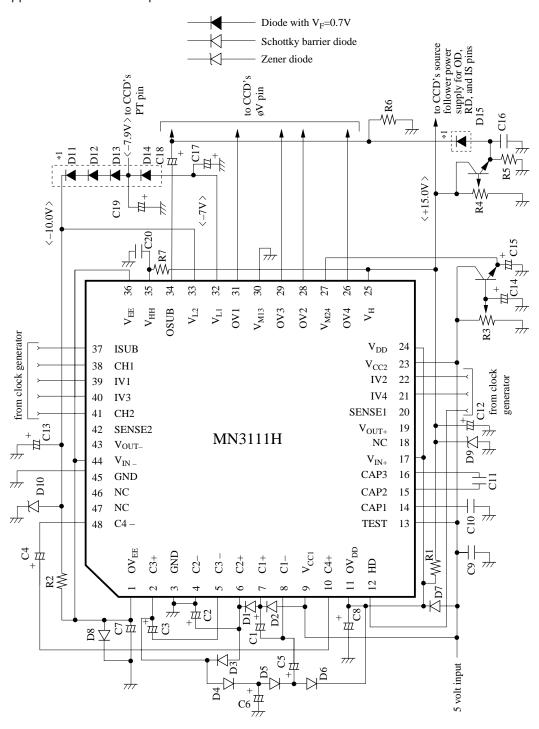
Parameter	Symbol	Test conditions	min	typ	max	Unit
Output pins 1 (Binary output	t) OV	2, OV4				
Transmission delay	t _{PLM}	No load		100	200	
	t _{PML}	From "L" level to "M" level		100	200	ns
Rise time	t_{TLM}			200	300	ns
Fall time	t_{TML}			200	300	115
Output pins 2 (Tristate output	ut) OV	1, OV3				_
Transmission delay	t_{PLM}	No load	100 2	200		
	t_{PML}	From "L" level to "M" level		200	ns	
Transmission delay	t _{PMH}	No load		200	400	ng
	t _{PHM}	From "M" level to "H" level		200	400	ns
Rise time	t_{TLM}			200	300	ne
Fall time	t_{TML}			200	300	ns
Rise time	t_{TMH}			200	300	ng
Fall time	t_{THM}			200	300	ns
Output pin 3 (SUB output)	OSU	UB				
Transmission delay	t _{PLHH}	No load		100	200	
	t _{PHHL}	From "L" level to "H" level		100	200	ns
Rise time	t _{TLHH}			200	300	ne
Fall time	t _{THHL}			200	300	ns

■ Timing Chart


1. Binary transfer pulses

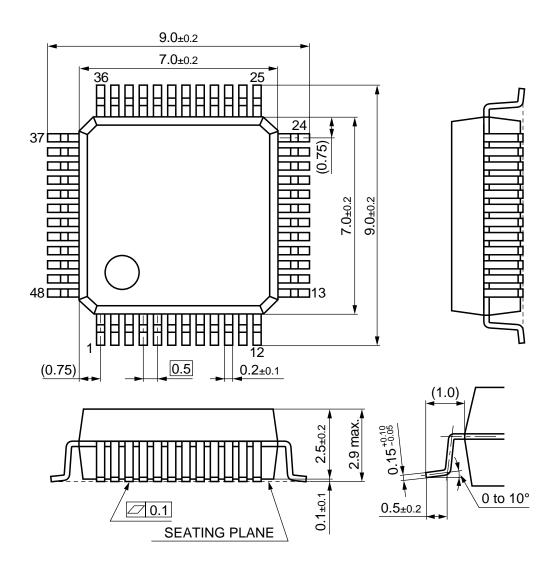

2. Binary transfer pulses


3. Tristate transfer pulses


4. Tristate transfer pulses

5. SUB pulses

■ Application Circuit Example



The booster circuit's electrolytic capacitors must have little impedance fluctuation at low temperatures.

Note *1: These diodes must have a V_F of 0.7 V. All other diodes, except the Zener diodes, must be Schottky barrier diodes (MA723).

■ Package Dimensions (Unit: mm)

QFH048-P-0707

Usage Notes

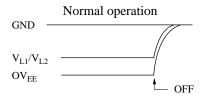
External components

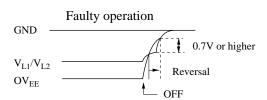
1. This product requires eight Schottky barrier diodes and two Zener diodes.

We recommend the following components.

Schottky barrier diodes: MA723 or equivalents

Zener diodes: MA1150-M, MA8150-M (for positive regulated voltage) or equivalents


MA1100-M, MA8100-M (for negative regulated voltage) or equivalents


Ta=25°C

Component	Model number	Typical characteristics	Notes	
Schottky barrier diodes	MA723	$I_F = 200 \text{mA}, \ V_F \le 0.55 \text{V}$		
	MA1150-M	I -5m A 146V < V < 15.25V	for positive	
Zener diodes	MA8150-M	$I_Z = 5 \text{mA}, 14.6 \text{V} \le V_Z \le 15.35 \text{V}$	regulated voltage	
Zener diodes	MA1100-M	I -5m A 0.75V < V < 10.25V	for negative	
	MA8100-M	$I_Z = 5 \text{mA}, 9.75 \text{V} \le V_Z \le 10.25 \text{V}$	regulated voltage	

The MN3111H will not operate properly if the components do not satisfy the above specifications.

2. Always use the specified components for peripheral circuits so as to ensure that OV_{EE} and V_L do not reverse potentials when the power is turned off.

As the above sketch illustrates, allowing OV_{EE} to exceed V_{L1} and V_{L2} by more than 0.7 V produces the risk of applying a forward bias to the PN junction, turning on the parasitic transistor, and generating an overcurrent that produces latch-up.

If this phenomenon arises, increase the size of capacitor C7 or decrease the size of capacitor C13 to increase the OV_{EE} time constant.

(See the sample application circuit for the locations of C7 and C13.)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.