PACKAGE DETAILS

Dimensions are shown thus: mm (in). For further package information please contact your local Customer Service Centre.

HC44 MULTILAYER CERAMIC J LEADED CHIP CARRIER

HEADQUARTERS OPERATIONS
GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire United Kingdom SN2 2QW.
Tel: (01793) 518000
Fax: (01793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 6600171500 Green Hills Road,

Scotts Valley, California 95067-0017,
United States of America. Tel: (408) 4382900
Fax: (408) 4385576

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax: (1) 69189000
- GERMANY Munich Tel: (089) 3609060 Fax: (089) 36090655
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA

Tel: (408) 4382900 Fax: (408) 4387023

- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 4687029770 Fax: 4686404736
- TAIWAN, ROC Taipei Tel: 88625461260 Fax: 88627190260
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (01793) 518527/518566 Fax: (01793) 518582
These are supported by Agents and Distributors in major countries world-wide.

[^0] materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

Fig. 8. Third order loop filter circuit diagram

Loop Filter Design

Generally the third order filter configuration shown in Fig. 8 gives better results than the more commonly used second order because the reference sidebands are reduced. Three equations are required to determine values for the three constants where;

$$
\begin{aligned}
& \tau_{1}=C_{1} \\
& \tau_{2}=R_{2}\left(C_{1}+C_{2}\right) \\
& \tau_{3}=C_{2} R_{2}
\end{aligned}
$$

The equations are;
$1 \quad \tau_{1}=\frac{K_{\phi} K_{0}}{N \omega_{n}{ }^{2}}\left[\frac{1+\omega_{n}{ }^{2} \tau_{2}{ }^{2}}{1+\omega_{n}{ }^{2} \tau_{3}{ }^{2}}\right]^{1 / 2}$
2

$$
\begin{aligned}
\tau_{2} & =\frac{1}{\omega_{n}^{2} \tau_{3}} \\
\tau_{3} & =\frac{-\tan \Phi_{0}+\frac{1}{\cos \Phi_{0}}}{\omega_{n}}
\end{aligned}
$$

Where;
K_{ϕ} is the phase detector gain factor in $\mathrm{mA} /$ radian
$\mathrm{K}_{0} \quad$ is the VCO gain factor in radian/second/Volt
N is the total division ratio from VCO to reference frequency
ω_{n} is the natural loop bandwidth
Φ_{0} is the phase margin normally set to 45°
Since the phase detector is linear over a range of 2π radian, K_{ϕ} can be calculated from

$$
\mathrm{K}_{\phi}=\text { Phase comparator current setting } / 2 \pi \quad \mathrm{~mA} / \text { radian }
$$

These values can now be substituted in equation 1 to obtain a value for C_{1} and equation 2 and 3 used to determine values for C_{2} and R_{2}

EXAMPLE

Calculate values for a loop with the following parameters

Frequency to be synthesised:	1000 MHz
Reference frequency	10 MHz
Division ratio	$1000 \mathrm{MHz} / 10 \mathrm{MHz}=100$
ω_{n} natural loop frequency	100 kHz
K_{0} VCO gain factor	$2 \pi \times 10 \mathrm{MHz} / \mathrm{Volt}$
Φ_{0} phase margin	45°
Phase comparator current	6.3 mA

From equation 3:

$$
\begin{aligned}
& \tau_{3}=\frac{-\tan 45^{\circ}+\frac{1}{\cos 45^{\circ}}}{100 \mathrm{kHz} \times 2 \pi}=\frac{0.4142}{628319} \\
& \tau_{3}=659 \times 10^{-9}
\end{aligned}
$$

From equation 2 :

$$
\begin{aligned}
& \tau_{2}=\frac{1}{(100 \mathrm{kHz} \times 2 \pi)^{2} \times 659 \times 10^{-9}} \\
& \tau_{2}=3.844 \times 10^{-6}
\end{aligned}
$$

Using these values in equation 1 :

$$
\tau_{1}=\frac{1 \times 10^{-3} \times 2 \pi \times 10 \mathrm{MHz} / \mathrm{V}}{100 \times(2 \pi \times 100 \mathrm{kHz})^{2}}[\mathrm{~A}]^{1 / 2}
$$

Where A is :

$$
\begin{aligned}
\frac{1+\omega_{n}^{2} \tau_{2}^{2}}{1+\omega_{n}^{2} \tau_{3}^{2}} & =\frac{1+(2 \pi \times 100 \mathrm{kHz})^{2} \times\left(3.844 \times 10^{-6}\right)^{2}}{1+(2 \pi \times 100 \mathrm{kHz})^{2} \times\left(659 \times 10^{-9}\right)^{2}} \\
\tau_{1} & =\frac{62832}{39.48 \times 10^{12}}\left[\frac{6.833}{1.1714}\right]^{1 / 2} \\
\tau_{1} & =1.59 \times 10^{-9} \times 2.415 \\
\tau_{1} & =3.84 \times 10^{-9} \\
\text { Now } \tau_{1} & =C_{1} \therefore C_{1}=3.84 \mathrm{nF} \\
\tau_{2} & =\mathrm{R}_{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
\tau_{3} & =\mathrm{C}_{2} \mathrm{R}_{2}
\end{aligned}
$$

Substituting for C_{2}

$$
\begin{aligned}
& \quad \tau_{2}=\mathrm{R}_{2}\left[\mathrm{C}_{1}+\frac{\tau_{3}}{\mathrm{R}_{2}}\right] \quad \therefore \tau_{2}=\mathrm{R}_{2} \mathrm{C}_{1}+\tau_{3} \\
& \therefore \mathrm{R}_{2}=\frac{\tau_{2}-\tau_{3}}{\mathrm{C}_{1}}=\frac{3.844 \times 10^{-6}-659 \times 10^{-9}}{9.61 \times 10^{-9}} \\
& \mathrm{R}_{2}=829.4 \Omega \\
& \quad \tau_{3}=\mathrm{C}_{2} \mathrm{R}_{2} \therefore \mathrm{C}_{2}=\frac{\tau_{3}}{\mathrm{R}_{2}}=\frac{659 \times 10^{-9}}{829.4} \\
& \mathrm{C}_{2}=0.794 \mathrm{nF}
\end{aligned}
$$

The phase detector gain factor K_{ϕ}

SP8854D

gain can be modified when new frequency data is entered to compensate for change in the VCO gain characteristic over its frequency band. The charge pump pulse current is determined by the current fed into pin 19 and is approximately equal to pin 19 current when the programmed multiplication ratio is one. The circuit diagram Fig. 7e shows the internal components on pin 19 which mirror the input current into the charge pump. The voltage at pin 19 will be approximately 1.6 V above ground due to two $\mathrm{V}_{\text {be }}$ drops in the current mirror. This voltage will exhibit a negative temperature coefficient, causing the charge pump current to change with chip temperature by up to 10% over the full military temperature range if the current programming resistor is connected to V_{CC} as shown in the application diagram Fig. 5. In critical applications where this change in charge pump current would be too large the resistor to pin 19 could be increased in value and connected to a higher supply to reduce the effect of V_{be} variation on the current level. A suitable resistor connected to a 30 V supply would reduce the variation in pin 19 current due to temperature to less than 1.5%. Alternatively a stable current source could be used to set pin 19 current.

The charge pump output on pin 20 will only produce symmetrical up and down currents if the voltage is equal to that on the voltage reference pin 21. In order to ensure that this voltage relationship is maintained, an operational amplifier must be used as shown in the typical application Fig. 5. Using this configuration pin 20 voltage will be forced to be equal to that on pin 21 since the operational amplifier differential input voltage will be no more than a few millivolts (the input offset voltage of the amplifier). When the synthesiser is first switched on or when a frequency outside the VCO range is programmed the amplifier output will limit, allowing pin 20 voltage to differ from that on pin 21. As soon as an achievable frequency value is programmed and the amplifier output starts to slew the correct voltage relationship between pin 20 and 21 will be restored. Because of the importance of voltage equality between the charge pump reference and output pins, a resistor should never be connected in series with the operational amplifier inverting input and pin 20 as is the case with a phase detector giving voltage outputs. Any current drawn from the charge pump reference pin should be limited to the few micro amps input current of a typical operational amplifier. A resistor between the charge pump reference and the non inverting input could be added to provide isolation but the value should not be so high that more than a few millivolts drop are produced by the amplifier input current.

When selecting a suitable amplifer for the loop filter, a number of parameters are important; input offset voltage in most designs is only a few milivolts and an offset of 5 mV will produce a mismatch in the up and down currents of about 4\% with the charge pump multiplication factor set at 1 . The mismatch in up down currents caused by input offset voltage will be reduced in proportion to the charge pump multiplication factor in use. If the linearity of the phase detector about the normal phase locked operating point is critical, the input offset voltage of most amplifiers can be adjusted to near zero by means of a potentiometer.

The charge pump reference voltage on pin 21 is about 1.3 V below the positive supply and will change with temperature and with the programmed charge pump multiplication factor. In many cases it is convenient to operate the amplifier with the negative power supply pin connected to 0 V as this removes the need for an additional power supply. The amplifier selected must have a common mode range to within 3.4 V (minimum charge pump reference voltage) of the negative supply pin to operate correctly without a negative supply. Most popular amplifiers can be operated from a 30V positive supply to give a wide VCO voltage drive range and have adequate common mode range to operate with inputs at +3.4 V with respect to the negative supply. Input bias and offset current levels to most operational amplifiers are unlikely to be high enough to significantly affect the accuracy of the charge pump circuit
currents but the bias current can be important in reducing reference side bands and local oscillator drift during frequency changes. When the loop is locked, the charge pump produces only very narrow pulses of sufficient width to make up for any charge lost from the loop filter components during the reference cycle. The charge lost will be due to leakage from the charge pump output pin and to the amplifier input bias current, the latter usually being more significant. The result of the lost charge is a sawtooth ripple on the VCO control line which frequency modulates the phase locked oscillator at the reference frequency and its harmonics. A similar effect will occur whenever the strobe input is taken high during a programming sequence. In this case the charge pump is disabled when the strobe input is high and any leakage current will cause the oscillator to drift off frequency. To reduce this effect, the duration of the strobe pulse should be minimised.

$F_{\text {pd }}$ and $F_{\text {ref }}$ outputs

These outputs provide access to the outputs from the RF and reference dividers and are provided for monitoring purposes during product development or test, and for connection of an external phase detector if required. the output circuit is of ECL type, the circuit diagram being shown in Fig. 7 g . The outputs can be enabled or disabled under software control by the address 0 control word but are best left in the disabled state when not required as the fast edge speeds on the output can increase the level of reference sidebands on the synthesised oscillator.

The emitter follower outputs have no internal down resistor to save current and if the outputs are required an external pull down resistor should be fitted. The value should be kept as high as possible to reduce supply current, about 2.2 k being suitable for monitoring with a high impedance oscilloscope probe or for driving an AC coupled 50 ohm load. A minimum value for the pull down resistor is 3300 hms . When the $F_{p d}$ and $F_{\text {ref }}$ outputs are disabled the output level will be at the logic low level of about 3.5 V so that the additional supply current due to the load resistors will be present even when the outputs are disabled.

Reference input

The reference input circuit functions as an input amplifier or crystal oscillator. When an external reference signal is used this is simply AC coupled to pin 28, the base of the input emitter follower. When a low phase noise synthesiser is required the reference signal is critical since any noise present here will be multiplied by the loop. To obtain the lowest possible phase noise from the SP8854D it is best to use the highest possible reference input frequency and to divide this down internally to obtain the required frequency at the phase detector. The amplitude of the reference input is also important, and a level close to the maximum will give the lowest noise. When the use of a low reference input frequency say $4-10 \mathrm{MHz}$ is essential some advantage may be gained by using a limiting amplifier such as a CMOS gate to square up the reference input.

In cases where a suitable reference signal is not available, it may be more convenient to use the input buffer as a crystal oscillator in this case the emitter follower input transistor is connected as a colpitts oscillator with the crystal connected from the base to ground and with the feedback necessary for oscillation provided by a capacitor tap at the emitter. The arrangement is shown inset in Fig. 5

Fig. 7 Interface circuit diagrams (cont)

APPLICATIONS

RF layout

The SP8854D can operate with input frequencies up to 1.7 GHz but to obtain optimum performance, good RF layout practices should be used. A suitable layout technique is to use double sided printed circuit board with through plated holes. Wherever possible the top surface on which the SP8854D is mounted should be left as a continuous sheet of copper to form a low impedance earth plane. The ground pins 12 and 16 should be connected directly to the earth plane. Pins such as V_{CC} and the unused RF input should be decoupled with chip capacitors mounted as close to the device pin as possible with a direct connection to the earth plane, suitable values are 10 nF for the power supplies and $<1 \mathrm{nF}$ for the RF input pin. (a lower value should be used sufficient to give good decoupleing at the RF frequnecy of operation). A larger decoupling capacitor mounted as close as possible to pin 26 should be used to prevent modulation of V_{CC} by the charge pump pulses. The $\mathrm{R}_{\text {set }}$ resistor should also be mounted close to the $\mathrm{R}_{\text {set }}$ pin to prevent noise pickup, and the capacitor connected from the charge pump output should be a chip component with short connections to the SP8854D.

When the reference is derived from a crystal connected to pins 27 and 28 as shown in Fig. 5 the oscillator components are best mounted close to the SP8854D.

All signals such as the programming inputs, RF in, reference in and the connections to the op-amp are best taken through the pc board adjacent to the SP8854D with through plated holes allowing connections to remote points without fragmenting the earth plane.

Programming bus

The input pins are designed to be compatible with TTL or CMOS logic with a switching threshold set at about 2.4 V by three forward biased base emitter diodes. The inputs will be taken high by an internal pull up resistor if left open circuit but for best noise immunity it is better to connect unused inputs directly to V_{CC} or ground.

RF inputs

The prescaler has a differential input amplifer to improve input sensitivity. Generally the input drive will be single ended and the RF signal should be AC coupled to either of the inputs
using a chip capacitor. The remaining input should be decoupled to ground, again using a chip capacitor. The inputs can be driven differentially but the input circuit should not provide a DC path between inputs or to ground.

Lock detect circuit

The lock detect circuit uses the up and down correction pulses from the phase detector to determine whether the loop is in or out of lock. When the loop is locked, both up and down pulses are very narrow compared to the reference frequency, but the pulse width in the out of lock condition continuously varies, depending on the phase difference between the outputs of the reference and RF counters. The logical AND of the up and down pulses is used to switch a 20 mA current sink to pin 18 and a 50k resistor provides a load to V_{CC}. The circuit is shown in Fig. 7c. When lock is established, the narrow pulses from the phase detector ensure that the current source is off for the majority of the time and so pin 18 will be pulled high by the 50 k resistor. A voltage comparator with a switching threshold at about 4.7 V monitors the voltage at pin 18 and switches pin 17 low when pin 18 is more positive than the 4.7 V threshold. When the loop is unlocked, the frequency difference at the counter outputs will produce a cyclic change in pulse width from the phase detector outputs with a frequency equal to the difference in frequency at the reference and RF counter outputs. A small capacitor connected to pin 18 prevents the indication of false phase lock conditions at pin 17 for momentary phase coincidence. Because of the variable width pulse nature of the signal at pin 18 the calculation of a suitable capacitor value is complex, but if an indication with a delay amounting to several times the expected lock up time is acceptable, the delay will be approximately equal to the time constant of the capacitor on pin 18 and the internal 50 k resistor. If a faster indication is required, comparable with the loop lock up time, the capacitor will need to be 2-3 times smaller than the time constant calculation suggests. The time to respond to an out of lock condition is $2-3$ times less than that required to indicate lock.

Charge pump circuit

The charge pump circuit converts the variable width up and down pulses from the phase detector into adjustable current pulses which can be directly connected to the loop amplifer. The magnitude of the current and therefore the phase detector

Fig. $7 a 16$ bit input bus, $F_{p d} / F_{\text {ref }}$ enable, control direction, reference divider inputs and strobe

Fig. 7c Lock detect decouple

Fig. 7e $R_{\text {set }}$ pin.

Fig. 7b RF inputs

Fig. 7d Lock detect output

Fig. 7f Charge pump circuit

Fig. 7 Interface circuit diagrams

Bit 15	Bit 14	Current Multiplication Factor
0	0	1.0
0	1	1.5
1	0	2.5
1	1	4.0
Table 1		

Pin 19 current $\simeq \frac{\mathrm{V}_{\mathrm{cc}}-1.6 \mathrm{~V}}{\mathrm{R}_{\text {set }}}$
Phase detector gain $=$

$$
\frac{\mathrm{I}_{\text {pin } 19}(\mathrm{~mA}) \times \text { multiplication factor }}{2 \pi} \mathrm{~mA} / \text { radian }
$$

To allow for control direction changes introduced by the design of the PLL, pin 23 is used to reverse the sense of the phase detector by transposing the F_{pd} and $\mathrm{F}_{\text {ref }}$ connections. In order that any external phase detector will also be reversed, the $\mathrm{F}_{\text {pd }} / \mathrm{F}_{\text {ref }}$ outputs are interchanged by pin 23 as shown in Table 2.

Output for RF Phase Lag	
Control direction pin 23	Pin 20
1	Current Source
0	Current Sink
Table 2	

The $F_{p d}$ and $F_{\text {ref }}$ signals to the phase detector are available on pin 24 and 25 and may be used to monitor the frequency input to the phase detector or used in conjunction with an external phase detector. The outputs are disabled by taking pin 22 low. When the $F_{p d}$ and $F_{\text {ref }}$ outputs are to be used at high frequencies, an external pull down resistor of minimum value 330Ω may be connected to ground to reduce the fall time of the output pulse.

The charge pump connections to the loop amplifier consist of the charge pump output and the charge pump reference. The matching of the charge pump up and down currents will only be maintained if the charge pump output is held at a voltage equal to the charge pump reference using an operational amplifier to produce a virtual earth condition at pin 20.

The lock detect circuit can drive an LED to give visual indication of phase lock or provide an indication to the control system if a pull up resistor is used in place of the LED. A small capacitor connected from the c-lock detector pin to ground may be used to delay lock detect indication and remove glitches produced by momentary phase coincidence during lock up.

Fig. 6 Programming pin allocation

Fig. 5 Typical application diagram

DESCRIPTION

Prescaler and AM counter

The programmable divider chain is of $A M$ counter construction and therefore contains a dual modulus front end prescaler, an A counter which controls the dual modulus ratio and an M counter which performs the bulk multi-modulus division. A programmable divider of this construction has a division ratio of $\mathrm{MN}+\mathrm{A}$ and a minimum integer steppable division ratio of $\mathrm{N}(\mathrm{N}-1)$, where N is the prescaler ratio.

Data entry and storage

Data is loaded from the 16 bit bus by applying a positive pulse to the strobe input. The input bus can be driven from TTL or CMOS logic levels. When the strobe input is low, the bus inputs are isolated and the data can be changed without affecting the programmed state. When the strobe input is taken high, the A and M and counters are reset and the input data is applied to the internal storage register. When the strobe input is again taken low, the data on the input bus is stored in the internal register and the A and M counters released. The strobe input is level triggered so that if the data is changed whilst the input is high, the final value before the strobe goes low will be stored.

In order to prevent disturbances on the VCO control voltage
when frequency changes are made, the strobe input disables the charge pump outputs when high. During this period the VCO control voltage will be maintained by the loop filter components around the loop amplifier, but due to the combined effects of the amplifier input current and charge pump leakage a gradual change will occur. In order to reduce the change, the duration of the strobe pulse should be minimised. Selection of a loop amplifer with low input current will reduce the VCO voltage droop during the strobe pulse and result in minimum reference sidebands from the synthesiser.

Reference input

The reference source can be either driven from an external sine or square wave source of up to 100 MHz or a crystal can be connected as shown in Fig. 5.

Phase Comparator and Charge pump

The SP8854D has a digital phase/frequency comparator driving a charge pump with programmable current output. The charge pump current level at the minimum gain setting is approximately equal to the current fed into the $\mathrm{R}_{\text {set }}$ input pin 19 and can be increased by programming the bus according to Table 1 by up to 4 times.

Fig. 5 SP8854D

Fig. 4 R.F. input impedance

SP8854D

ELECTRICAL CHARACTERISTICS
Guaranteed over the full temperature and supply voltage range (unless otherwise stated)
Temperature $\mathrm{T}_{\text {amb }}$ for KG parts $-55^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$
Temperature $\mathrm{T}_{\text {amb }}$ for IG parts $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$
Supply Voltage $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ and 5.25 V

Characteristics	Pin	Value			Units	Conditions

Notes: 1. Lower reference frequencies may be used if slew rates are maintained.
2. Pin 19 current x multiplication factor must be less than 5 mA if charge pump current accuracy is to be maintained.
3. Guaranteed but not tested.

PIN DESCRIPTION

PIN	DESCRIPTION
1,2,3,4,5,6,7,8,9,10,11,42,43,44	These pins are the data inputs used to set the RF divider ratio (M.N+A). Open circuit=1 (high) on these pins. Data is transparent from pins to RF buffer when Pin 39 (strobe) is HI and frozen in RF buffer when Pin 39 is LO.
13, 14 (RF INPUT)	Balanced inputs to the RF pre-amplifier. For single ended operation the signal is AC coupled into pin 13 with pin 14 AC decoupled to ground (or vice-versa.) Pins 13 and 14 are internally DC biased.
17 (LOCK DETECT INPUT)	A current sink into this pin is enabled when the lock detect circuit indicates lock. Used to give an external indication of phase lock.
18 (C-LOCK DETECT)	A capacitor connected to this point determines the lock detect integrator time constant and can be used to vary the sensitivity of the phase lock indicator.
19 (Rset)	An external resistor from Pin 19 to $\mathrm{V}_{\text {CC }}$ sets the charge pump output current.
20 (CP OUTPUT)	The phase detector output is a single ended charge pump sourcing or sinking current to the inverting input of an external loop filter.
21 (CP REF)	Connected to the non-inverting input of the loop filter to set the optimum DC bias.
22 ($\mathrm{F}_{\mathrm{ref}} / \mathrm{F}_{\mathrm{pd}}$ ENABLE)	Part of the input bus. When this pin is logic HI the $\mathrm{F}_{\text {ref }}$ and F_{pd} outputs are enabled. Open circuit=HI.
23 (CONTROL DIRECTION)	This pin controls charge pump output direction. For Pin 23 HI the output sinks current when $F_{p d}>F_{\text {ref }}$ or when the RF phase leads Ref phase. for Pin 23 LO the relationship is reversed. (see table 2).
$\begin{aligned} \hline 24 & =\mathrm{F}_{\text {pd }} \text { if Pin } 23 \text { is } \mathrm{HI} \\ & =\mathrm{F}_{\text {ref }} \text { if } \mathrm{Pin} 23 \text { is } \mathrm{LO} \end{aligned}$	RF divider output pulses. $\mathrm{F}_{\mathrm{pd}}=$ RF input frequency/(M.N+A). Pulse width=8 RF input cycles (1 cycle of the divide by 8 prescaler output).
$\begin{array}{ll} \hline 25 & =\mathrm{F}_{\text {ref }} \text { if } \mathrm{Pin} 23 \text { is } \mathrm{HI} \\ & =\mathrm{F}_{\mathrm{pd}} \text { if pin } 23 \text { is } \mathrm{LO} \end{array}$	Reference divider output pulses. $\mathrm{F}_{\text {ref }}=$ Reference input frequency/R. Pulse width =high period of Ref input.
27 (Reference Oscillator Capacitor)	Leave open circuit if an external reference is used. See Fig. 5 for typical connection for use as an onboard crystal oscillator.
28 (Ref IN/XTAL)	This pin is the input buffer amplifier for an external reference signal. This amplifier provides the active element if an onboard crystal oscillator is used.
29,30,31,32,33,34,35,36,37,38	These pins set the Reference divider ratio R. Open circuit =HI.
39 (Strobe)	When Pin 39 is HI the A, M, and R counters are held in the reset state and the charge pump output is disabled. When Pin 39 is low the data on the RF data and PD Gain data inputs is fixed in the buffers, the buffers are loaded into the RF counters and the PD Gain control, all the counters are active, and the charge pump is enabled. Open circuit $=\mathrm{HI}$.
40, 41 (PD Gain)	These pins set the charge pump current multiplication factor (see table 1). The data is transparent into the buffers when Pin 39 is HI and frozen when Pin 39 is LO. Open circuit $=\mathrm{HI}$.

SP8854D

1.7GHz PARALLEL LOAD PROFESSIONAL SYNTHESISER

The SP8854D is one of a family of parallel load synthesisers containing all the elements apart from the loop amplifier to fabricate a PLL synthesis loop. Other parts in the series are the SP8852D which is fully programmable requiring two 16 word bit words to set the RF and reference counters, and the SP8855D which is programmed by hard wired links or switches.

The SP8854D is programmed using a 16 bit parallel data bus. This Data is stored in an internal buffer. The 10 bit programmable reference divider is programmed by connecting the 10 programming pins either to ground or +5 V . The device can therefore be programmed with a single transfer from the control microprocessor. Hard wired inputs can also control the $F_{p d}$ and $F_{\text {ref }}$ outputs and the control sense of the loop.

FEATURES

1.7GHz Operating Frequency
Single 5 V Supply Operation
Low Power Consumption $<1.3 \mathrm{~W}$
High Comparison Frequency 20 MHz
High Gain Phase Detector $1 \mathrm{~mA} /$ rad
Zero "Dead Band" Phase Detector
Wide Range of RF and Reference Divide Ratios
Programming by Single Word Data Transfer

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage	-0.3 V to 6 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Prescaler \& reference Input Voltage	$2.5 \mathrm{~V} \mathrm{p}-\mathrm{p}$
Data inputs	$\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
	$\mathrm{~V}_{\mathrm{EE}}-0.3 \mathrm{~V}$
Junction temperature	$+175^{\circ} \mathrm{C}$

ORDERING INFORMATION

SP8854D KG HCAR (non standard temperature range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ standard product screening)

SP8854D IG HCAR (Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ standard product screening)

```
Thermal Data
    0JC}=\mp@subsup{5}{}{\circ}\textrm{C}/\textrm{W
    0jC=53*
ESD: 1000V, Human body model
```


Fig. 1 Pin connections - top view

For more information about all Zarlink products
visit our Web Site at
www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in an $I^{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.

[^0]: This publication is issued to provide information only, which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design, or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and

