Features

- 50Ω Input Clock and Data (Differential ECL) through 2.54 mm Pitch Connectors
- Demultiplexed Outputs (Single-ended ECL) 50Ω Adapted on up to 8×2.54 mm Pitch Connectors
- DMUX Functions Adjusted by Jumpers and Potentiometers
- Separated Ground and Supplies
- Suitable for High-frequency Evaluation (up to 2.2 GHz) over the Military Temperature Range
- Board Dimensions: $\mathbf{2 0 0 ~ m m ~ x ~} 190$ mm
- Fully Assembled and Tested

For optimal understanding and use of this evaluation board, please refer to the TS81102G0 DMUX specification also.

Description

The TSEV81102G0TPZR3 DMUX Evaluation Board (EB) is designed to simplify the characterization and the evaluation of the TS81102G0 device (2 Gsps DMUX). The DMUX EB enables the test of all the functions of the DMUX: Synchronous and Asynchronous reset functions, selection of the DMUX ratio (1:4 or 1:8), selection of the number of bits (8 or 10), output data common mode and swing adjustment, die junction temperature measurements over military temperature range, etc.
The DMUX EB has been designed to enable an easy connection with Atmel ADC Evaluation Boards (i.e.: TSEV8388BG, TSEV83102G0 or TSEV83084G0) for an extended functionality evaluation (ADC+DMUX multi-channels applications).
The DMUX EB comes fully assembled and tested, with a TS81102G0 device implemented on-board and a heatsink assembled on the device.

TSEV81102G0TPZR3

Block Diagram

Figure 1. TSEV81102G0TPZR3 Block Diagram

Board Structure

Board Layers
 Thickness Profile

The TSEV81102G0TPZR3 is a seven-layered PCB constituted by four copper layers and three dielectric layers. The board is 1.75 mm thick. The board has the following structure, from top to bottom.

Table 1. Board Layers Thickness Profile

Layer	Characteristics
Layer 1 Copper layer	Copper thickness $=35 \mu \mathrm{~m}$ Input signals: 50Ω microstrip lines Output data signals: 60Ω microstrip lines, 50Ω terminated
Layer 2 R4003 dielectric layer (Hydrocarbon/Wovenglass)	Layer thickness $=200 \mu \mathrm{~m}$ Dielectric constant $=3.4$ at 10 GHz -0.044 dB / inch insertion loss at 2.5 GHz -0.318 dB / inch insertion loss at 18 GHz
Layer 3 Copper layer	Copper thickness $=35 \mu \mathrm{~m}$ Upper reference plane, divided in two parts: GND and $\mathrm{V}_{\text {PLusDout }}$
Layer 4 BT/Epoxy dielectric layer	Layer thickness $=0.4 \mathrm{~mm}$
Layer 5 Copper layer	Copper thickness $=35 \mu \mathrm{~m}$ Power plane: $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{TT}}$, GND
Layer 6 BT/Epoxy dielectric layer	Layer thickness $=1.0 \mathrm{~mm}$
Layer 7 Copper layer	Copper thickness $=35 \mu \mathrm{~m}$ Lower reference plane (replica of layer 3)

The four metal layers respectively correspond to: the signals' layer (layer 1) (Figure 7), the two reference layers (layer 3 and layer 7) (Figure 8) and the supply layer (layer 5) (Figure 9 on page 16).
The upper and the lower reference planes (layer 3 and 7) are partitioned into GND (reference for input signals) and $\mathrm{V}_{\text {PLUSDOUT }}$ (reference for digital output signals), according to the same partition of the DMUX package.

Layer 5 is dedicated to power supplies (and ground).

Metal Layers

Dielectric Layers

I/O Accesses

Power Supplies and Ground Access

The three dielectric layers are respectively constituted by a low insertion loss dielectric (RO4003) layer (layer 2) and by a BT/Epoxy dielectric layer (layer 4 and 6).

Considering the severe mechanical constraints due to the wide temperature range and the high frequency domain in which the board is to operate, two different dielectric materials are used:

- The low insertion loss RO4003 Hydrocarbon/Wovenglass dielectric (-0.044 dB /inch loss at 2.5 GHz) which has an enhanced dielectric consistency in the high frequency domain is dedicated to the routing of 50Ω and 60Ω traces. The RO4003 dielectric constant is typically 3.4 at 10 GHz .
- The BT/Epoxy layer is chosen because of its enhanced mechanical characteristics for elevated temperature operations. The typical dielectric constant is 4.5 at 1 MHz . The BT/Epoxy dielectric has enhanced characteristics compared to FR4 Epoxy dielectric, namely:
- higher operating temperature value: $170^{\circ} \mathrm{C}\left(125^{\circ} \mathrm{C}\right.$ for FR 4$)$,
- better withstanding of thermal shocks (from $-65^{\circ} \mathrm{C}$ up to $170^{\circ} \mathrm{C}$).

The characteristics of these two dielectrics make the board particularly suitable for performing measurements in the high frequency domain and over the military temperature range.

The power supplies and ground access are provided by four 4 mm section banana jacks (red jacks) respectively for $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{TT}}, \mathrm{V}_{\text {PLUsDout }}$.
The Ground access is provided by two 4 mm banana jacks (black jacks).
Note: Two distinct Ground pads GND have been implemented on the board because of layout considerations. For proper use, connect them together to the same Ground.

Access to the differential data and clock inputs (ClkIn, ClkInb, I[0..9], I[0..9]b) are provided by a female 2.54 mm pitch connector, via 50Ω microstrip lines.
The connector is made of 2 rows of pitches. The lower row is connected to GND. The upper row is used for the data and the clock connections. Each differential signal is separated by a pitch connected to GND, as shown:

Figure 2. Input Data Pitch Connector

Note: 100Ω differential adaptation is performed on-chip.

Synchronous Reset Access

Asynchronous Reset Access

ADC Synchronization Input Signal Access

Outputs Access

Digital Outputs

ADC Synchronization Output Signal Access

DMUX Functions Settings

Access to the signals SyncReset and SyncResetb is provided by two SMA connectors, via 50Ω microstrip lines.
Note: 100Ω differential adaptation is performed on-chip.

Access to the signal AsyncReset is provided by a SUBVIS connector.

Access to the differential signal ADCDELADJIN is provided by two SMA connectors, via 50Ω microstrip lines.
Note: 100Ω differential adaptation is performed on-chip.

Access to the single-ended output data and to the differential output clock ($\mathrm{A}[0 . .9]$ to $\mathrm{H}[0 . .9]$, RefA to RefH, DR, DRb) is provided by male 2.54 mm pitch connectors, via 60Ω microstrip lines. The microstrip lines are 50Ω terminated.

The connectors are made of 2 rows of pitches. The upper rows are used for the signals' connections. The lower rows are connected to $\mathrm{V}_{\text {PLusDout }}$. The output ports are separated from one another by a column (2 pitches) connected to $\mathrm{V}_{\text {pLusdout }}$, as shown:

Figure 3. Output Data Pitch Connector

Note: The characteristic impedance of the data output microstrip lines has been chosen to be 60Ω, in order to terminate the lines either by 50Ω (ECL/PECL output format) or 75Ω resistors (TTL output format, available on request only).

Accesses to the differential signal ADCDELADJOUT are provided by two SMA connectors, via 50Ω microstrip lines.

Four 2 mm -section banana jacks are provided to perform die temperature measurements (see "DMUX Settings Adjustment" on page 14).

Three potentiometers are provided for the adjustment of SWIADJ, ADCDELADJCTRL and DMUXDELADJCTRL respectively.
Four jumpers are provided for the setting of the static control signals NBBIT, RATIOSEL, CLKINTYPE and BIST (jumper on board = logic 0).

Power Supplies Decoupling

Because the DMUX processes high-frequency signals, special attention was given to the board layout in order to achieve full speed operation efficiency. Thus, special effort was made in order to match the length of transmission lines for both input and output signals. In addition, cross-talk effects were reduced by increasing, wherever possible, the space between the lines.

Each power supply is bypassed by a $1 \mu \mathrm{~F}$ Tantalum capacitor in parallel with a 100 nF chip capacitor.
Each power supply access of the DMUX is also bypassed as close as possible to the device, by a 10 nF and a 100 pF surface mount chip capacitor in parallel.
Note: Those capacitors are superposed.

Reference Planes

I/O Transmission Lines

Each reference plane (layer 3 and layer 7) is physically divided in two parts: one GND trace and one $\mathrm{V}_{\text {PLUSDOUT }}$ trace, which is the voltage reference of the output buffers of the DMUX. $\mathrm{V}_{\text {PLusDout }}$ can be set to GND (ECL format) or to 3.3V (PECL/TTL format) according to the desired output format.

The following table summarizes the main properties of the microstrip lines of all the input and output signals. Note that the transmission delay through a transmission line is approximately $6.1 \mathrm{ps} / \mathrm{mm}$.

Table 2. I/O Transmission Lines

Signal	Type	Typical Length	Length Matching	Characteristic Impedance	Adaptation	Comments
Clkln ClkInb	Differential	$\begin{gathered} 69 \mathrm{~mm} \\ 69.7 \mathrm{~mm} \end{gathered}$	-	$\begin{aligned} & 50 \Omega \\ & 50 \Omega \end{aligned}$	On-chip 100Ω diff.	
I[0..9], I[0..9]b	Differential	68.8 mm	± 1	50Ω	On-chip 100Ω diff.	Min length (I3): 67.8 mm Max length (I9): 69.6 mm
A[0..9], ..., H[0..9]	Single	111.4 mm	± 8	60Ω	50Ω	Min length (F3 \& E5): 104.2 mm Max length (C9): 119.3 mm
DR DRb	Differential	$\begin{aligned} & 111.9 \mathrm{~mm} \\ & 114.5 \mathrm{~mm} \end{aligned}$	-	$\begin{aligned} & 60 \Omega \\ & 60 \Omega \end{aligned}$	$\begin{aligned} & 50 \Omega \\ & 50 \Omega \end{aligned}$	
SyncReset, SyncResetb	Differential	96 mm	± 1	50Ω	On-chip 100Ω diff.	
ADCDELADJIN, ADCDELADJINb	Differential	104 mm	± 1	50Ω	On-chip 100Ω diff.	
ADCDELADJOUT, ADCDELADJOUTb	Differential	111 mm	± 1	50Ω	None	

Note: Two ground accesses, OSC1 and OSC2, have been provided near the DMUX for measurements purposes.

Pin and Package Description

Information in this section is extracted from the TS81102G0 DMUX datasheet. For exhaustive information about the device's package, please refer to its datasheet.

Pin Description

Table 3. TSEV81102G0TPZR3 Pin Description

Type	Name	Levels	Comments
Digital Inputs	I[0...9]	Differential ECL	Data input.
	Clkln	Differential ECL	Clock input.
Outputs	$\mathrm{A}[0 \ldots 9] \rightarrow \mathrm{H}[0 \ldots 9]$	Adjustable Logic Single	Data output for channel A to H . Common mode is adjusted with $\mathrm{V}_{\text {PLusdout }}$. Swing is adjusted with SwiAdj.
	DR	Adjustable Logic Single	Data output for channel A to H . Common mode is adjusted with $\mathrm{V}_{\text {PLusdout }}$. Swing is adjusted with SwiAdj.
	RefA \rightarrow RefH	Adjustable Single	Reference voltage for channels A to H . Common mode is adjustable with $\mathrm{V}_{\text {PLUSDOUT }}$.
Control Signals	ClkInType	TTL	Mode DR or DR/2 (logic 1: Data Ready).
	RatioSel	TTL	DMUX ratio (logic 1: 1:4).
	Bist	TTL	BIST selection (logic 0: BIST active).
	SwiAdj	$0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	Swing fine adjustment of output buffers.
	Diode	Analog	Diode for chip temperature measurement.
	NbBit	TTL	Number of bits: 8 or 10 (logic 1: 10 bits).
Synchronization	AsyncReset	TTL	Asynchronous reset (logic 1: reset on).
	SyncReset	Differential ECL	Synchronous reset (on rising edge).
	DMUXDelAdjCtrl	Differential analog input of $\pm 0.5 \mathrm{~V}$	Control of the delay line of DataReady input: Differential input $=-0.5 \mathrm{~V}$, delay $=250 \mathrm{ps}$ Differential input $=0 \mathrm{~V}$, delay $=500 \mathrm{ps}$ Differential input $=0.5 \mathrm{~V}$, delay $=750 \mathrm{ps}$
	ADCDelAdjCtrl	Differential analog input of $\pm 0.5 \mathrm{~V}$	Control of the delay line for ADC: Differential input $=-0.5 \mathrm{~V}$, delay $=250 \mathrm{ps}$ Differential input $=0 \mathrm{~V}$, delay $=500 \mathrm{ps}$ Differential input $=0.5 \mathrm{~V}$, delay $=750 \mathrm{ps}$
	ADCDelAdjln	Differential ECL	Stand-alone delay adjust input for ADC. Differential termination of 100Ω inside the buffer.
	ADCDelAdjOut	50Ω differential output	Stand-alone delay adjust output for ADC.
Power Supplies	GND	Ground 0V	Common ground.
	$\mathrm{V}_{\text {EE }}$	Power -5V	Digital negative power supply.
	$V_{\text {PLUSDOUT }}$	Adjustable power from 0 V to +3.3 V	Common mode adjustment for output buffers.
	V_{CC}	Power +5 V	Digital positive power supply.

TBGA 240 Package - Pinout

Row	Col	Name									
A	1	NC	D	4	VEE	K	16	VEE	T	17	VEE
A	2	E3	D	5	VEE	K	17	GND	T	18	ADCDELADJIN
A	3	E5	D	6	VPLUSDOUT	K	18	15B	T	19	ADCDELADJINB
A	4	E7	D	7	VPLUSDOUT	K	19	15	U	1	F8
A	5	E9	D	8	VEE	L	1	H9	U	2	F9
A	6	C0	D	9	VPLUSDOUT	L	2	RATIOSEL	U	3	VEE
A	7	C2	D	10	VEE	L	3	VPLUSDOUT	U	4	VPLUSDOUT
A	8	C4	D	11	VPLUSDOUT	L	4	VPLUSDOUT	U	5	VPLUSDOUT
A	9	C6	D	12	VEE	L	16	VEE	U	6	VPLUSDOUT
A	10	C8	D	13	VPLUSDOUT	L	17	VEE	U	7	VPLUSDOUT
A	11	REFA	D	14	GND	L	18	16B	U	8	VEE
A	12	A1	D	15	VCC	L	19	16	U	9	VPLUSDOUT
A	13	A3	D	16	VCC	M	1	H7	U	10	VEE
A	14	A5	D	17	GND	M	2	H8	U	11	VPLUSDOUT
A	15	A7	D	18	10B	M	3	GND	U	12	VEE
A	16	A9	D	19	10	M	4	GND	U	13	VPLUSDOUT
A	17	DEMUXDELADJCTRL	E	1	G6	M	16	GND	U	14	VPLUSDOUT
A	18	RSTSYNCB	E	2	G7	M	17	GND	U	15	VPLUSDOUT
A	19	NC	E	3	VPLUSDOUT	M	18	17B	U	16	GND
B	1	E1	E	4	VEE	M	19	17	U	17	GND
B	2	E2	E	16	VEE	N	1	H5	U	18	GND
B	3	E4	E	17	VEE	N	2	H6	U	19	GND
B	4	E6	E	18	11B	N	3	VPLUSDOUT	V	1	F7
B	5	E8	E	19	11	N	4	VPLUSDOUT	V	2	F6
B	6	REFC	F	1	G4	N	16	VEE	V	3	F4
B	7	C1	F	2	G5	N	17	VEE	V	4	F2
B	8	C3	F	3	GND	N	18	I8B	V	5	F0
B	9	C5	F	4	GND	N	19	18	V	6	D9
B	10	C7	F	16	GND	P	1	H3	V	7	D7
B	11	C9	F	17	GND	P	2	H4	V	8	D5
B	12	A0	F	18	I2B	P	3	GND	V	9	D3
B	13	A2	F	19	12	P	4	GND	V	10	D1
B	14	A4	G	1	G2	P	16	GND	V	11	REFD
B	15	A6	G	2	G3	P	17	GND	V	12	B8
B	16	A8	G	3	VEE	P	18	I9B	V	13	B6
B	17	ASYNCRESET	G	4	VEE	P	19	19	V	14	B4
B	18	DEMUXDELADJCTRLB	G	16	VEE	R	1	H1	V	15	B2
B	19	RSTSYNC	G	17	VEE	R	2	H2	V	16	B0
C	1	REFE	G	18	I3B	R	3	VPLUSDOUT	V	17	BIST
C	2	E0	G	19	13	R	4	VPLUSDOUT	V	18	CLKINTYPE
C	3	VEE	H	1	G0	R	16	VEE	V	19	ADCDELADJCTRL
C	4	VPLUSDOUT	H	2	G1	R	17	GND	W	1	NC
C	5	VPLUSDOUT	H	3	GND	R	18	ADCDELADJOUT	W	2	F5
C	6	VPLUSDOUT	H	4	GND	R	19	ADCDELADJOUTB	W	3	F3
C	7	VPLUSDOUT	H	16	GND	T	1	REFH	W	4	F1
C	8	VEE	H	17	GND	T	2	H0	W	5	REFF
C	9	VPLUSDOUT	H	18	CLKINB	T	3	VEE	W	6	D8
C	10	VEE	H	19	CLKIN	T	4	VEE	W	7	D6
C	11	VPLUSDOUT	J	1	DR	T	5	VEE	W	8	D4
C	12	VEE	J	2	REFG	T	6	VPLUSDOUT	W	9	D2
C	13	VPLUSDOUT	J	3	VPLUSDOUT	T	7	VPLUSDOUT	W	10	D0
C	14	VPLUSDOUT	J	4	VCC	T	8	VEE	W	11	B9
C	15	VPLUSDOUT	J	16	VEE	T	9	VPLUSDOUT	W	12	B7
C	16	GND	J	17	VEE	T	10	VEE	W	13	B5
C	17	GND	J	18	14B	T	11	VPLUSDOUT	W	14	B3
C	18	GND	J	19	14	T	12	VEE	W	15	B1
C	19	DIODE	K	1	SWIADJ	T	13	VPLUSDOUT	W	16	REFB
D	1	G8	K	2	DRB	T	14	VPLUSDOUT	W	17	NBBIT
D	2	G9	K	3	VEE	T	15	GND	W	18	ADCDELADJCTRLB
D	3	VEE	K	4	VEE	T	16	VEE	W	19	NC

Figure 4. TBGA 240 Package: Bottom View

Thermal and
Moisture
Characteristics

Thermal Resistance from Junction to Case: RTHJC

Thermal Resistance from Junction to Ambient: RTHJA

Temperature Diode Characteristic

The Rth from junction to case for the TBGA package is estimated at $0.7^{\circ} \mathrm{C} / \mathrm{W}$ which can be decomposed in:

- Silicon: $0.1^{\circ} \mathrm{C} / \mathrm{W}$
- Die attach epoxy: $0.5^{\circ} \mathrm{C} / \mathrm{W}$ (thickness \# $50 \mu \mathrm{~m}$)
- Copper block (back side of the package): $0.1^{\circ} \mathrm{C} / \mathrm{W}$.

A pin-fin type heatsink, size $40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 8 \mathrm{~mm}$ can be used to reduce thermal resistance. This heatsink should not be glued on top of the package as Atmel does not guarantee the attachment on the board in such a configuration. The heatsink could be clipped or screwed on the board.
With such a heatsink the Rthj-a is about $6^{\circ} \mathrm{C} / \mathrm{W}$. (If Atmel takes $10^{\circ} \mathrm{C} / \mathrm{W}$ for Rth through the heatsink in parallel with $15^{\circ} \mathrm{C} / \mathrm{W}$ for Rth through the balls).
Without a heatsink, the Rth junction to air for a package reported on-board can be estimated from 13 to $20^{\circ} \mathrm{C} / \mathrm{W}$ (depending on the board used).

The worst value $20^{\circ} \mathrm{C} / \mathrm{W}$ is given for 1 -layer board $\left(13^{\circ} \mathrm{C}\right.$ for 4 -layer board).

The theoretical characteristic of the diode, in function of the temperature when $\mathrm{I}=3 \mathrm{~mA}$ is depicted below.

Figure 5. Temperature Diode Characteristic

Moisture Characteristic

This device is sensitive to the moisture (MSL3 according JEDEC standard).
Shelf life in sealed bag: 12 months at $<40^{\circ} \mathrm{C}$ and $<90 \%$ relative humidity (RH).
After this bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temperature $220^{\circ} \mathrm{C}$) must be:

- mounted within 168 hours at factory conditions of $\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
- stored at $\leq 20 \% \mathrm{RH}$.

Devices require baking, before mounting, if Humidity Indicator is $>20 \%$ when read at $23^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}$.

If baking is required, devices may be baked for:

- 192 hours at $40^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} /-0^{\circ} \mathrm{C}$ and $<5 \% \mathrm{RH}$ for low temperature device containers, or
- 24 hours at $125^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for high-temperature device containers.

DC

Characteristics and Current Consumption

In this section, the typical values of the board's I/O signals and power sources are listed. These values refer to a nominal use of the evaluation board. These values are purely indicative and may depend on temperature, frequency of use, etc.
The following tables give an estimation of the power consumption of the board, including the current consumption of DMUX and the current consumption induced by the components added on the board. The values given below are relevant for ECL 50Ω, PECL 50Ω and TTL 75Ω output formats only, assuming that the DMUX is working in ratio $1: 8,10$ bits. For further information about output formats, please also refer to "DMUX Settings Adjustment" on page 14.

Table 4. Supply Voltage

Parameter	ECL 50 $\boldsymbol{\Omega}$	PECL 50Ω	TTL 75 Ω	Unit
V_{CC}	5	5	5	V
$\mathrm{~V}_{\text {PLUSDOUT }}$	0	3.3	3.3	V
$\mathrm{~V}_{\mathrm{TT}}$	-2	1.3	0.25	V
$\mathrm{~V}_{\mathrm{EE}}$	-5	-5	-5	V

Table 5. Output Voltage (at $\mathrm{T}=125^{\circ} \mathrm{C}$)

Parameter	ECL 50Ω	PECL 50Ω	TTL 75Ω	Unit
V_{OL}	-1.8	1.5	0.5	V
$\mathrm{~V}_{\mathrm{PH}}$	-0.8	2.5	2.5	V
$\mathrm{~V}_{\mathrm{REF}}$	-1.3	2.0	1.5	V

Table 6. Maximum Current Consumption

Parameter	ECL 50 $\boldsymbol{2}$ (SWIADJ = 0V)	PECL 50 $\boldsymbol{2}$ (SWIADJ = 0V)	TTL 75 $\boldsymbol{2}$ (SWIADJ = 0.5V)	Unit
$\mathrm{I}_{\text {CC }}$	40	40	40	mA
$\mathrm{I}_{\text {PLUSDOUT }}$	2200	2200	3010	mA
I_{TT}	1940	1940	2630	mA
$\mathrm{I}_{\text {EE }}$	800	800	880	mA

Absolute
Maximum Ratings

The following table lists the absolute maximum values of the board. These maximum ratings are limiting values to be considered individually, while other parameters are within specified operating conditions. Long exposure to maximum ratings may affect the DMUX reliability.

Table 7. Absolute Maximum Ratings

Parameter	Symbol	Comments	Value	Unit
Positive supply voltage	$\mathrm{V}_{\text {cc }}$		GND to 6	V
Positive output buffer supply voltage	$V_{\text {PLUSD }}$		GND to 4	V
Negative supply voltage	$\mathrm{V}_{\text {EE }}$		GND to -6	V
Analog input voltages	ADCDelAdjCtrl, ADCDelAdjCtrlb or DMUXDelAdjCtrl, DMUXDelAdjCtrlb or SwiAdj	Voltage range for each pad Differential voltage range	0 to 1 $-1 \text { to } 1$	V
ECL 50Ω input voltage	ClkIn or ClkInb or I[0...9] or I[0...9]b or SyncReset or SyncResetb or ADCDelAdjln or ADCDeIAdjlnb	Voltage range for each pad	-2.2 to 0.6	v
Maximum difference between ECL 50Ω input voltages	ClkIn - Clklnb or I[0...9] - I[0...9]b or SyncReset Syncresetb or ADCDelAdjln ADCDeIAdjlnb	Minimum differential swing Maximum differential swing	0.1 2	v
Data output current	A[0...9] to $\mathrm{H}[0 \ldots . .9]$ or RefA to RefH or DR or DRb	Maximum current	36	mA
TTL input voltages	CIkIn Type RatioSel NbBit AsyncReset BIST		GND to V_{Cc}	v
Maximum input voltage on diode for temperature measurement	DIODE		700	mV
Maximum input current on diode	DIODE		8	mA
Maximum junction temperature	T_{j}		135	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		TBD	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are limiting values, to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability. The use of a thermal heat sink is mandatory.

Main Function Description

Quick Start

Other function descriptions are available in the TS81102G0 DMUX datasheet.

The evaluation board is delivered fully assembled and tested. A heatsink, which is strongly recommended, is also delivered assembled.
Do not turn on the power supplies until all power connections to the evaluation board are established.
The procedure described below aims at helping when the board is used for the first time. It describes the steps to accomplish a BIST test (Built-In Self Test, see "Miscellaneous" on page
15) in order to verify whether the board is functional or not. At the end of the procedure, the DMUX will be in the following configuration: DR mode, 10 bits mode, 1:8 ratio, BIST activated, SWIADJ $=0 \mathrm{~V}$, ECL output format.

1. Connect the board's ground pads together.
2. Connect the pad marked $\mathrm{V}_{\text {PLUSDOUT }}$ to the GND pad.
3. Connect a -5 V power supply source to the pad marked V_{EE}. Then, connect the supply's ground to the GND pad.
4. Connect $\mathrm{a}+5 \mathrm{~V}$ power supply source to the pad marked V_{CC}. Then, connect the supply's ground to the GND pad.
5. Connect a -2 V power supply source to the pad marked V_{TT}. Then, connect the supply's ground to the GND pad.
6. Connect your input clock to the board (pitches CLKIN and CLKINB). This clock may either be differential or single-ended (see "BIST" on page 14).
7. Remove the jumpers marked NBBIT and CLKINTYPE. The remaining jumpers are RATIOSEL and BIST.
8. Connect a logic analyzer, such as an HP16500 at the output of the board.
9. Turn on the supply and signal sources according to the following sequence:

- $\quad V_{E E}$ first
$-V_{C C}$
- $V_{\text {Plusdout }}$
- $\quad V_{T T}$
- Input clock

10. Set the potentiometer marked SWIADJ such that the voltage on the SWIADJ pin of the DMUX is 0 V .
11. Connect pad ASYNCRESET to ground (the ASYNCHRESET is active at TTL high level and must be tied to ground when the device is running).

At the output, the demultiplexed BIST sequence shall be observed.
Note: It is not necessary to verify the 512 codes of the BIST to make sure that the DMUX is functional. Verifying the first 16 codes is indeed sufficient.

DMUX Settings Adjustment

Four jumpers are provided in order to activate the functions RATIOSEL, BIST, CLKINTYPE and NBBIT. When the jumper is on-board, it corresponds to logic 0 . The following table recapitulates which functions are active when the jumpers are on-board or not.

Table 8. DUMX Settings Adjustment

Name	Jumper	Function
CLKINTYPE	ON	DR/2 mode
	BIST	OUT
DR mode		
NBBIT	ON	BIST active
	OUT	BIST inactive
RATIOSEL	ON	8 bits mode
	OUT	10 bits mode
	ON	$1: 8$ DMUX Ration

A pseudo-random 10-bit generator is implemented in the DMUX. It generates a 10 bits signal at the output of the DMUX, with a period of 512 input clock's periods. The sequence start on port A. The output obtained on port A to H depends on the conversion ratio. The driving clock of BIST is CIkIn. CLKINTYPE must be set to logic 1 (jumper out) to have different 10 -bit code on each output. The complete BIST sequence is available on request.

Two delay adjusts of $\pm 250 \mathrm{ps}$, controlled by potentiometers, are available in order to synchronize the input clock and data of the DMUX on the one hand, and to delay the signal ADCDELADJIN on the other hand. The input DelAdjCtrl has been set to OV. The input DelAdjCtrlb varies from -0.55 V to 0.55 V , according to the potentiometer position. The generated delay is proportional to the differential voltage V(DelAdjCtrl)-V(DelAdjCtrlb) as shown in the next graph.

Figure 6. Delay Adjustment Characteristic

Note: The variation of the delay in function of the temperature is insignificant.

Miscellaneous

- Always wear an anti-static strap when manipulating the board, the DMUX being very sensitive to ESDs.
- Make sure that the current as delivered by your power supplies is sufficient to supply the board.
- Always switch on the DMUX board supplies in the following order: $\mathrm{V}_{\text {PLusDout }}$ first, V_{EE}, $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{TT}}$.
- Always make sure that the output current through the termination resistors does not exceed 36 mA .
- After the supplies are switched on, send an asynchronous reset pulse into the DMUX (i.e. leave the pad ASYNCRESET open and then connect it to the ground).

Evaluation
Board
Schematics

Figure 7. Component Side

Figure 8. Reference Planes

Figure 9. Power Supplies Plane

TSEV81102G0TPZR3

Electric Schematic

Figure 10. TSEV81102GOTPZR3 Electric Schematic

Component List

Table 9. Component List

Type	Reference	Quantity	Label
SMA CONNECTOR	VITELEC 142-0701-851	2	J12, J13
	RADIALL R125 620001	4	J10, J11, J19, J20
BANANA JACK 4 mm	DELTRON	6	J21 to J26
	E. F. JOHNSON	4	J15 to J18
SUBVIS CONNECTOR	RADIALL R112 665	1	J14
PITCH CONNECTOR 2.54 mm (two rows)	-	5	J1 to J5
CAPACITOR	CHIP TANTALE 1 uF, 20V	4	C1 to C4
	CHIP Ceramic 100 nF	4	C5 to C8
	CHIP Ceramic 10 nF	39	C9, C11, C13, C15, C17, C19, C21, C23, C25, C27, C29, C31, C33, C35, C37, C39, C41, C43, C45, C47, C49, C51, C53, C55, C57, C59, C61, C63, C65, C67, C69, C71, C73, C75, C77, C79, C81, C83, C85, C87, C88
	Ceramic 10 nF	39	C10, C12, C14, C16, C18, C20, C22, C24, C26, C28, C30, C32, C34, C36, C38, C40, C42, C44, C46, C48, C50, C52, C54, C56, C58, C60, C62, C64, C66, C68, C70, C72, C74, C76, C78, C80, C82, C84, C86
RESISTOR	CHIP 5 K ${ }^{\text {1\% }}$	2	R1, R2
	CHIP $4 \mathrm{~K} \Omega 1 \%$	4	R5, R6, R9, R10
	CHIP 2.5 K 2 1\%	2	R3, R4, R7, R8
	CHIP $2 \mathrm{~K} \Omega 1 \%$	2	R101, R102
	CHIP $50 \Omega 1 \%$	90	R11 to R100
POTENTIOMETER	BOURNS $2 \mathrm{~K} \Omega 25$ turns	1	P1
	BOURNS $1 \mathrm{~K} \Omega 25$ turns	2	P2, P3
DIODE	-	6	D1 to D6
DMUX	TS81102G0	1	U1

Applying the TSEV81102G0 DMUX

The TSEV81102G0 DMUX evaluation board has been designed to be connected with TSEV8388G and TSEV83102G0 ADC evaluation boards.

Figure 11. TSEV81102G0 DMUX Evaluation Boards

Please, refer to the specific document "DMUX and ADC APPLICATION NOTES" for more information.

ADC to DMUX Connections

The DMUX inputs configuration has been optimized to be connected to the TS8388B ADC.
The die in the TBGA package is up. For the ADC, different types of packages can be used such as CBGA with die up or the CQFP68 with die down. The DMUX device being completely symmetrical, both ADC packages can be connected to the TBGA package of the DMUX without crisscrossing the lines (see table below).

Table 10. ADC to DMUX Connections

ADC Digital Outputs CQFP68 Package	DMUX Data Inputs TBGA Package	ADC Digital Outputs CBGA Package	DMUX Data Inputs TBGA Package
D0	17	D0	10
D1	16	D1	11
D2	15	D2	12
D3	14	D3	13
D4	13	D4	14
D5	12	D5	15
D6	11	D6	16
D7	10	D7	17
-	18 not connected	-	18 not connected
-	19 not connected	-	19 not connected

Ordering
 Information

Evaluation Board

Note: 1. For availability of the different versions, contact your ATMEL sale office.

The board includes the bonded package and the heatsink.

Datasheet

Status Description

Table 11. Datasheet Status

Datasheet Status		Validity		
Objective specification	This datasheet contains target and goal specifications for discussion with customer and application validation.	Before design phase		
Target specification	This datasheet contains target or goal specifications for product development.	Valid during the design phase		
Preliminary specification α-site	This datasheet contains preliminary data. Additional data may be published later; could include simulation results.	Valid before characterization phase		
Preliminary specification β-site	This datasheet contains also characterization results.	Valid before the industrialization phase		
Product specification	This datasheet contains final product specification.	Valid for production purposes		
Limiting Values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application Information				
Where application information is given, it is advisory and does not form part of the specification.				

Life Support Applications

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Atmel customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Atmel for any damages resulting from such improper use or sale.

Atmel Headquarters
Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL ${ }^{\circledR}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

