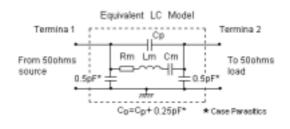


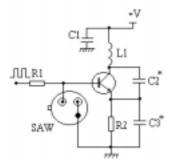
SAW Resonator


The GWR433A is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at **433.92 MHz**.

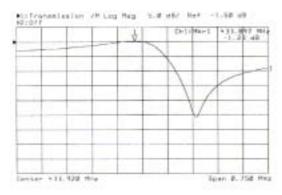
1.Package Dimension (TO-39)

Connection				
Terminal1				
Terminal2				
Case Ground				
Data (unit: mm)				
9.30±0.20				
5.08±0.10				
3.40±0.20				
3±0.20 / 5±0.20				
0.45±0.20				

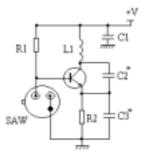
3.Equivalent LC Model and Test Circuit

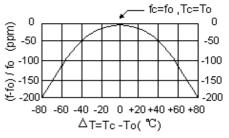


Color: Black or Blue


4.Typical Application Circuit

GWR433A


1) Telecontrol Circuitry


5.Typical Frequency Response

2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Address:NO.120 Bldg,Jindi Industrial Estate,Futian District,Shenzhen,China. Tel:(86)755-26161582 Fax:(86)755-755-26160182 E-mail:guanwi@guanwi.com

2.Marking

7.Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	$\pm 30 V$	VDC
Case Temperature	-40 to +85	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.92 MHz	f _C		±75		kHz
Insertion Loss		IL		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U		12,500		
	50 Loaded Q	QL		2,000		
Temperature Stability	Turnover Temperature	Τo	25	40	55	°C
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			М
RF Equivalent RLC Model	Motional Resistance	R _M		19	29	
	Motional Inductance	L _M		120.311		н
	Motional Capacitance	См		2.1240		fF
	Pin 1 to Pin 2 Static Capacitance	Co		2.1		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling !

NOTES:

- 1.Frequency aging is the change in f_C with time and is specified at +65 $^\circ\!C$ or less. Aging may exceed the specification for prolonged temperatures above +65 $^\circ\!C$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2.The center frequency, f_C , is the frequency of minimum IL with the resonator in the specified test fixture in a 50 test system with VSWR $\leqslant~1.2$: 1. Typically, $f_{\text{oscillator}}$ or $f_{\text{transmitter}}$ is less than the resonator f_C .
- 3.Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4.Unless noted otherwise , case temperature $T_C {=} {+}25^\circ\!\!\mathbb{C} {\pm}2^\circ\!\!\mathbb{C}.$
- 5.The design, manufacturing process, and specifications of this device are subject to change without notice.

- 6.Derived mathematically from one or more of the following directly measured parameters: $f_C,\ IL,\ 3\ dB$ bandwidth, f_C versus T_C , and $C_O.$
- 7.Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o, The nominal center frequency at any case temperature, T_c, may be calculated from :f = f_o [1-FTC (T_o-T_c)²].Typically, oscillator T_o is 20 °C less than the specified resonator T_o.
- 8.This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_0 .