16-BIT PARALLEL CMOS MULTIPLIER-ACCUMULATOR

FEATURES:

- 16×16 parallel multiplier-accumulator with selectable accumulation and subtraction
- High-speed: 20ns multiply-accumulate time
- IDT7210 features selectable accumulation, subtraction, rounding and preloading with 35-bit result
- IDT7210 is pin and function compatible with the TRW TDC1010J, TMC2210, Cypress CY7C510, and AMD AM29510
- Performs subtraction and double precision addition and multiplication
- Produced using advanced CMOS high-performance technology
- TTL-compatible
- Available in PLCC
- Speeds available: L20/25/35

DESCRIPTION:

The IDT7210 is a high-speed, low-power 16×16-bit parallel multiplieraccumulator that is ideally suited for real-time digital signal processing applications. Fabricated using CMOS silicon gate technology, this device offers avery low-power alternative to existing bipolar and NMOS counterparts, with only $1 / 7$ to $1 / 10$ the power dissipation and exceptional speed (25ns maximum) performance.

A pin and functional replacement for TRW's TDC1010J, the IDT7210 operates from a single 5 volt supply and is compatible with standard TTL logic levels. The architecture of the IDT7210 is fairly straightforward,
featuring individual input and output registers with clocked D-type flip-flop, a preload capability which enables input data to be preloaded into the output registers, individual three-state output ports for the Extended Product (XTP) and Most Significant Product(MSP) and a Least Significant Product output (LSP) which is multiplexed with the Y input.

The XIn and Yin data input registers may be specified through the use of the Two's Complement input (TC) as either a two's complement or an unsigned magnitude, yielding a full-precision 32-bit result that may be accumulated to a full 35 -bit result. The three output registers - Extended Product (XTP), Most Most Significant Product (MSP) and Least Significant Product(LSP) - are controlled by the respective TSX, TSM and TSL input lines. The LSP output can be routed through Yin ports.

Accumulate input (ACC) enables the device to perform either a multiply or a multiply-accumulate function. In the multiply-accumulate mode, output data can be added to or subtracted from previous results. When the Subtraction (SUB) input is active simultaneously with an active ACC, a subtraction can be performed. The double precision accumulated result is rounded down to either a single precision or single precision plus 3-bit extended result. In the multiply mode, the Extended Product output (XTP) is sign extended in the two's complement mode or setto zero in the unsigned mode. The Round (RND) control rounds up the Most Significant Product (MSP) and the 3-bit Extended Product (XTP) outputs. When Preload input (PREL) is active, all the outputbuffers are forced into a high-impedance state (see Preload truth table) and external data can be loaded into the output register by using the TSX, TSL and TSM signals as input controls.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

PLCC
TOP VIEW

PIN DESCRIPTION

Pin Name	I/O	Description
X0-15	1	Datalnputs
Yo-15/P0-15	1/0	Multiplexed I/O port. Yo-15 are data inputs and can be used to preload LSP register on PREL = 1. Po-15 are LSP register outputs - enabled by TSL.
P16-31	I/O	MSP register outputs - enabled by TSM. MSP register can be preloaded when PREL $=1$.
P32-34	I/O	XTP register outputs - enabled by TSX. XTP register can be preloaded through these inputs when PREL $=1$.
CLKX	1	Input data X0-15 loaded in X input register on CLKX rising edge
CLKY	1	Input data Y 0 -15 loaded in Y input register on CLKY rising edge
CLKP	1	Outputdataloaded into output register on rising edge of CLKP.
TSX	1	TSX $=0$ enables XTP outputs, TSX $=1$ tristates P32-34 lines
TSM	1	TSM $=0$ enables MSP outputs, TSM $=1$ tristates P16-31 lines
TSL	1	TSL $=0$ enables LSP outputs, TSL $=1$ tristates P0-15 lines
PREL	1	When PREL= 1 data is input on P0-15 lines. When PREL $=0$, inputs on these lines are ignored.
ACC	1	This inputis loaded into the control register on the rising edge of $(C L K X+C L K Y)$. When $A C C=1$ and $S U B=0$ an accumulate operation is performed. When $A C C=1$ and $S U B=1$, a subtractoperation is performed. When $A C C=0$, the $S U B$ inputis a don't care and the device acts as asimple multipler with no accumulation.
SUB	1	This inputis loaded into the control register on the rising edge of (CLKX+CLKY). This inputis active only when ACC $=1$. When SUB $=1$ the contents of the outputregister are subtracted from the result and stored back inthe outputregister. When SUB $=0$ the contents of the output register are added to the resultand stored back in the output register.
TC	1	This inputis loaded intothe control register onthe rising edge of(CLKX+CLKY). WhenTC=1, the Xand Yinputare assumed to be intwo's complement form. When $\mathrm{TC}=0, \mathrm{X}$ and Y inputs are assumed to be in unsigned magnitude form.
RND	1	This inputis loaded intothe control register on the rising edge of (CLKX+CLKY). RND is inactive when low. RND = 1, adds a"1"tothe mostsignificant bit of the LSP, to round MSP and XTP data.

PRELOADTRUTHTABLE

PREL	TSX	TSM	TSL	XTP	MSP	LSP
0	0	0	0	Q	Q	Q
0	0	0	1	Q	Q	Hi-Z
0	0	1	0	Q	Hi-Z	Q
0	0	1	1	Q	Hi-Z	Hi-Z
0	1	0	0	Hi-Z	Q	Q
0	1	0	1	Hi-Z	Q	Hi-Z
0	1	1	0	Hi-Z	Hi-Z	Q
0	1	1	1	Hi-Z	Hi-Z	Hi-Z
1	0	0	0	Hi-Z	Hi-Z	Hi-Z
1	0	0	1	Hi-Z	Hi-Z	PL
1	0	1	0	Hi-Z	PL	Hi-Z
1	0	1	1	Hi-Z	PL	PL
1	1	0	0	PL	Hi-Z	Hi-Z
1	1	0	1	PL	Hi-Z	PL
1	1	1	0	PL	PL	Hi-Z
1	1	1	1	PL	PL	PL

NOTES:
Hi Z = Output buffers at high-impedance (output disabled)
$\mathrm{Q}=$ Output buffers at low impedance. Contents of output register will be transferred to output pins.
PL $=$ Output buffers at high-impedance or output disabled. Preload data supplied externally at output pins will be loaded into the output register at the rising edge of CLKP.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VCC	Power Supply Voltage	-0.5 to +7	V
VTERM	Terminal Voltage with Respect to GND	-0.5 to VcC +0.5	V
TA	Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

NOTES ON TWO'S COMPLEMENT FORMATS

1. Intwo's complement notation, the location of the binary point that signifies the separation of the fractional and integer fileds is just after the sign, between the sign bit $\left(-2^{0}\right)$ and the next significant bit for the multiplier inputs. This same format is carried over to the output format, except that the extended significance of the integer filed is provided to extend the utility of the accumulator. In the case of the output rotation, the output binary point is located between the 2^{0} and 2^{1} bit positions. The location of the binary point is arbitrary, as long as there is consistency with both the input and output formats. The number filed can be considered entirely integer with the binary pointjust to the right of the least significant bit for the input, product and the accumulated sum.
2. When in the non-accumulating mode, the first four bits $\left(\mathrm{P}^{34}\right.$ to $\left.\mathrm{P}^{31}\right)$ will all indicate the sign of the product. Additionally, the P^{30} term will also indicate the sign with one exception, when multiplying $-1 x-1$. With the additional bits that are available in this multiplier, the $-1 x-1$ is a valid operation that yields a +1 product.
3. In operations that require the accumulation of single products or sum of products, there is no change in format. To allow for a valid summation beyond that available for a single multiplication product, three additional significantbits (guard bits) are provided. This is the same as if the product was accumulated off-chip in a separate 35 -bit wide adder. Taking the sign at the most significant bit position will guarantee that the largest number field will be used. When the accumulated sum only occupies the right hand portion of the accumulator, the sign will be extended into the lesser significant bit positions.

CAPACITANCE ($\left.\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	10	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	12	pF

NOTE:

1. This parameter is sampled and not 100% tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Commercial: $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH Level	2	-	-	V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	-	-	0.8	V
ILI	Input Leakage Current	Vcc = Max., VIN $=0$ to Vcc	-	-	10	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vcc $=$ Max., Outputs Disabled, Vout $=0$ to Vcc	-	-	10	$\mu \mathrm{A}$
Voh	Output HIGH Voltage	$\mathrm{Vcc}=\mathrm{Min}$., $\mathrm{IOH}=-2 \mathrm{~mA}$	2.4	-	-	V
VoL ${ }^{(4)}$	Output LOW Voltage	$\mathrm{Vcc}=$ Min., $\mathrm{loL}=4 \mathrm{~mA}$	-	-	0.4	V
los	Output Short Circuit Current	Vcc = Max., Vo = GND	-20	-	-100	mA
Icc ${ }^{(2)}$	Operating Power Supply Current	Vcc = Max., Outputs Enabled, $\mathrm{f}=10 \mathrm{MHz}{ }^{(2)}, \mathrm{CL}=50 \mathrm{pF}$	-	45	90	mA
ICCQ1	Quiescent Power Supply Current	VIN \geq VIH, $\mathrm{VIN} \leq \mathrm{VIL}^{\text {a }}$	-	20	30	mA
ICCQ2	Quiescent Power Supply Current	VIN \geq Vcc - $0.2 \mathrm{~V}, \mathrm{VIN} \leq 0.2 \mathrm{~V}$	-	4	10	mA
Icc/f(2,3)	Increase in Power Supply Current	$\mathrm{Vcc}=$ Max., Outputs Disabled	-	-	6	$\mathrm{mA} / \mathrm{MHz}$

NOTES:

1. Typical implies $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. Icc is measured at 10 MHz and $\mathrm{VIN}=0$ to 3 V . For frequencies greater than 10 MHz , the following equation is used for the commercial range: $\mathrm{Icc}=90+6(\mathrm{f}-10) \mathrm{mA}$, where $\mathrm{f}=$ operating frequency in MHz.
3. For frequencies greater than 10MHz, guaranteed by design, not production tested.
4. loL $=4 \mathrm{~mA}$ for tma $>55 \mathrm{~ns}$.
5. For conditions shown as Max. or Min., use appropriate value specified under electrical characteristics.

AC ELECTRICAL CHARACTERISTICS

Following Conditions Apply Unless Otherwise Specified:
Commercial: $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	7210L20		7210L25		7210L35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tMA	Multiply-Accumulate Time ${ }^{(2)}$	2	20	2	25	2	35	ns
(1)	OutputDelay ${ }^{(2)}$	2	18	2	20	2	25	ns
tena	3-State Enable Time	-	18	-	20	-	25	ns
tols	3-State Disable Time ${ }^{(1)}$	-	18	-	20	-	25	ns
ts	InputRegisterSet-up Time	10	-	12	-	12	-	ns
H	Input Register Hold Time	3	-	3	-	3	-	ns
tPW	Clock Pulse Width	9	-	10	-	10	-	ns
tHCL	Relative Hold Time	0	-	0	-	0	-	ns

NOTES:

1. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
2. Minimum delays guaranteed but not tested

TIMING DIAGRAM

Fractional Two's Complement Notation

Fractional Unsigned Magnitude Notation

Integer Two's Complement Notation

TEST CIRCUITS AND WAVEFORMS

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$C_{L}=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

Test Circuits for All Outputs

Set-Up, Hold, and Release Times

Propagation Delay

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tR} \leq 2.5 \mathrm{~ns}$

ORDERINGINFORMATION

for SALES:
800-345-7015 or 408-727-6116 fax: 408-492-8674
uww.idt.com

