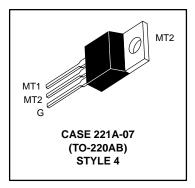

Triacs Silicon Bidirectional Thyristors


... designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

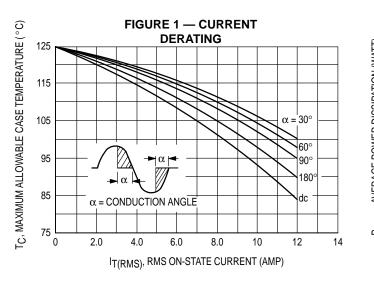
- Blocking Voltage to 800 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Four Modes

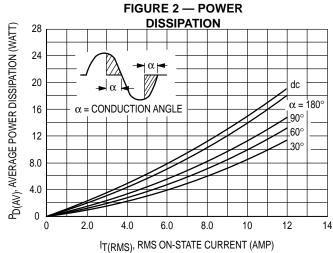
MAC212A Series

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted.)

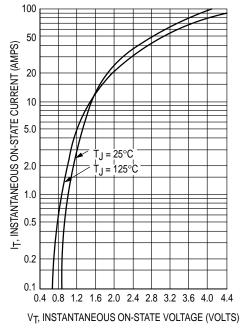
Rating	Symbol	Value	Unit
Repetitive Peak Off-State Voltage ⁽¹⁾ (T _J = -40 to +125°C, 1/2 Sine Wave 50 to 60 Hz, Gate Open)	VDRM		Volts
MAC212A8 MAC212A10		600 800	
On-State Current RMS (T _C = +85°C) Full Cycle Sine Wave 50 to 60 Hz	^I T(RMS)	12	Amp
Peak Non-repetitive Surge Current (One Full Cycle, 60 Hz, T _C = +85°C) preceded and followed by Rated Current	ITSM	100	Amp
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	40	A ² s
Peak Gate Power (T _C = +85°C, Pulse Width = 10 μ s)	PGM	20	Watts
Average Gate Power (T _C = +85°C, t = 8.3 ms)	PG(AV)	0.35	Watt
Peak Gate Current (T _C = +85°C, Pulse Width = 10 μ s)	IGM	2	Amp
Operating Junction Temperature Range	Тј	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

1. V_{DRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

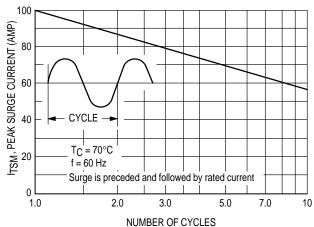

MAC212A Series

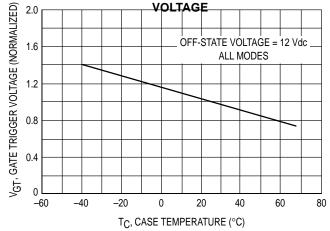

THERMAL CHARACTERISTICS

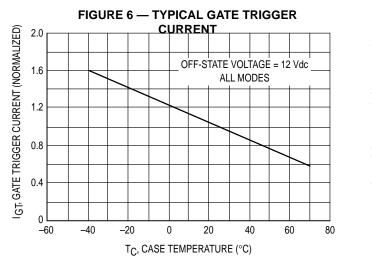
Symbol	Parameter	Value	Unit
R _θ JC R _θ JA	Thermal Resistance — Junction to Case — Junction to Ambient	2.0 62.5	°C/W
ΤL	Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	260	°C

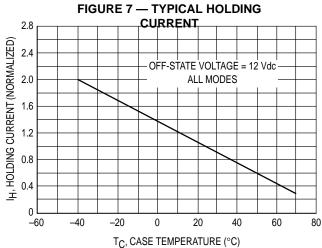

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted.)

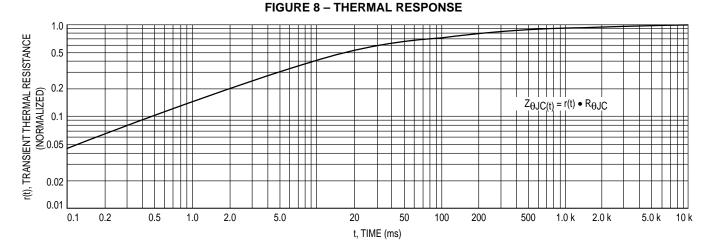
Characteristic	Symbol	Min	Тур	Max	Unit
Peak Blocking Current (Either Direction) (V_D = Rated V_{DRM} , Gate Open) T_J = 25°C T_J = +125°C	IDRM			10 2	μA mA
Peak On-State Voltage (Either Direction) $I_{TM} = 17$ A Peak; Pulse Width = 1 to 2 ms, Duty Cycle $\leq 2\%$	VTM	-	1.3	1.75	Volts
Gate Trigger Current (Continuous dc) (Main Terminal Voltage = 12 Vdc, $R_L = 100$ Ohms) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	lGT		12 12 20 35	50 50 50 75	mA
$ \begin{array}{l} \mbox{Gate Trigger Voltage (Continuous dc)} \\ (Main Terminal Voltage = 12 Vdc, R_L = 100 Ohms) \\ MT2(+), G(+) \\ MT2(+), G(-) \\ MT2(-), G(-) \\ MT2(-), G(+) \\ (Main Terminal Voltage = Rated V_{DRM}, R_L = 10 k\Omega, T_J = +125^{\circ}C) \\ MT2(+), G(+); MT2(-), G(-); MT2(+), G(-) \\ MT2(-), G(+) \end{array} $	V _{GT}	 0.2 0.2	0.9 0.9 1.1 1.4 	2 2 2.5 	Volts
Holding Current (Either Direction) (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = 500 mA)	Ч	—	6	50	mA
Turn-On Time (V _D = Rated V _{DRM} , I _{TM} = 17 A, I _{GT} = 120 mA, Rise Time = 0.1 μ s, Pulse Width = 2 μ s)	tgt	_	1.5	—	μs
Critical Rate of Rise of Commutation Voltage (V _D = Rated V _{DRM} , I _{TM} = 17 A, Commutating di/dt = 6.1 A/ms, Gate Unenergized, T _C = +85°C)	dv/dt _(c)	-	5	—	V/µs
Critical Rate of Rise of Off-State Voltage (V_D = Rated V_{DRM} , Exponential Voltage Rise, Gate Open, T_C = +85°C)	dv/dt	-	100	_	V/µs

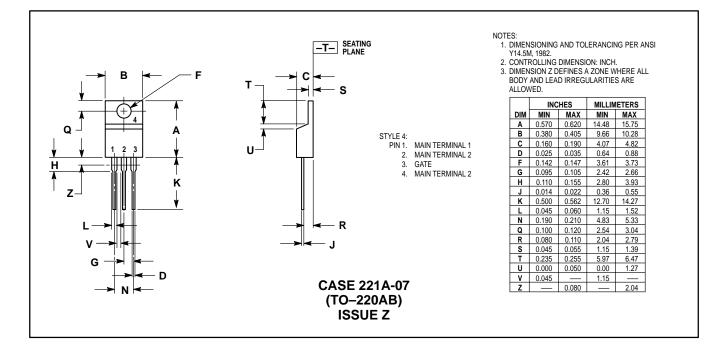



FIGURE 3 — MAXIMUM ON-STATE CHARACTERISTICS









PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **()** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26629298

 \Diamond

Mfax is a trademark of Motorola, Inc.