32-bit Proprietary Microcontrollers

CMOS

FR30 Series

MB91126

DESCRIPTION

This model is a standard single-chip microcontroller with the 32-bit RISC CPU (FR30 family) as its core, incorporating a variety of I/O resources and bus control features for embedded control applications which require highspeed CPU processing.

With 10 KB of built-in RAM, the microcontroller is best suited for applications which require high-level CPU processing capabilities, such as navigation systems, high-performance FAX, and printer controllers.

FEATURES

FR-CPU

- 32-bit RISC (FR30), load/store architecture with a five-stage pipeline
- Operating frequency: Internal 25 MHz
- General purpose registers: 32 bits × 16 registers
- 16-bit fixed-length instructions (basic instructions): One instruction per cycle
- Memory-to-memory transfer, bit processing, and barrel shift instructions: Instructions suitable for embedded control applications
- Function entrance/exit instructions and register data multi-load/store instructions: Instructions applicable to high-level languages

- · Register interlock functions: Facilitating coding in assemblers
- Branch instructions with delay slot: Reducing the overhead in branching
- Internal multiplier/supported at the instruction level
 - Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles
- Interrupt (saving PC and PS): 6 cycles, 16 priority levels

Bus interface

- Internal 25 MHz
- 25-bit address bus (32 MB space)
- 16-bit address output, 8-/16-bit data input/output
- Basic bus cycle : 2-clock cycle
- Chip select output that can be set to a minimum 64-Kbyte units : 6
- Interface support for various memories
- DRAM interface (Area 4 and 5)
- Automatic wait cycle insertion: Flexible setting, from 0 to 7 cycles per area
- Unused data/address pins can be configured as input/output ports.
- Little endian mode supported (One area selected from among area 1 to 5)

DRAM Interface

- Independent control of two banks (area 4 and 5)
- Double CAS DRAM (normal DRAM I/F)/Single CAS DRAM/Hyper DRAM
- Basic bus cycles: Normally 5 cycles. 2-cycle enabled in Fast Page mode.
- · Programmable waveform: Capable of automatic insertion of one wait cycle to RAS and CAS
- DRAM refresh

CBR refresh (Arbitrary interval setting using a 6-bit timer) Self-refresh mode

- 8/9/10/12-bit column addresses supported
- 2CAS/1WE or 2WE/1CAS selectable

DMAC (DMA controller)

- 8 channels
- Transfer incident: External pin/internal resource interrupt requests
- Transfer sequence: Step transfer/block transfer/burst transfer/continuous transfer
- Transfer data length: 8, 16, or 32 bits selectable
- Capable of pausing with an NMI/interrupt request

UART

- 3 channels
- Full duplex double buffer
- Data length 7 bits to 9 bits (without parity), 6 bits to 8 bits (with parity)
- Asynchronous (start-stop system) or CLK-synchronized communication selectable
- Multi processor mode
- Internal 16-bit timer (U-Timer) as a baud rate generator: Generates any given baud rate.
- Capable of using an external clock as the transfer clock
- Error detection: Parity, frame, and overrun

(Continued)

Reload Timer

- 16-bit timer : 3 channels
- Internal clock : 2-clock resolution, 2, 8 or 32 divide and external clock can be selected.

Other interval timer

- 16-bit timer : 3 channels (U-Timer)
- Watchdog timer: 1 channel

Built-in RAM 10 KB

• D-bus RAM 8 KB, C-bus RAM 2KB

Bit Search Module

• Searching the MSB in one word for the first 1/0 change bit position

Interrupt Controler

- External interrupt input : NMI, normal interrupt × 6 (INT0 to INT5)
- Internal interrupt sources : UART, DMAC, reload timer, UTIMER, delay interrupt
- Priority levels are programmable except for NMI (16 levels) .

Reset Source

· Power-on reset/watchdog timer/softwere reset/external reset

Low Power Consumption Mode

Sleep/stop mode

Clock control

- Built-in PLL circuit: PLL multiplication factor selectable from among 1, 1.5, and 2
- Gear function: Capable of freely setting different operating clock frequencies for the CPU and peripherals Gear clock selectable from among 1/1, 1/2, 1/4, and 1/8 (or among 1/2, 1/4, 1/8, and 1/16).
 Note, however, that peripherals operate at a maximum of 25 MHz.

Others

- Package : LQFP-100
- CMOS technology : 0.35 μm
- Power supply voltage : 3.3 V \pm 0.3 V

PRODUCT LINEUP

Part number	MB91126	MB91FV129	
Description	For mass production	For evaluation	
FLASH Memory	_	510 KB	
D-bus RAM	8 KB	16 KB	
C-bus RAM	2 KB	2 KB	

■ PIN ASSIGNMENT

■ PIN DESCRIPTIONS

Note that the numbers in the table are not pin numbers on a package.

NO.	Pin name	I/O circuit type	Function
1 2 3 4 5 6 7 8	D16/P20 D17/P21 D18/P22 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27	D	These pins use bit 16 to bit 23 of the external data bus. They can be used as ports (P20 to P27) if the external bus width is 8 bits or in single chip mode.
9 10 11 12 13 14 15 16	D24/P30 D25/P31 D26/P32 D27/P33 D28/P34 D29/P35 D30/P36 D31/P37	D	These pins use bit 24 to bit 31 of the external data bus. They can serve as general purpose I/O pins (P30 to P37) when unas- signed.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	A00/P40 A01/P41 A02/P42 A03/P43 A04/P44 A05/P45 A06/P46 A07/P47 A08/P50 A09/P51 A10/P52 A11/P53 A12/P54 A13/P55 A14/P56 A15/P57	D	These pins use bit 00 to bit 15 of the external address bus. They can be used as general purpose I/O ports (P40 to P47, P50 to P57) when not used as address bus.
33 34 35 36 37 38 39 40	A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66 A23/P67	D	These pins use bits 16 to 23 of the external data bus. They can be used as general purpose I/O ports (P60 to P67) when not used as address bus.

NO.	Pin name	I/O circuit type			Fu	nction	
41	A24/P70/EOP0	D	Bit 24 of the external address bus. Enabled when the DMAC EOP output is enabled. [P70] A24 can be used as a general purpose I/O port when EOP0 is not used. [EOP0] DMAC EOP0 output (ch0)				
42	RDY/P80	D	Exterr is not signe	nal ready in completed. d.	put. This pin inputs It can serve as a	0 when the bus general purpose	cycle being executed I/O port when unas-
43	BGRNT/P81	D	Exterr when port w	nal bus rele the externa vhen unassi	ase acknowledge o Il bus is released. gned.	output. This pin c It can serve as a	utputs the "L" level general purpose I/O
44	BRQ/P82	D	External bus release request input. This pin inputs 1 when the external bus is required to be released. It can serve as a general purpose I/O port when unassigned.				
45	RD/P83	D	External bus read strobe. It can serve as a general purpose I/O port when unassigned.				
46	WR0/P84	D	External bus write strobe.				
47	WR1/P85	D	Notes WR1 For us [P84 c not us	031 to D24 023 to D16 remains in se at a <u>16-b</u> or P85] WR0 sed.	16-bit bus width WR0 WR1 High-Z state during it bus width, add an	8-bit bus width WR0 (port enabled) g a reset. n external pull-up general purpose	Single chip mode (port enabled) (port enabled) (port enabled) resistor. I/O port when WR1 is
48 49 50	CS0/PA0 CS1/PA1 CS2/PA2	D	Chip s Chip s Chip s [PA0,	select 0 out select 1 out select 2 out 1, 2] They	put (Low active) put (Low active) put (Low active) can serve as genei	ral purpose I/O pc	orts when unassigned.
51	CS3/PA3/ EOP1	D	Chip select 3 output (Low active) [EOP1] DMAC EOP output (ch1) This funcyion is valid when DMAC and EOP output are enabled. [PA3] It can serve as a general purpose I/O port when CS3 and EOP1 are unassigned.				
52 53	<u>CS4</u> /PA4 <u>CS5</u> /PA5	D	Chip select 4 output (Low active) Chip select 5 output (Low active) [PA4, 5] They can serve as general purpose I/O ports when unassigned.				
54	CLK/PA6	D	Syste Outpu [PA6]	m clock out uts clock sig It can serv	put nal of external bus ⁄e as a general pur	operating freque	ncy. en unassigned.

NO.	Pin name	I/O circuit type	Function
55 56 57 58 59 60 61 62	RAS0/PB0 CS0L/PB1 CS0H/PB2 DW0/PB3 RAS1/PB4/EOP2 CS1L/PB5/DREQ2 CS1H/PB6/DACK2 DW1/PB7	D	RAS output of DRAM bank 0 CASL output of DRAM bank 0 WE output of DRAM bank 0 WE output of DRAM bank 0 (Low active) RAS output of DRAM bank 1 CASL output of DRAM bank 1 CASH output of DRAM bank 1 WE output of DRAM bank 1 (Low active) In detail, refer to "DRAM interface". [EOP2] DMAC EOP output (ch2). This function is enabled when the DMAC EOP output is enabled. [DREQ2] DMA external transfer request input. Since this input is used as required when it has been selected as a DMAC transfer trigger event, the output by the other function must remain off unless used intentionally. [DACK2] DMAC external transfer request accept output (ch2). This function is enabled when the DMAC transfer request accept output is enabled. [PB0 to PB7] Available as general purpose I/O ports when unassigned.
63 64 65	MD0 MD1 MD2	В	Mode pins 0 to 2. These pins set the basic operation mode of the MCU. Connect the pins directly to V_{CC} or V_{SS} .
66 67	X0 X1	A	Clock (oscillation) input Clock (oscillation) output
68	RST	С	External reset input
69	HST	С	Hardwere standby input
70	NMI	С	NMI (Non Maskable Interrupt) input (Low Active)
71 72	INT0/PE0 INT1/PE1		[INT0, 1] These are external interrupt request inputs. This input is always used while the corresponding external interrupt is permitted, so output using other functions should be stopped except when carried out intentionally. [PE0,PE1]General purpose I/O ports
73	INT2/PE2/SC1	D	 [INT2] These are external interrupt request inputs. This input is always used while the corresponding external interruption is permitted, so output using other functions should be stopped except when carried out intentionally. [PE2] General purpose I/O port This function is effective if clock output specification of UART1 is pohibited. [SC1] UART1 clock input/output Clock output is effective if clock output specification of UART1 is permitted.

NO.	Pin name	I/O circuit type	Function
74	INT3/PE3/SC2	D	 [INT3] These are external interrupt request inputs. This input is always used while the corresponding external interrupt is permitted, so output using other functions should be stopped except when carried out intentionally. [SC2] UART2 clock input/output Clock output is effective if clock output specification of UART2 is permitted. [PE3]General purpose I/O port This function is effective if clock output specification of UART2 is pohibited.
			[PE4,PE5]General purpose I/O ports
75 76	DREQ0/PE4 DREQ1/PE5		[DREQ0, 1] These are DMA external interrupt transfer request inputs. This input is always used if selected as the transfer factor for DMAC, so outputs from other functions should be stopped except when carried out intentionally. [PE4,PE5]General purpose I/O ports
77	DACK0/PE6	D	[DACK0] This is the DMAC external transfer request accept output (ch 0) . This function is effective if the transfer request accept output specification of DMAC is prohibited. [PE6]General purpose I/O port This function is effective if the transfer request accept output specification of DMAC or DACK0 is prohibited.
78	DACK1/PE7	D	[DACK1] This is the DMAC external transfer request accept output (ch 1) . This function is effective if the transfer request accept output specification of DMAC is prohibited. [PE7]General purpose I/O port This function is effective if the transfer request accept output specification of DMAC or DACK1 is prohibited.
79	SI0/PF0		[SI0] UART0 data input This input is always used while UART inputs, so outputs from other functions should be stopped except when carried out intentionally. [PF0]General purpose I/O port
80	SO0/PF1	D	[SO0] UART0 data input This function is effective if the UART0 data output specification is permitted. [PF1]General purpose I/O port This function is effective if data output specification of UART0 is pohibited.
81	SC0/PF2	D	[SC0] UART0 clock output Clock output is effective if the UART0 clock output specification is permit- ted. [PF2]General purpose I/O port This function is effective if clock output specification of UART0 is prohibited.
82	SI1/PF3	D	[SI1] UART1 data input This function is always used if selected as the initiation factor for A/D, so output by other functions should be stopped except when it is carried out intentionally. [PF3]General purpose I/O port

(Continued)

NO.	Pin name	I/O circuit type	Function
83	SO1/PF4	D	[SO1] UART1 data output This function is effective if data output specification of UART1 is permitted. [PF4]General purpose I/O port This function is effective if data output specification of UART1 is prohibit- ed.
84	SI2/PF5	D	[SI2] UART2 data input This function is always used if selected as the initiation factor for A/D, so output by other functions should be stopped except when it is carried out intentionally. [PF5]General purpose I/O port
85	SO2/PF6	D	[SO2] UART2 data input This function is effective if data output specification of UART1 is permitted. [PF6] General purpose I/O port This function is effective if data output specification of UART1 is prohibit- ed.
86	INT4/PF7	D	[INT4] External interrupt request input This function is always used if selected as the initiation factor for A/D, so output by other functions should be stopped except when it is carried out intentionally. [PF7] General purpose I/O port
87 to 89	PD0 PD1 PD2	E	[PD0 to PD2] General purpose I/O ports
90	PD3/INT5	E	[PD3]General purpose I/O port [INT5] External interrupt request input This function is always used if selected as the initiation factor for A/D, so output by other functions should be stopped except when it is carried out intentionally.
91 to 95	VCC	_	This provides power for the circuit system. Always power supply pin (VCC) must be connected to the power supply.
96 to 100	VSS		This is the earth level for digital circuits.

Note : The I/O port and resource input/outputs for most of the above pins are multiplexed, i.e. Pxx/xxxx. In the event of both the port and resource outputs were to use the same pins, the resource is given priority.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latch-up

The latch-up phenomenon may be generated if a voltage in excess of V_{CC} or lower than V_{SS} is applied to the input/output pins, or if the voltage exceeds the rating between V_{CC} and V_{SS} .

If latch-up is generated, the electrical current increases significantly and may destroy certain components due to the excessive heat, so great care must be taken to ensure that the maximum rating is not exceeded during use.

Also, care must be taken to ensure that the analog pin does not exceed the digital power supply.

2. Treatment of Pins

Handling Unused Input Pins

Input pins that are not used should be pulled up or down as they may cause erroneous operations if they are left open.

Crystal Oscillator Circuit

Noise around the X0 or X1 pins may cause erroneous operation. Make sure to provide bypass capacitors via shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuits not cross the lines of other circuit.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended .

• N.C. Pins

N.C. pin must be opened for use.

• Mode Pins (MD0 to MD2)

Those pins must be directly connected to Vcc or Vss for use.

Pattern length between V_{cc} or V_{ss} and each mode pin on the printed-circuit board should be arranged to be as short as possible to prevent the test mode being erroneously turned on due to noise, they should also be connected with low impedance.

3. Precautions

• External Reset Input

"L" level should be input to the RST pin, which is required for at least five machine cycles to ensure the internal status is reset.

Notes on Using External Clock

If external clock is used, X0 pin should be provided, and X1 pin should be provided with reverse phase to X0 pin. However, in this case, do not use the STOP mode (oscillation stop mode). (At STOP, the X1 pin is stopped with the "H").

Under a 12.5 MHz frequency, the device operates with a clock supplied to X0 terminal only. Examples of the external clock usage methods is shown below.

Example of Using external clock (enable to using less than 12.5 MHz)

• Power Supply Pins (Vcc, Vss)

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

4. Care During Power Up

• Power-on

The $\overline{\text{RST}}$ pin must be started from "L" level when the power is turned on, and when the power is adjusted to the VCC level it should be changed to the "H" level after being left for at least five cycles of the internal operation clock.

• Pin condition at the power-on

The pin condition at turning on the power supply is unstable. The circuit starts being initialized after turning on the power supply and then starting oscillation.

• Original Oscillation Input in the Event that Power Is Turned on

The clock must be input until the waiting status for oscillation stability is reset in the event that power is turned on.

• Initialization of power-on reset

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these resistors, run power-on reset by returning on the power supply.

Recovery for sleep/stop

For recovering from sleep/stop status initiated by a program in C-Bus RAM, reset the device instead of recovering by an interrupt process.

5. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

MEMORY MAP

The memory space of MB91126 is shown.

Note : External area is not accessible in single-chip mode. When accessing to external areas, select the internal ROM external bus mode in mode register.

Direct addressing area

The following areas of the address space are used for I/O. This area is called the "direct addressing area" and the address of the operand can be specified directly during instruction. The direct area differs depending on data size to be accessed.

- Byte data access : 0 to 0FFH
- Half word data access : 0 to 1FF_H
- Word data access : 0 to 3FFH

■ HOW TO READ I/O MAP

addross		Internal					
auuress	+ 0		+ 1	+ 2	+ 3	resource	
000000н	A PDR3	3 [R/W] ▲ (XXXX	PDR2 [R/W] XXXXXXXX			Port Data Register	
Read/write attribute							
Initial register value after reset							
Register name (the register listed in the first column is at address 4n, the register listed in the second column is at address 4n + 1,)							
	Leftmos mode)	st register a	address (the first cc	lumn register is on	the MSB side of da	ta in word access	

Note : Register bit value indicate initial values as shown below.

- "1" : Initial value "1"
- "0" : Initial value "0"
- "X" : Initial value "X"
- "-" : Register does not exist physically in this position.

■ I/O MAP

Addross	Register				
Address	+ 0	+1	+ 2	+ 3	Internal resources
000000н	PDR3 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX			
000004н	PDR7 [R/W] X	PDR6 [R/W] XXXXXXXX	PDR5 [R/W] XXXXXXXX	PDR4 [R/W] XXXXXXXX	
000008н	PDRB [R/W] XXXXXXXX	PDRA [R/W] XXXXXXXX	_	PDR8[R/W] XXXXXX	Port data register
00000Сн			·	·	
000010н		PDRD [R/W] XXXX	PDRE [R/W] XXXXXXXX	PDRF [R/W] XXXXXXXX	
000014н					
000018 н	—	—	—	—	Reserved
00001Cн	SSR [R/W] 00001-00	SIDR [R/W] XXXXXXXX	SCR [R/W] 00000100	SMR [R/W] 00 0 - 00	UART0
000020н	SSR [R/W] 00001-00	SIDR [R/W] XXXXXXXX	SCR [R/W] 00000100	SMR [R/W] 00 0 - 00	UART1
000024н	SSR [R/W] 00001-00	SIDR [R/W] XXXXXXXX	SCR [R/W] 00000100	SMR [R/W] 00 0 - 00	UART2
000028н	TMRLR [W] XXXXXXXX XXXXXXX		TMR [W] XXXXXXXX XXXXXXX		Delead timer 0
00002Сн	_	_	TMCSR [R/W] 0000 0000000		
000030н	TMRL XXXXXXXX	.R [W] XXXXXXXX	TMR [W] XXXXXXXX XXXXXXX		Delead timer 1
000034н	_	_	TMCSI 0000	R [R/W]	
00003Сн	TMRLR [W] XXXXXXXX XXXXXXX		TMR [W] XXXXXXXX XXXXXXX		Polood timer 2
000040н	—		TMCSR [R/W] 0000 0000000		
000044н			-		
000048н			-		
00004Сн			-		Beerrad
000050н			-		Reserved
000054н			-		
000058н	_	_	-	_	

Address		Internal resources			
Address	+ 0	+ 1	+ 2	+ 3	Internal resources
00005Сн	_	_	-	_	
000060н	_	_	-	_	
000064н	-	—	-	—	
000068н	_	_	-	_	Reserved
00006Сн	_	_	-		
000070н	_	_	-	_	
000074н		_	-		
000078н	UTM/UTII 00000000	MR [R/W] 00000000		UTIMC[R/W] 0 00001	U-timer 0
00007Сн	UTM/UTII 00000000	MR [R/W] 00000000		UTIMC[R/W] 0 00001	U-timer 1
000080н	UTM/UTII 00000000	MR [R/W] 00000000		UTIMC[R/W] 0 00001	U-timer 2
000084н	_	_	-		Reserved
000088н			_		Reserved
00008Сн	_	_	-		Reserved
000090н	_	—			Reserved
000094н	EIRR [R/W] 00000000	ENIR [R/W] 00000000	-	_	External interrunt /NMI
000098н	EHVR [R/W] 0000	ELVR [R/W] 00000000	-	_	
00009Сн		_	_		
0000А0н		_	_		
0000A4н		_	_		
0000A8н		_			
0000ACн					
0000В0н					
0000B4н		_			Reserved
0000B8н					
0000BCн					
0000С0н					
0000C4н					
0000С8н					
0000ССн			_		
0000D0н		DDRD [W] 0000	DDRE [W] 00000000	DDRF [W] 00000000	Port direction register

A ddrooo		Internal recourses					
Address	+ 0	+ 1	+ 2	+ 3	Internal resources		
0000D8н					Reserved		
0000DCн to 0000FCн		Reserved					
000100н to 0001FCн		Reserved					
000200н		DPDP	[R/W] 	0000			
000204н	0000	DACSR 00000 00000000	[R/W] 00000000 00000	0000	DMAC		
000208н		DATCR	[R/W] XX0000 XX	<0000			
00020Сн		_	_				
000210н to 0002FCн		Reserved					
000300н to 0003ECн		Reserved					
0003F0н	xxxxx						
0003F4н	xxxxx	Bit search module					
0003F8н	xxxxx	xxxxx	Dit Souron module				
0003FCн	xxxxx						
000400н	ICR00 [R/W] 11111	ICR01[R/W] 11111	ICR02[R/W] 11111	ICR03[R/W] 11111			
000404 н	ICR04[R/W] 11111	ICR05[R/W] 11111	ICR06[R/W] 11111	ICR07[R/W] 11111			
000408н	ICR08 [R/W] 11111	Interrupt controller					
00040Сн	ICR12[R/W] 11111	ICR13[R/W] 11111	ICR14[R/W] 11111	ICR15[R/W] 11111			
000410н	ICR16[R/W] 11111	ICR17[R/W] 11111	ICR18[R/W] 11111	ICR19[R/W] 11111			

Addross		Internal resources					
Audress	+ 0	+ 1	+ 2	+ 3	internal resources		
000414н	ICR20[R/W] 11111	ICR21[R/W] 11111	ICR22[R/W] 11111	ICR23[R/W] 11111			
000418н	ICR24 [R/W] 11111	ICR25[R/W] 11111	ICR26[R/W] 11111	ICR27[R/W] 11111			
00041Cн	ICR28[R/W] 11111	ICR29[R/W] 11111	ICR30[R/W] 11111	ICR31[R/W] 11111	Interrupt controller		
000420н							
000424н					1		
000428н							
00042Cн	_	_		ICR47[R/W] 11111			
000430н	DICR [R/W] 0	HRCL [R/W] 11111			Delay interruption		
000434н to 00047Сн		_	_		Reserved		
000480н	RSRR/WTCR [R/W] 1XXXX- 00	STCR [R/W] 000111	PDDR [R/W] 0000	CTBR [W] XXXXXXXX	Clock control block		
000484н	GCR [R/W] 110011 - 1	WPR [W] XXXXXXXX					
000488н	PTCR [R/W] 00 0	PLL control block					
00048Сн to 0005FCн		Reserved					
000600н	DDR3 [W] 00000000	DDR2 [W] 00000000					
000604н	DDR7 [W] 0	DDR6 [W] 00000000	DDR5 [W] 00000000	DDR4 [W] 00000000	Data direction register		
000608н	DDRB [W] 00000000	DDRA [W] -0000000		DDR8 [W] 000000			
00060Cн	ASR ² 00000000	1 [W] 00000001	AMR 00000000	1 [W] 00000000			
000610н	ASR2 00000000	2 [W] 00000010	AMR2 [W] 00000000 00000000		External buc interface		
000614н	ASR: 00000000	3 [W] 00000011	AMR: 00000000	3 [W] 00000000			
000618H	ASR4 00000000	4 [W] 00000100	AMR 00000000	4 [W] 00000000			

(Continued)

Addross		Internal recourses			
Audress	+ 0	+1	+ 2	+ 3	internariesources
00061Cн	ASR5 00000000	5 [W] 00000101	AMR: 00000000	5 [W] 00000000	
000620н	AMD0 [R/W] XX111	AMD1 [R/W] 0 00000	AMD32[R/W] 00000000	AMD32[R/W] AMD4 [R/W] 00000000 0 00000	
000624н	AMD5[R/W] 0 00000	DSCR [W] 00000000	RFCR XXXXXX	[R/W] 00 000	External bus interface
000628н	EPCR0 [W] 1 - 1100 -1111111		EPCR1 [W] 1 11111111		
00062Cн	DMCR4 [R/W] 00000000 0000000-		DMCR5 [R/W] 00000000 0000000-		
000630н to 0007BCн		Reserved			
0007С0н					Reserved
0007C4н to 0007F8н		Reserved			
0007FCн	_	_	LER [W] 000	MODR [W] XXXXXXXX	Little endian register mode register

Note : Do not execute RMW instructions to registers with write-only bits. RMW instruction (RMW : Read/Modify/Write)

		,
AND Rj, @Ri	OR Rj, @Ri	EOR Rj, @Ri
ANDH Rj, @Ri	ORH Rj, @Ri	EORH Rj, @Ri
ANDB Rj, @Ri	ORB Rj, @Ri	EORB Rj, @Ri
BANDL #u4, @Ri	BORL #u4, @Ri	BEORL #u4, @Ri
BANDH #u4, @Ri	BORH #u4, @Ri	BEORH #u4, @Ri

Data in "Reserved" or "-" is undecided.

■ INTERRUPT VECTOR

	IInterrup	ot number	Interrupt	Offect	Address of TBR
interrupt source	Decimal	Hexadecimal	level *1	Unset	default*2
Reset	0	00		3FCH	000FFFFCн
System reservation	1	01		3F8н	000FFFF8н
System reservation	2	02		3F4н	000FFFF4 _H
System reservation	3	03		3F0н	000FFFF0н
System reservation	4	04		ЗЕСн	000FFFECн
System reservation	5	05		3E8H	000FFFE8н
System reservation	6	06		3E4н	000FFFE4н
System reservation	7	07		3E0н	000FFFE0н
System reservation	8	08		3DCн	000FFFDCн
System reservation	9	09		3D8н	000FFFD8н
System reservation	10	0A		3D4н	000FFFD4н
System reservation	11	0B		3D0н	000FFFD0н
System reservation	12	0C		3ССн	000FFFCCн
System reservation	13	0D		3С8н	000FFFC8н
Exceptions to undefined instruction	14	0E		3C4н	000FFFC4н
NMI request	15	0F	15 (Fн) fixed	3С0н	000FFFC0н
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCн
External interrupt 1	17	11	ICR01	3B8н	000FFFB8н
External interrupt 2	18	12	ICR02	3B4н	000FFFB4н
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н
UART 0 reception completed	20	14	ICR04	ЗАСн	000FFFACн
UART1 reception completed	21	15	ICR05	3A8н	000FFFA8н
UART2 reception completed	22	16	ICR06	3А4н	000FFFA4н
UART0 transmission completed	23	17	ICR07	3А0н	000FFFA0н
UART1 transmission completed	24	18	ICR08	39Сн	000FFF9Cн
UART2 transmission completed	25	19	ICR09	398н	000FFF98H
DMAC 0 (end, error)	26	1A	ICR10	394н	000FFF94H
DMAC 1 (end, error)	27	1B	ICR11	390н	000FFF90н
DMAC 2 (end, error)	28	1C	ICR12	38С н	000FFF8Cн
DMAC 3 (end, error)	29	1D	ICR13	388н	000FFF88H
DMAC 4 (end, error)	30	1E	ICR14	384н	000FFF84H
DMAC 5 (end, error)	31	1F	ICR15	380н	000FFF80н
DMAC 6 (end, error)	32	20	ICR16	37Сн	000FFF7Cн
DMAC 7 (end, error)	33	21	ICR17	378н	000FFF78н
System reservation	34	22	ICR18	374н	000FFF74н

	IInterrup	t number	Interrunt		Address of TBR	
Interrupt source	Decimal	Hexadeci- mal	level *1	Offset	default*2	
Reload timer 0	35	23	ICR19	370н	000FFF70н	
Reload timer 1	36	24	ICR20	36Cн	000FFF6Cн	
Reload timer 2	37	25	ICR21	368н	000FFF68н	
External interrupt 4	38	26	ICR22	364н	000FFF64н	
External interrupt 5	39	27	ICR23	360н	000FFF60н	
System reservation	40	28	ICR24	35Сн	000FFF5Cн	
System reservation	41	29	ICR25	358н	000FFF58н	
U-TIMER 0	42	2A	ICR26	354н	000FFF54н	
U-TIMER 1	43	2B	ICR27	350н	000FFF50н	
U-TIMER 2	44	2C	ICR28	34Сн	000FFF4Cн	
System reservation	45	2D	ICR29	348н	000FFF48н	
System reservation	46	2E	ICR30	344н	000FFF44н	
System reservation	47	2F	ICR31	340н	000FFF40н	
System reservation	48	30	ICR32	33Сн	000FFF3Cн	
System reservation	49	31	ICR33	338н	000FFF38н	
System reservation	50	32	ICR34	334н	000FFF34н	
System reservation	51	33	ICR35	330н	000FFF30н	
System reservation	52	34	ICR36	32Сн	000FFF2Cн	
System reservation	53	35	ICR37	328н	000FFF28н	
System reservation	54	36	ICR38	324н	000FFF24н	
System reservation	55	37	ICR39	320н	000FFF20н	
System reservation	56	38	ICR40	31Cн	000FFF1Cн	
System reservation	57	39	ICR41	318 _H	000FFF18н	
System reservation	58	3A	ICR42	314н	000FFF14н	
System reservation	59	3B	ICR43	310н	000FFF10н	
System reservation	60	3C	ICR44	30Cн	000FFF0Cн	
System reservation	61	3D	ICR45	308н	000FFF08н	
System reservation	62	3E	ICR46	304н	000FFF04н	
Delay interrupt source bit	63	3F	ICR47	300н	000FFF00н	
System reservation (used under REALOS) *3	64	40		2FCн	000FFEFCH	
System reservation (used under REALOS) *3	65	41		2F8н	000FFEF8⊦	
Used under INT instruction	66 to 255	42 to FF		2F4н to 000н	000FFEF4н to 000FFC00н	

- *1 : ICRs are registers in the interrupt controller that set the interrupt levels for individual interrupt requests. An ICR is provided for each interrupt request.
- *2 : The TBR is the register that holds the start address of the EIT vector table. The address obtained by adding the offset value defined for each EIT to the TBR value is used as the vector address.
- *3 : When REALOS/FR is used, 0x40 and 0x41 interrupts are used for system code.
- Reference : The EIT vector area is one kilobyte long starting at the address held in the TBR. The size for each vector is four bytes. Vector numbers and vector addresses have the following relationships:
 - vctadr = TBR + vctofs
 - = TBR + (3FC H 4 \times vct)

vctadr : vector address, vctofs : vector offset, vct : vector number

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$(V_{00}) = 0 V_{1}$

Paramotor	Symbol	Rat	ing	Unit	Pomarke
i arameter	Symbol	Min	Мах	Unit	itema ka
Power supply voltage	Vcc	Vss - 0.3	Vss + 4.0	V	
Input voltage	Vı	Vss – 0.3	Vcc + 0.3	V	
Output voltage	Vo	Vss – 0.3	Vcc + 0.3	V	
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	*4
Total maximum clamp current	Σ Iclamp		20	mA	*4
"L" level maximum output current	lol		10	mA	*1
"L" level average output current	OLAV		4	mA	*2
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ Iolav		50	mA	*3
"H" level maximum output current	Іон		- 10	mA	*1
"H" level average output current	ОНАУ		- 4	mA	*2
"H" level total maximum output current	ΣІон		- 50	mA	
"H" level total average output current	ΣΙοήαν		- 20	mA	*3
Power consumption	Pd		500	mW	
Operating temperature	Та	- 30	+ 70	°C	
Storage temperature	Tstg	- 55	+ 150	°C	

*1 : The maximum output current specifies the peak current for the relevant single pin.

*2 : The average output current specifies the mean value of the current flowing in the relevant single pin during a period of 100 ms.

- *3 : The average total output current specifies the mean value of the currents flowing in all of the relevant pins during a period of 100 ms.
- *4 : Applicable to pins: P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70, P80 to P85, PA0 to PA6, PB0 to PB7, PD0 to PD3, PE0 to PE7, PF0 to PF7
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.

(Continued)

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0 V)

Paramatar	Symbol	Value		Unit	Remarks	
Farameter	Symbol	Min	Max	Unit	Remarks	
Power supply voltage	Vcc	3.0	3.6	V	At normal operating	
		2.0	3.6		Keeping RAM status in the case of stopping	
Operating temperature	Та	- 30	+ 70	°C		

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

				(Vcc = 3.3	$V\pm0.3$ V, V	Vss = 0 V, Ta	a = -30	°C to +70 °C)
Paramotor	Sym-	Din	Condition		Value		Unit	Pomarke
Farameter	bol	F 111	Condition	Min	Тур	Max	Unit	Remains
"H" level input voltage	Vihs	Hysteresis input pin	_	0.8 imes Vcc	—	Vcc + 0.3	V	*
"L" level input voltage	Vils	Hysteresis input pin	_	Vss - 0.3	_	0.2 imes Vcc	V	*
"H" level output voltage	Vон	Port2 to PortF	Vcc = 3.3 V Іон = — 4.0 mA	Vcc - 0.5	_		V	
"L" level output voltage	Vol	Port2 to PortF	Vcc = 3.3V loL = 4.0 mA		_	0.4	V	
Input leak current	lu	Port2 to PortF	Vcc = 3.6 V Vss < VI < Vcc		_	± 5	μΑ	
	Icc		25 MHz Vcc = 3.3 V		75	100	mA	
Power supply current	Iccs	VCC	25 MHz Vcc = 3.3 V	—	60	85	mA	at sleep mode
	Іссн		Ta = + 25 °C Vcc = 3.3 V	—	10	150	μΑ	at stop mode
Input capacitance	CIN	Without VCC, VSS		_	10	_	pF	

* : See "■ I/O CIRCUIT TYPE"

4. AC Characteristics

(1) Clock Timing

(Vcc = 3.3 V \pm 0.3 V, Vss = 0 V, Ta = -30 °C to +70 °C)

Parameter		Symbol			lue	Unit	Romarks	
Faramete	1	Symbol	Condition	Min	Max	Unit	Remarks	
Clock frequency (High-speed • self o	scillation)			10	25	MHz	Range in which self oscillation is allowed	
Clock frequency (High-speed • PLL using)		fc		10	25	MHz	Range in which self oscillation and external clock input is allowed*1	
Clock frequency (High-speed • 1/2 cycle input)				10	25	MHz	Range in which external clock input is allowed	
Clock cycle time		tc		40	100	ns		
Input clock pulse wi	dth	Pwh, Pwl		9.5		ns		
Input clock Rise/fall time		tcr tcr	_		8	ns	(tcr + tcf)	
Internal operating	CPU system	fср		0.625*2	25	MHz		
clock nequency	Peripheral	fсрр		0.625* ²	25	MHz		
Internal operating	CPU system	tcp		40	1600* ²	ns		
	Peripheral	t lcpp		40	1600* ²	ns		

*1 : A multiplication factor of 1 or 2 can be selected for the PLL. It is however restricted depending on the operating oscillation frequency.

Do not set the PLL multiplication factor to 2 when the oscillation frequency exceeds 12.5 MHz.

*2 : This value is obtained when an oscillation circuit divide ratio of 2 and a gear cycle of 1/8 are used with a minimum clock frequency of 10 MHz input to X0.

(2) Clock Output Timing

(Vcc = 3.3 V ± 0.3 V, Vss = 0 V, Ta = -30 °C to +70 °C)

Paramotor	Symbol	Din	Condition	Value		Unit	Pomarke
Farameter	Symbol			Min	Max	Onic	Nema K5
Cycle time	tcyc	CLK		tcp	—	ns	*1
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK] _	$1/2 \times t$ cyc -10	$1/2 \times t_{CYC} + 10$	ns	*2
$CLK \downarrow \to CLK \uparrow$	tсьсн	CLK		$1/2 \times t$ cyc -10	$1/2 \times t_{CYC} + 10$	ns	*3

*1 : tcvc is frequency of 1 clock cycle including the gear cycle.

*2 : The values assume a gear cycle of \times 1.

When a gear cycle of 1/2, 1/4, or 1/8 is specified, substitute "n" in the following equations with 1/2, 1/4, 1/8, respectively.

Min : $(1 - n / 2) \times t_{CYC} - 10$ Max : $(1 - n / 2) \times t_{CYC} + 10$

*3 : The values assume a gear cycle of \times 1. When a gear cycle of 1/2, 1/4, or 1/8 is specified, substitute "n" in the following equations with 1/2, 1/4, 1/8, respectively Min : n / 2 × tcyc - 10

Max : $n/2 \times tcyc = 10$ Max : $n/2 \times tcyc + 10$

Clock output timing

(3) Reset Input

			(Vc	$c = 3.3 \text{ V} \pm 0$.3 V, Vss = 0	V, Ta = -30	°C to +70 °C)
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Romarks
i arameter	Symbol		Condition	Min	Max	onic	Nema K5
Reset input time	t rstl	RST		$t_{\text{CP}} imes 5$		ns	

(4) Power-on reset

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Ta} = -30 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin		Condition	Va	lue	Unit	Pomarks	
Faranieter	Symbol	ГШ	Condition	Min	Max	Onic	Remarks	
Power rising time	tĸ	VCC	Vcc = 3.3 V		20	ms	Vcc is less than 0.2 V before power is turned on.	
Power supply cutoff time	toff	VCC		2		ms		

(5) Normal Bus Access Read/Write Operation

(-)			(Vc	$c = 3.3 \text{ V} \pm 0.3$	V, Vss = 0 V, Ta =	= -30 °C	C to +70 °C)
Paramotor	Symbol	Din	Condition	Va	alue	Unit	Pomarke
Faiailletei	Symbol	• •••	Condition	Min	Мах	Unit	Remarks
CS0 to CS5 delay time	t cHcs∟	CLK,			15	ns	
	t chcsh	$\overline{\text{CS0}}$ to $\overline{\text{CS5}}$			15	ns	
Address delay time	t CHAV	CLK, A24 to A00		—	15	ns	
Data delay time	t CHDV	CLK, D31 to D16		_	15	ns	
RD delay time	t clrl	CLK,			15	ns	
	t clrh	RD			15	ns	
WR0 WR1 delay time	t CLWL	CLK,			15	ns	
witte, witt delay line	t clwh	WR0, WR1			15	ns	
Valid address $ ightarrow$ valid data input time	t avdv	A24 to A00, D31 to D16		_	$3/2 imes t_{CYC} - 25$	ns	*
$\overline{RD} \downarrow \rightarrow$ valid data input time	t rldv			_	tcyc – 25	ns	*
Data set up → \overline{RD} ↑ time	t dsrh	RD, D31 to D16		25	_	ns	
$\overline{RD} \uparrow \rightarrow$ Data hold time	t RHDX			0	_	ns	

* : When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc × the number of cycles added for the delay) to this rating.

(6) Timeshared Bus Access Read/Write Operations

$(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -30 ^{\circ}\text{C} \text{ to } +70 ^{\circ}\text{C}$						°C to +70 °C)	
Parameter	Symbol	Pin	Condition	Value		Unit	Bomorko
	Symbol			Min	Max	Unit	itelliai ko
ALE dolov timo	tcllH2	CLK,		—	10		
	tCLLL2	ALE		—	10		
CS1 delay time	tchcsl2	CLK,		—	15		
	tchcsh2	CS1			15	ns	
Address delay time	tchav2	CLK,		_	15	ns	
Data delay time	tchdv2	D31 to D16			15	ns	
RD delay time	tclrl2	CLK,		_	10	ns	
	tclrh2	RD			10	ns	
$\overline{WR0}, \overline{WR1}$ delay time	tCLWL2	CLK,			10	ns	
$\overline{WR0}, \overline{WR1}$ pulse width	tclwH2	WR0, WR1			10	ns	
$\overline{RD}\downarrow \rightarrow$ valid data input time	t rldv2				tcyc – 25		*
Data set up $\rightarrow \overline{RD} \uparrow$ time	tdsrH2	RD, D31 to D16		25		ns	
RD ↑ → Data hold time	trhdx2			0		ns	

* : When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc × the number of cycles added for the delay) to this rating.

(7) Ready Input Timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -30 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$

Parameter Svi	Symbol	Din	Condition	Value		Unit	Pomarke
Farameter	Symbol	ГШ		Min	Max	Onit	Nema K5
RDY setup time \rightarrow CLK \downarrow	t RDYS	CLK, RDY		15	—	ns	
$CLK \downarrow \to RDY$ hold time	t rdyh	CLK, RDY		0		ns	

(8) Holding Timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -30 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$

Paramotor	Parameter Symbol Pin	Din	Condition	Value		Unit	Bomorko
Farameter		FIII		Min	Max	Onic	itema ka
BCPNT delay time	t CHBGL	CLK,		—	10	ns	
DORINI delay time	t снвдн	BGRNT		—	10	ns	
$\begin{array}{l} \text{Pin floating} \\ \rightarrow \text{BGRNT} \downarrow \text{time} \end{array}$	t xhal	BGRNT		tcvc – 10	tcyc + 10	ns	
$\overline{BGRNT} \uparrow \rightarrow Pin valid time$	tнанv			tcyc – 10	tcyc + 10	ns	

Note : More than one cycle is required for $\overline{\text{BGRNT}}$ to change after BRQ is input.

(9) UART Timing

$(v_{CC} - 3.5, v_{\perp}, 0.5, v_{\gamma}, v_{SS} - 0, v_{\gamma}, 1a30, C, 10 + 7)$						(0+10, 0)	
Paramotor	Symbol	Din	Condition	Value		Unit	Pomarke
Falanetei	Symbol	ЕШ	Condition	Min	Max	Onic	Remains
Serial clock cycle time	t scyc			8 tcycp*		ns	
$SCK \downarrow \ \to SO \text{ delay time}$	t slov		Internal	- 10	+ 50	ns	
$Valid\;SI\toSCK\;\uparrow$	tıvsн		shift clock	50		ns	
$SCK \uparrow \rightarrow valid$ SI hold time	tsнıx		mode	50	_	ns	
Serial clock "H" pulse width	ts∺s∟			4 tcycp* - 10		ns	
Serial clock "L" pulse width	t slsh		External shift clock mode	4 tcycp* - 10	_	ns	
$SCK \downarrow \to SO$ delay time	t slov			0	50	ns	
$Valid\;SI\toSCK\;\uparrow$	tıvsн			50		ns	
$SCK \uparrow \rightarrow valid$ SI hold time	tsнıx	_		50	_	ns	
Serial busy time	t BUSY			—	6 tcycp*	ns	
$SCS \downarrow \rightarrow SCK, SO delay time$	tclzo			—	50	ns	
$SCS \downarrow \rightarrow$ SCK input mask time	t clsl				3 tcycp*	ns	
$SCS \uparrow \rightarrow SCK, SO High-Z time$	tсноz			50	_	ns	

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -30 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$

*: tcycp: Peripheral clock cycle time

Internal shift clock mode

External shift clock mode

(10) Trigger Input Timing

(Vcc = 3.3 V \pm 0.3 V, Vss = 0 V, Ta = -30 °C to +70 °C)

Paramotor	Symbol	Din	Condition	Value		Unit	Pomarke
Faranieter	Symbol	ГШ	Condition	Min	Max	Unit	Rellial KS
Input pulse width	ttrgh ttrgl	INT0 to INT5		5 tcycp*	_	ns	
* : tcyce : Peripheral clock cycle time							

■ EXAMPLE CHARACTERISTICS

(3) Power supply current Ta = +25 °C

(4) Power supply current at sleep mode $Ta = +25 \degree C$

ORDERING INFORMATION

Part number	Package	Remarks
MB91126	100-pin Plastic LQFP (FPT-100P-M05)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0303 © FUJITSU LIMITED Printed in Japan