TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA2026SN, TA2026F

UNBALANCED TO BALANCES SIGNAL CONVERTER

The TA2026SN, TA2026F are unbalanced to balanced signal converter I_C for component type car audio equipments. Noise level of audio signal increases by ground noise and induction noise while transfered between head unit and other equipments.

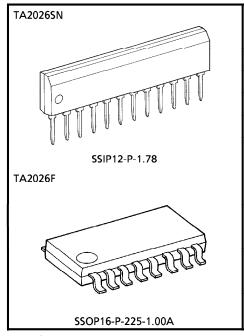
To reduce these effect, balanced signal transfer system is effective

TA2026SN, TA2026F have built-in dual balanced signal output amplifier and audio muting circuit.

In application with ground isolator I_C; TA8181SN, TA8181F for line input stage, high performance balanced signal transfer system can be composed.

FEATURES

- Dual Channel
- Voltage Gain : G_V = 6dB (Typ.)
- Maximum Output Voltage


- Total Harmonic Distortion
 - : THD = 0.004% (Typ.) (V_{CC} = 8V, f = 1kHz, V_{out} = 1V_{rms})
- Output Noise Voltage

:
$$V_{NO} = 1.8 \mu V_{rms}$$
 (Typ.)
($V_{CC} = 8V$, $R_q = 620 \Omega$, $BW = 20 Hz \sim 20 kHz$)

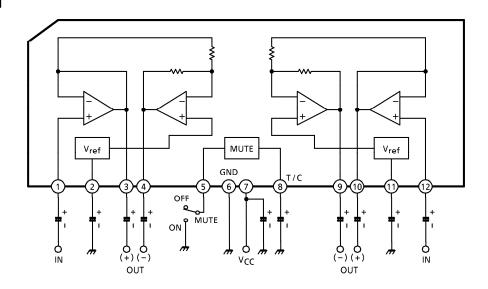
- Audio Muting Circuit
 - : ATT = -90dB (Typ.)
- Small Package
 - : 1.778mm pitch Shrink Single In-line 12pin : TA2026SN

1.0mm pitch mini flat 16pin : TA2026F

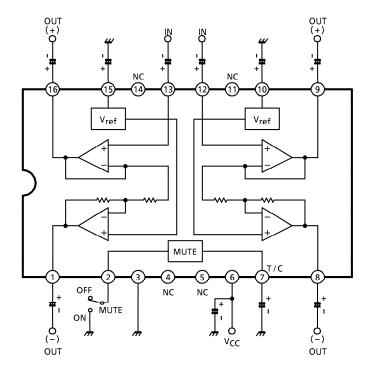
- Operating Supply Voltage Range
 - : $V_{CC (opr.)} = 5 \sim 12V (Ta = 25^{\circ}C)$

Weight

SSIP12-P-1.78 : 0.65g (Typ.) SSOP16-P-225-1.00A : 0.14g (Typ.)


961001EBA

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- The products described in this document are subject to foreign exchange and foreign trade control laws.


 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

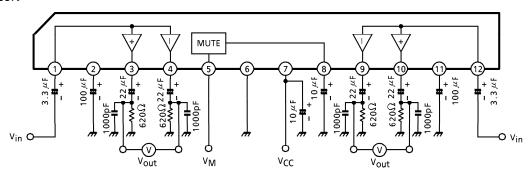
BLOCK DIAGRAM

TA2026SN

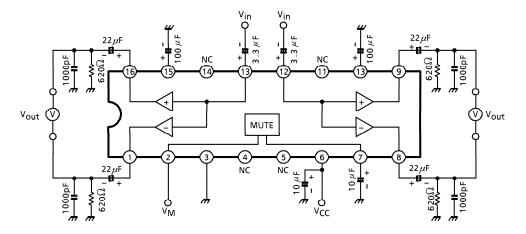
TA2026F

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Supply Voltage		Vcc	15	V	
Power	TA2026SN	Dr. (Noto)	750	mW	
Dissipation	TA2026F	P _D (Note)	350		
Operating Temperature		T _{opr}	- 30∼85	°C	
Storage Temperature		T _{stg}	- 55∼150	°C	

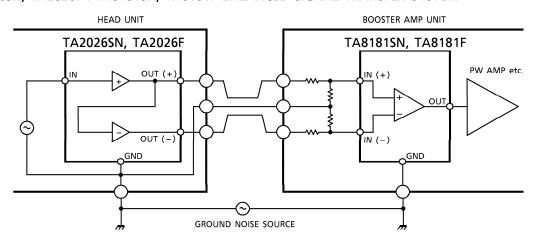

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$ for TA2026SN, $2.8mW/^{\circ}C$ for TA2026F.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 8V$, f = 1kHz, $R_L = 620\Omega$, $Ta = 25^{\circ}C$)

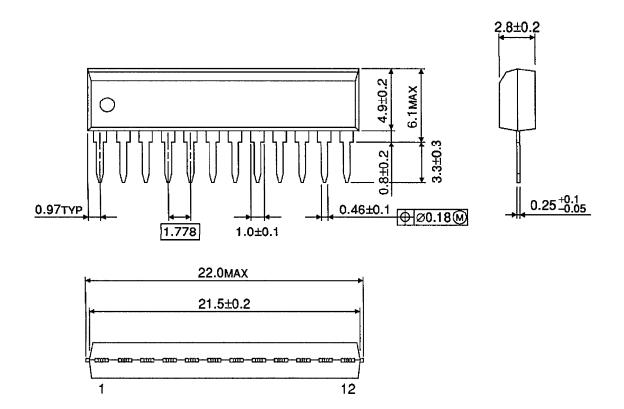

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	МАХ.	UNIT
Quiescent Current	lccQ	_	V _{in} = 0	6	11	17	mA
Voltage Gain	G _V	_	Balanced output gain	4.0	5.7	8.0	dB
	G _V (+)	_	Non-inverting gain	- 1.5	- 0.5	+ 0.5	
	G _v (-)	_	Inverting gain	- 1.5	- 0.5	+ 0.5	
Gain Tracking	∆G _V	_	$G_{V}(+) - G_{V}(-)$	- 1.0	0	+ 1.0	dB
Maximum Output Voltage	V _{om}	_	THD = 0.1%	2.5	3.1	_	V _{rms}
Total Harmonic Distortion	THD		V _{out} = 1V _{rms}	_	0.004	0.01	%
Output Noise Voltage	v _{no}		$R_g = 620\Omega$, Filter BW = 20Hz~20kHz	_	1.8	3.0	μ Vrms
Cross Talk	C.T.	_	$V_{out} = 2V_{rms}$	_	- 70	- 60	dB
Ripple Rejection Ratio	R.R.		$V_{rip} = 1V_{rms}$, $f_{rip} = 100Hz$, $R_g = 620\Omega$	_	- 60	- 50	dB
Mute Attenuation	ATT	_	Ref: V _{out} = 2V _{rms}	_	- 90	- 80	dB
Mute ON Control	VM ON	_	MUTE = ON	0	_	1.0	V
Voltage	VM OFF	_	MUTE = OFF	3.0	_	Vcc] '
Input Resistance	R _{IN}	_	_	_	100	_	kΩ

TEST CIRCUIT

TA2026SN



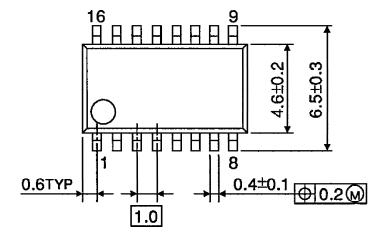
TA2026F

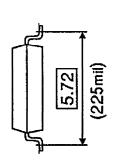

APPLICATION CIRCUIT

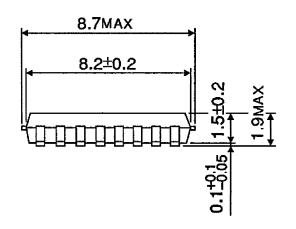
TA2026SN, TA2026F + TA8181SN, TA8181F BALANCED SIGNAL TRANSFER SYSTEM

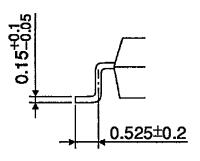
OUTLINE DRAWING

Unit: mm SSIP12-P-1.78




Weight: 0.65g (Typ.)


Unit: mm


OUTLINE DRAWING

SSOP16-P-225-1.00A

Weight: 0.14g (Typ.)