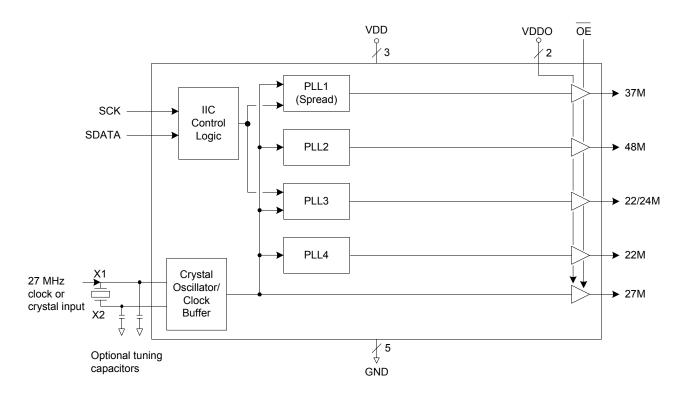
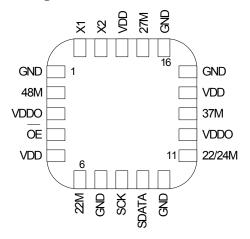


Clock Synthesizer for Portable Systems


Description

The ICS1493-17 is a low-power, low-jitter clock synthesizer designed to replace multiple crystals and oscillators in portable audio/video systems. The device generates a 37 MHz processor clock, a 48 MHz USB clock, a fixed 22.5792 MHz audio clock, a selectable 24.576 MHz or 22.5792 MHz audio clock, and a 27MHz reference clock for video. Using ICS' proprietary mix of analog and digital Phase-Locked Loop (PLL) technology, the device spreads the frequency spectrum of the 37 MHz output, reducing the peak amplitude of by up to 16 dB. An output enable (OE) pin lowers the chip power consumption while tri-stating all outputs.

Features


- Extremely low operating current (11 mA)
- Packaged in 20-pin QFN (Pb-free)
- Input crystal or clock frequency of 27 MHz
- Output reference frequency of 27 MHz
- Fixed output frequencies of 37 MHz, 48 MHz and 22.5792 MHz
- Selectable output frequency of either 22.5792 MHz or 24.576 MHz
- Configurable spread spectrum on 37 MHz output
- Operating core voltage of 1.8 V
- Output voltage of 1.8 V or 2.5 V
- Advanced, low-power CMOS process

Block Diagram

Pin Assignment

20-pin QFN

Output Enable Table

ŌĒ	Clock Output State					
0	Normal Operation					
1	Hi-Z					

Note: $\overline{\mathsf{OE}}$ pin has an internal pull-down resistor.

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description	
1	GND	Power	Connect to ground.	
2	48M	Output	48 MHz clock output. High impedance state when $\overline{\text{OE}}$ =1.	
3	VDDO	Power	Output voltage level. Connect to +1.8 or 2.5 V. Same voltage as pin 12.	
4	ŌE	Input	Output Enable pin. See table above. Internal pull-down resistor.	
5	VDD	Power	Connect to +1.8 V.	
6	22M	Output	22.5792 MHz clock output. Internal pull-down. High impedance state when $\overline{\text{OE}}$ =1.	
7	GND	Power	Connect to ground.	
8	SCK	Input	I ² C bus clock pin. Internal pull-up resistor.	
9	SDATA	Input	I ² C bus data pin. Internal pull-up resistor.	
10	GND	Power	Connect to ground.	
11	22/24M	Output	Selectable output clock of either 22.5792M or 24.576M. See table. Internal pull-down. High impedance state. \overline{OE} =1.	
12	VDDO	Power	Output voltage level. Connect to +1.8 or 2.5 V. Same voltage as pin 3.	
13	37M	Output	Spread spectrum 37 MHz clock output. See table. Internal pull-down. High impedance state when OE=1.	
14	VDD	Power	Connect to +1.8 V.	
15	GND	Power	Connect to ground.	
16	GND	Power	Connect to ground.	
17	27M	Output	27 MHz reference clock output. Internal pull-down. High impedance state when $\overline{\text{OE}}$ =1.	

Pin Number	Pin Name	Pin Type	Pin Description		
18	VDD	Power	Connect to +1.8 V.		
19	X2	Output	Connect to 27 MHz crystal or float for clock input.		
20	X1	Input	Crystal connection. Connect to 27 MHz crystal or clock input.		

External Components

Decoupling Capacitor

As with any high-performance mixed-signal IC, the ICS1493-17 must be isolated from system power supply noise to perform optimally.

A decoupling capacitor of 0.01µF must be connected between each VDD and the PCB ground plane.

Series Termination Resistor

Clock output traces over one inch should use series termination. To series terminate a 50Ω trace (a commonly used trace impedance), place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω .

I²C External Resistor Connection

The SCK and SDATA pins can be connected to any voltage between 1.71 V and 2.625 V.

Crystal Load Capacitors

No external crystal load capacitors are required. To save discrete component cost, the ICS1493-17 integrates on-chip capacitance to support a crystal with CL=10 pF. It is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device.

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

- 1) The $0.01\mu F$ decoupling capacitors should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between the decoupling capacitors and VDD pins. The PCB trace to VDD pins should be kept as short as possible, as should the PCB trace to the ground via.
- 2) The external crystal should be mounted just next to the device with short traces. The X1 and X2 traces should not be routed next to each other with minimum spaces, instead they should be separated and away from other traces.
- 3) To minimize EMI, the 33Ω series termination resistor should be placed close to the clock output.
- 4) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers. Other signal traces should be routed away from the ICS1493-17. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS1493-17. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	-0.5 V to 5 V
All Inputs	-0.5 V to VDD+0.5 V
All Outputs	-0.5 V to 2.5V+0.5 V
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C
ESD (HBM)	2000V min.
MSL (Moisture Sensitivity Level)	3

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-10		+80	°C
Power Supply Voltage (measured in respect to GND)	+1.70		+2.00	V
Output Power Supply Voltage (with respect to GND)	+1.71		+2.625	V

DC Electrical Characteristics

Unless stated otherwise, VDD = 1.8 V -0.1 V/+0.2 V, VDDO=2.5 V ±5%, Ambient Temp -10°C to +80°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		1.7		2.0	V
Supply Current	IDD	No load,VDDO=2.5 V		13	16	mA
		No load,VDDO=1.8 V		11	15	mA
Input High Voltage	V _{IH}		0.7VDD			V
Input Low Voltage	V _{IL}				0.3VDD	V
Output High Voltage	V _{OH}	I _{OH} = -2 mA	0.8VDDO			V
Output Low Voltage	V _{OL}	$I_{OL} = +2 \text{ mA}$			0.2VDDO	V
Input Capacitance, inputs	C _{IN}			5		pF
Load Capacitance, X1 and X2	C _L	No internal load capacitance		5		pF

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Internal Pull-down Resistor	R _{PD}	OE, 48M, 22M, 22/24M, 37M, 27M	75	250		kΩ
Internal Pull-up Resistor	R _{Pu}	SCK, SDATA	100	500		kΩ

AC Electrical Characteristics

Unless stated otherwise, VDDO = 2.5 V ±5%, Ambient Temperature -10°C to +80°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency	f _{IN}			27		MHz
Output Rise Time	t _{OR}	20% to 80%, Note 1	0.7	1.5	2.2	ns
Output Fall Time	t _{OF}	80% to 20%, Note 1	0.7	1.5	2.2	ns
Output Impedance	R _O	VO=VDDO/2	33	46	68	Ω
Output Clock Duty Cycle		VDDO/2, 27 MHz, Note 1	40	50	60	%
		VDDO/2, Note 1	45	50	55	%
Frequency Synthesis Error		All outputs		0		ppm
Modulation Rate			30	35	40	kHz
Short Term Jitter		Cycle-to-Cycle		150	300	ps
Long Term Jitter		27 MHz, n=1000			600	ps
Long Term Jitter		48 MHz, n=1000			800	ps
Long Term Jitter		22M and 22/24M, n=1000			1.2	ns
Long Term Jitter		37 MHz non-spread, n=1000		1.5	6	ns
Power-up Time	t _{PU}	From minimum VDD to outputs stable		1.5	3	ms
Output Enable Time					50	ns
Output Disable Time					20	ns
Switching Time		22/24M, Note 2			100	ns

Note 1: Measured with a 5 pF load.

Note 2: Finish from prior cycle to start of new cycle.

AC Electrical Characteristics

Unless stated otherwise, **VDDO = 1.8 V ±0.1 V**, Ambient Temperature -10°C to +80°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency	f _{IN}			27		MHz
Output Rise Time	t _{OR}	20% to 80%, Note 1	1.1	2.2	3.3	ns
Output Fall Time	t _{OF}	80% to 20%, Note 1	1.1	2.2	3.3	ns
Output Impedance	R _O	VO=VDDO/2	33	46	68	Ω
Output Clock Duty Cycle		VDDO/2, 27 MHz, Note 1	40	50	60	%
		VDDO/2, Note 1	45	50	55	%
Absolute Clock Period Jitter		Note 1		± 225		ps
Frequency Synthesis Error		All outputs		0		ppm
Modulation Rate			30	35	40	kHz
Short Term Jitter		Cycle-to-cycle		225	375	ps
Long Term Jitter		27 MHz, n=1000			900	ps
Long Term Jitter		48 MHz, n=1000			750	ps
Long Term Jitter		22M and 22/24M, n=1000			1200	ps
Long Term Jitter		37 MHz, n=1000		2.5	9	ns
Power-up Time	t _{PU}	From minimum VDD to outputs stable		1.5	4	ms
Output Enable Time					50	ns
Output Disable Time					20	ns
Switching Time		22/24M, Note 2			250	ns

Note 1: Measured with a 5 pF load.

Note 2: Finish from prior cycle to start of new cycle.

Serial Data Interface

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in the following table.

Bit	Description
7	0 = Block read or block write operation, 1 = Byte read or byte write operation
(6:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'.

The block write and block read protocol is outlined in the table below, followed by the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h).

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address - 7 bits	2:8	Slave address - 7 bits
9	Write = 0	9	Write = 0
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command code — 8 bit '00000000' stands for block operation	11:18	Command code - 8 bit '00000000' stands for block operation
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Byte count — 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address — 7 bits
29:36	Data byte 0 — 8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
38:45	Data byte 1 — 8 bits	30:37	Byte count from slave — 8 bits
46	Acknowledge from slave	38	Acknowledge from master
		39:46	Data byte from slave — 8 bits
	Data byte (N-1) — 8 bits	47	Acknowledge from master
	Acknowledge from slave	48:55	Data byte from slave — 8 bits
	Data byte N — 8 bits	56	Acknowledge from master
	Acknowledge from slave		Data byte N from slave — 8 bits
	Stop		Not Acknowledge from master
			Stop

.

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address - 7 bits	2:8	Slave address - 7 bits
9	Write = 0	9	Write = 0
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command code — 8 bit '10000000' stands for byte operation, bits[1:0] of the command code represents the offset of the byte to be accessed	11:18	Command code — 8 bit '10000000' stands for byte operation, bits[1:0] of the command code represents the offset of the byte to be accessed
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte from master— 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address — 7 bits
29	Stop	28	Read = 1
		29	Acknowledge from slave
		30:37	Data byte from slave — 8 bits
		38	Not Acknowledge from master
		39	Stop

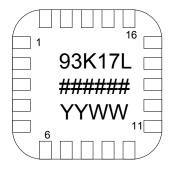
Byte 0: Vendor ID, Revision Code

Bit	@Pup	Pup Name Description	
7	0	Revision Code(MSB)	Revision Code
6	0	Revision Code	Revision Code
5	0	Revision Code	Revision Code
4	1	Revision Code(LSB)	Revision Code
3	1	Vendor ID(MSB)	Vendor ID
2	1	Vendor ID	Vendor ID
1	1	Vendor ID	Vendor ID
0	1	Vendor ID(LSB)	Vendor ID

Byte 1: Control Register

Bit	@Pup	Name	Description
7	1	REF	REF Output Enable 0 = Disable, Output pulled low, 1 = Enable
6	1	37SS	37SS Output Enable 0 = Disable, Output pulled low, corresponding PLL shut off. 1 = Enable
5	1	48M	48M Output Enable 0 = Disable, Output pulled low, 1 = Enable
4	1	22/24M	22/24M Clock Output Enable 0 = Disable, Output pulled low, 1 = Enable
3	0	22M	22M Output Enable 0 = Disable, Output pulled low and corresponding PLL off, 1 = Enable
2	1	Reserved	Reserved
1	1	Reserved	Reserved
0	1	22/24M SEL	22/24M Clock Select 1 = 24.576 MHz, 0 = 22.5792 MHz

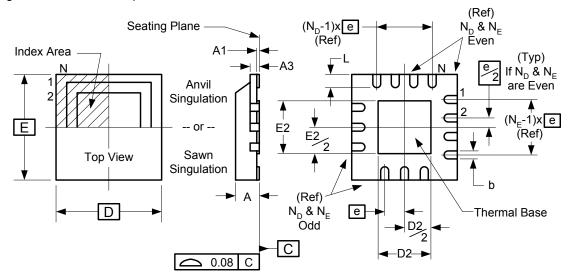
Byte 2: Control Register


Bit	@Pup	Name	Description	
7	0	Reserved	Reserved	
6	0	Reserved	Reserved	
5	0	Reserved	Reserved	
4	0	Reserved	Reserved	
3	0	Reserved	Reserved	
2	0	SS Table	Bit 2:0=000: No Spread Bit 2:0=001: -0.5% Spread	
1	1	SS Table	Bit 2:0=010:-1.0% Spread Bit 2:0=011: No Spread Bit 2:0=100: -2.0% Spread	
0	0	SS Table	Bit 2:0=100: -2:0% Spread Bit 2:0=110: -3:0% Spread Bit 2:0=111: No Spread	

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		39		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		36		°C/W
	$\theta_{\sf JA}$	2.5 m/s air flow		34		°C/W

Marking Diagram


Notes:

- 1. ##### is the lot code.
- 2. YYWW is the last two digits of the year and the week number that the part was assembled.
- 3. "L" denotes Pb (lead) free package.
- 4. Bottom marking: (origin). Origin = country of origin if not USA.

Package Outline and Package Dimensions (20-pin QFN)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters			
Symbol	Min	Max		
Α	0.80	1.00		
A1	0	0.05		
A3	0.20 Reference			
b	0.18	0.30		
е	0.50 BASIC			
N	20			
N _D	5			
N _E	5			
D x E BASIC	4.00 x 4.00			
D2	1.95	2.25		
E2	1.95	2.25		
L	0.45	0.75		

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
ICS1493K-17LF	see page 10	Tubes	20-pin QFN	-10 to +80°C
ICS1493K-17LFT		Tape and Reel	20-pin QFN	-10 to +80°C

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.