\\ \title{
Audio Signal-Processing IC with I/O Switching
}\\ \title{
Audio Signal-Processing IC with I/O Switching
}

Overview

The LA8522M is an I/O switching audio signal-processing IC for use in facsimile units and telephones. It integrates a crosspoint switch, a BTL power amplifier, an electronic volume control, a microphone amplifier, and other functions on a single chip.

Applications

Personal facsimile units and telephones

Functions

- Crosspoint switch (equivalent to an 4×4 switch)
- BTL power amplifier
- Electronic volume control
- Output level switching (ATT1: $0,-4,-8,-12 \mathrm{~dB}$, ATT2: $0,-6 \mathrm{~dB}$)
- Serial interface

Features

- Built-in BTL power amplifier (8 to 32Ω load): $\mathrm{V}_{\mathrm{CC}}=$ $5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega$, Pomax $=250 \mathrm{~mW}$
- Built-in electronic volume (seven 4.0 dB steps)
- Two output level switching circuits (4 positions and 2 positions)
- Crosspoint switch that supports mixing

Package Dimensions

unit: mm
3112A-MFP24S

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max		7	V
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}$ (Mounted on a glass-epoxy board: $114.3 \times 76.1 \times 1.6 \mathrm{~mm}^{3}$)	550	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

| Parameter | Symbol | Conditions | Ratings |
| :--- | :---: | :---: | :---: | :---: |
| Recommended supply voltage | V_{CC} | | V |
| Allowable operating supply voltage range | $\mathrm{V}_{\mathrm{CCop}}$ | | 5 |

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Electrical Characteristics at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, fin $=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
[Crosspoint switch]						
Voltage gain	Gsw	Vin $=-14 \mathrm{dBV}$	-2.5	-0.5	1.5	dB
Maximum input level	Vimax	THD $=1.5 \%$	-14	-10		dBV
Output noise voltage	Nosw	20 to 20 kHz		15	60	$\mu \mathrm{V}$ rms
[AMP1]						
Voltage gain	G1	Vin $=-43 \mathrm{dBV}$	28.2	29.2	30.2	dB
Output total harmonic distortion	THD1	Vin $=-43 \mathrm{dBV}$		0.15	1.5	\%
Equivalent input noise voltage	Niamp1	$\mathrm{Rg}=620 \Omega$, 20 to 20 kHz		2.0	7.0	$\mu \mathrm{Vrms}$
[AMP2]						
Voltage gain	G2	Vin $=-34 \mathrm{dBV}$	18.2	19.2	20.2	dB
Output total harmonic distortion	THD2	Vin $=-34 \mathrm{dBV}$		0.16	1.5	\%
[AMP3]						
Output level	$\mathrm{V}_{\mathrm{O}} 3$	$\begin{aligned} & \mathrm{Vin}=-14 \mathrm{dBV}, \text { IN (7), OUT (22), } \\ & \text { sw (101101) on } \end{aligned}$	-10.8	-8.3	-5.8	dBV
Output total harmonic distortion	THD3	$\begin{aligned} & \text { Vin = -14 dBV, IN (7), OUT (22), } \\ & \text { sw (101101) on } \end{aligned}$		0.31	1.5	\%
[AMP4]						
Output level	Vo4	$\begin{aligned} & \text { Vin }=-14 \mathrm{dBV}, \mathrm{IN}(8) \text {, OUT (21), } \\ & \text { sw (110111) on } \end{aligned}$	-10.7	-8.2	-5.7	dBV
Output total harmonic distortion	THD4	$\text { Vin = - } 14 \mathrm{dBV}, \text { IN (8), OUT (21), }$ sw (110111) on		0.30	1.5	\%
[AMP5]						
Output level	$\mathrm{V}_{\mathrm{O}} 5$	$\begin{aligned} & \text { Vin }=-26 \mathrm{dBV} \text {, IN (7), OUT (23), } \\ & \text { sw (010001) on } \end{aligned}$	-11.5	-9.0	-6.5	dBV
Output total harmonic distortion	THD5	Vin = -26 dBV , IN (7), OUT (23), sw (010001) on		0.17	1.5	\%
Maximum voltage gain						
AMP1	G1max		30			dB
AMP2	G2max		25			dB
AMP3	G3max		20			dB
AMP4	G4max		18	20		dB
AMP5	G5max		18	20		dB
Attenuator attenuation 1-1	Att1-1	Address (010101)	3.5	4.2	4.9	dB
Attenuator attenuation 1-2	Att1-2	Address (011001)	7.5	8.2	8.9	dB
Attenuator attenuation 1-3	Att1-3	Address (011101)	11.7	12.4	13.1	dB
Attenuator attenuation 2-1	Att2-1	Address (000101)	5.5	6.2	6.9	dB
Electronic volume control output level	$\mathrm{V}_{\text {oevr }}$	$\begin{aligned} & \text { Vin }=-42 \mathrm{dBV}, \text { IN (2), OUT (20), } \\ & \text { sw (010001) on } \end{aligned}$	-14.3	-12.2	-10.3	dBV
Electronic volume control step size	Wevr	$\begin{aligned} & \text { Vin }=-42 \mathrm{dBV} \text {, IN (2), OUT (20), } \\ & \text { sw (010010) on } \end{aligned}$	3.1	4.0	4.9	dB
Electronic volume control output noise voltage	$\mathrm{N}_{\text {oevr }}$	20 to 20 kHz , OUT (20)		25	60	$\mu \mathrm{V}$ rms
[BTL Power Amplifier]						
Voltage gain	VG ${ }_{\text {SPW }}$	Vin $=-20 \mathrm{dBV}, \mathrm{R}_{\mathrm{L}}=16 \Omega$	18.1	19.6	21.1	dB
Maximum voltage gain	VGp max		30			dB
Total harmonic distortion	THDpw	Vin $=-30 \mathrm{dBV}, \mathrm{R}_{\mathrm{L}}=16 \Omega$		0.8	1.5	\%
Maximum BTL output power	Po max	THD $=10 \%, \mathrm{R}_{\mathrm{L}}=16 \Omega$	250	400		mW
Ripple rejection ratio	SVRR	$\begin{aligned} & \mathrm{Rg}=620 \Omega \text {, frin }=100 \mathrm{~Hz} \text {, Vrin }=-20 \mathrm{dBV}, \\ & \mathrm{R}_{\mathrm{L}}=16 \Omega \end{aligned}$	40	50		dB
Output noise voltage	VNOpw	$\mathrm{Rg}=620 \Omega$, 20 to $20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=16 \Omega$		23	60	$\mu \mathrm{Vrms}$
[CPU Interface]						
Clock frequency	Fck				500	kHz
Input signal high level	V_{H}		2.1			V
Input signal low level	V_{L}				1.0	V
[$\mathrm{V}_{\text {REF }}$ and Current Drain]						
Internal reference voltage (the pin 10 voltage)	Vref		2.09	2.26	2.41	V
Quiescent current 1	Icco1	With the BTL power amplifier on and the crosspoint switch off		12.5	20	mA
Quiescent current 2	Icco2	With the BTL power amplifier off and the crosspoint switch off		7	11	mA

Block Diagram

Test Circuit Diagram

Application Circuit Diagram

Pin Functions

Continued on next page.

Continued from preceding page.

Continued on next page.

Continued from preceding page.

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Pin \& $$
\begin{gathered}
\text { Pin } \\
\text { voltage (V) }
\end{gathered}
$$ \& Notes \& Equivalent circuit

\hline 21 \& SW-OUT3 \& 2.25 \& Amplifier 7 output (Third SW output) \& A13751

\hline 22 \& SW-OUT2 \& 2.25 \& Amplifier 6 output (Second SW output) \& A13752

\hline 23

24 \& SW-OUT1

OP5-NF \& 2.25 \& Amplifier 5 output
(First SW output)
Amplifier 5 noise filter connection \& A13753

\hline 9 \& GND \& - \& Ground \&

\hline 13 \& V_{CC} \& 5 V applied \& Power supply \&

\hline 14 \& BTL-V ${ }_{\text {cc }}$ \& 5 V applied \& Power amplifier power supply \&

\hline 17 \& BTL-GND \& - \& Power amplifier ground \&

\hline
\end{tabular}

Serial Data Format (6-bit structure)*1

A13754
A6:0 $\quad \rightarrow$ Crosspoint switch (and other device) address setting (binary)
D $\quad \rightarrow$ Controls the crosspoint switch and power amplifier on/off state.
Electronic volume control and attenuator selection
$\mathrm{D}=1$: Crosspoint switch: on
$\mathrm{D}=0$: Crosspoint switch: off
*1. When 8-bit serial data input mode is used.
Since the serial data has a 6-bit structure, the first and second bits are unused when 8 -bit input mode is used.

Address table (Crosspoint switch)

[Data A4:0]

Input - Output	OUT1	OUT2	OUT3	OUT4
AMP1	10000	10100	11000	11100
AMP2	10001	10101	11001	11101
AMP3	10010	10110	11010	11110
AMP4	10011	10111	11011	11111

Other addresses [Data A4:0, D]

*2. When the reset value is issued, the D data value can be either 0 or 1 .
Notes 1. A reset command must be issued 200 ms after power is applied.
2. The electronic volume control is set to 0 dB by a reset (address: 00000*).
3. Attenuator 1 is set to 0 dB by a reset (address: 00000^{*}).
4. Attenuator 2 is set to 0 dB by a reset (address: 00000*).

Serial Data Timing

- fmax (Maximum clock frequency)
- $\mathrm{t}_{\text {WL }}$ (Low-level clock pulse width) At least $1 \mu \mathrm{~s}$
- ${ }^{\mathrm{WHH}}$ (High-level clock pulse width) At least $1 \mu \mathrm{~s}$
- ${ }^{\mathrm{C} S}$ (Chip enable setup time) At least $1 \mu \mathrm{~s}$
- ${ }^{\mathrm{C}}{ }^{\text {(Chip enable hold time) At least } 1 \mu \mathrm{~s}}$
${ }^{-} \mathrm{t}_{\text {DS }}$ (Data setup time) At least $1 \mu \mathrm{~s}$
- t_{DH} (Data hold time) At least $1 \mu \mathrm{~s}$
- t_{WC} (Chip enable pulse time) At least $1 \mu \mathrm{~s}$

Usage Notes

- Attenuator 1

Normally, attenuator 1 is set to 0 dB . It can be set to attenuate by $-4,-8$, or -12 dB by issuing serial data with a value of 010101, 011001, or 011101, respectively.

- Attenuator 2

Normally, attenuator 2 is set to 0 dB . It can be set to attenuate by -6 dB by issuing serial data with a value of 000101 .

- Power amplifier phase compensation capacitors (Values shown are examples for reference purposes.)

C1: $100 \mu \mathrm{~F}$
C2: $0.1 \mu \mathrm{~F}$
C3: $0.1 \mu \mathrm{~F}$
C4: $0.1 \mu \mathrm{~F}$
C5: $0.1 \mu \mathrm{~F}$
C6: $100 \mu \mathrm{~F}$
C7: 100 pF (The time constant will be under $10 \mu \mathrm{~s}$.)
SP8: 8 to 32Ω

- Voltage gain: 20 to 30 dB

Of the external components, the capacitors C 2 and C 3 are the power amplifier phase compensation capacitors. If these capacitors are located away from the IC pin due to layout considerations, the impedance relationship will result in a reduction in the phase compensation effect, and high band oscillator may occur.
Therefore, we recommend that the two capacitors C2 and C3 discussed above be located as close as possible to the IC pins in the layout. However, if you find that, due to layout relationships, the circuit tends to oscillate, we recommend that, rather than compensation using only capacitors, you use a phase compensation design with resistors (about 1 to 2.2Ω) inserted in series with the capacitors.
If the capacitor C7 is added to the feedback resistor path, the phase of the feedback path will be delayed and capacitors C 4 and C 5 will be required. Here, the time constant of the feedback resistor and C 7 must be $10 \mu \mathrm{~s}$ or less ($100 \mathrm{k} \Omega$, 100 pF).

- LA8522M ground line layout (See the figure on the following page.)

The LA8522M circuit blocks can be roughly classified as follows.

(1) Power amplifier system, (2) Crosspoint switch small-signal system

Since this block structure involves two significantly different circuit types, each block has independent VCC and ground pins. It is best if external devices are connected to the ground line for the corresponding block, and that finally the two block ground lines are connected to the power supply (regulator) ground, which is the final reference. In particular, the PCB pattern should be formed with two ground lines.
There are cases, however, where a single line is used for the power supply ground due to limitations on protruding PCB areas. In such cases, the ground line layout must be designed so that the sections of the ground line that carry large currents (the power amplifier block) are closer to the power supply ground (and thus have a lower impedance) than the sections of the ground line for circuits that draw smaller currents.
If the large currents drawn by the power amplifier pass through ground line that handles the lower currents from the small-signal processing blocks, the signal path may be influenced by the ground, loops may be created, and low-band oscillation may occur.
Therefore we recommend that the ground lines be designed as described above so that lines that carry larger amounts of current are connected the closest to the power supply ground that serves as the reference.

- Inter-pin shorting

This IC may be damaged or destroyed if power is applied with any pins shorted together. Therefore, when mounting this IC to a printed circuit board always check for pin shorting caused by stray solder or any other foreign material before applying power.

- Load shorting

This IC may be damaged or destroyed if it is operated for extended periods with the load shorted. Do not allow the load to be shorted.

- Maximum ratings

The slightest fluctuations in operating conditions may cause the ratings to be exceeded if this IC is operated in the vicinity of the maximum ratings. Since this can lead to destruction of the device, applications must be designed with adequate margins with respect to the power-supply voltage and other parameters so that the maximum ratings are never exceeded.

Continued from preceding page.

Ground Line Layout

BTL Amplifier Output Distortion Characteristics (1)

BTL Amplifier Output Distortion Characteristics (3)

BTL Amplifier Ripple Rejection Ratio V_{CC} Dependence

BTL Amplifier Output Distortion Characteristics (2)

BTL Amplifier Output Noise V_{CC} Dependence

BTL Amplifier Ripple Rejection Ratio I/O Characteristics

Electronic Volume Control Step Width VCC Dependence

No Signal Current Drain V_{CC} Dependence

Attenuator 1 Attenuation $V_{C C}$ Dependence

Attenuator 2 Attenuation V_{CC} Dependence

Crosstalk I/O Characteristics

BTL Amplifier Output Distortion Characteristics (4)

Output Amplifier Output Noise Temperature Dependence

Electronic Volume Control Step Width Temperature Dependence

Attenuator Attenuation Temperature Dependence

Attenuator Attenuation Temperature Dependence

Output level, $\mathrm{V}_{\mathrm{O}} 20-\mathrm{dBV}$

$\mathrm{V}_{\mathrm{NI}}-\mathrm{Ta}$

Amplifier 2 I/O Characteristics

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2002. Specifications and information herein are subject to change without notice.

