PRELIMINARY PRODUCT SPECIFICATIONS

Integrated Circuits Group

LRS1329 Stacked Chip 16M Flash and 2M SRAM

(Model No.: LRS1329)

Spec No.: MFM2-J11601 Issue Date: June 10, 1999

LRS1329

- SHARP
 - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
 - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - · Audiovisual equipment
 - · Home appliances
 - · Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-sale operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - · Gas leak detectors and automatic cutoff devices
 - · Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - · Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

L R S 1 3 2 9

Contents

1. Description
2. Pin Configuration
3. Truth Table · · · · · · · · · · · · · · · · · · ·
4. Block Diagram •••••• 4
5. Command Definitions for Flash Memory 5
6. Status Register Definition •••••••••••••••••••6
7. Memory Map for Flash Memory •••••• 7
8. Absolute Maximum Ratings 8
9. Recommended DC Operating Conditions
10. Pin Capacitance · · · · · · · · · · · · · · · · · · ·
11. DC Electrical Characteristics
12. AC Electrical Characteristics (Flash Memory) •••••••••••••••11
13. AC Electrical Characteristics (SRAM) ••••••••••••••••••••••••18
14. Data Retention Characteristics for SRAM ••••••••••••••••••••••••••••••21
15. Notes • • • • • • • • • • • • • • • • • • •
16. Flash Memory Data Protection · · · · · · · · · · · · · · · · · · 23
17. Design Consideration • • • • • • • • • • • • • • • • • • •

.

.

LRS1329

Part 1 Overview 1. Description The LRS1329 is a combination memory organized as 1M x16/2M x8 bit flash memory and 256K x8 bit static RAM in one package. Features 2.7 V to 3.6 V OPower supply -25°C to +85°C Operating temperature ONot designed or rated as radiation hardened O 72 pin CSP (LCSP072-P-0811) plastic package OFlash memory has P-type bulk silicon, and SRAM has P-type bulk silicon. Flash Memory •••• 100 ns (Max.) OAccess Time Opperating current (The current for $F-V_{cc}$ pin) $\cdot \cdot \cdot \cdot 25 \text{ mA} (Max. t_{CYCLE}=200 \text{ ns})$ Read $\cdot \cdot \cdot \cdot 17 \text{ mA} (Max.)$ Word/Byte write $\cdot \cdot \cdot \cdot 17 \text{ mA (Max.)}$ Block erase ODeep power down current (The current for $F-V_{cc}$ pin) $\cdot \cdot \cdot \cdot 10 \mu A$ (Max. $F-\overline{CE} \ge F-V_{cc} \cdot 0.2V$, $F \cdot \overline{RP} \leq 0.2V, F \cdot V_{PP} \leq 0.2V$ OOptimized Array Blocking Architecture Two 4K-word/8K-byte Boot Blocks/ Six 4K-word/8K-byte Parameter Blocks/ Thirty-one 32K-word/64K-byte Main Blocks/ Top Boot Location ○ Extended Cycling Capability 100,000 Block Erase Cycles O Enhanced Automated Suspend Options Word/Byte write Suspend to Read Block Erase Suspend to Word/Byte write Block Erase Suspend to Read SRAM 85 ns (Max.) OAccess Time , $\cdot \cdot \cdot \cdot 30 \text{ mA (Max.)}$ Operating current •••• 3 mA (Max. t_{RC} , $t_{WC}=1 \mu$ s) $\cdot \cdot \cdot \cdot 15 \ \mu A \ (Max.)$ OStandby current $\cdot \cdot \cdot \cdot 15 \ \mu \text{ A} (\text{Max.})$ OData retention current

LRS1329

2. Pin Configuration INDEX 2 3 7 4 5 6 8 9 10 11 12 F-DQ₁₅ /F-A.1 A 13 $(F \cdot GND)$ S-OE NC NC NC NC A₁₂ A NC NC A S·CE (F - DQ₁₄ S-CE A, A₁₆ DQ, S-WE A 10 B T₁ F · DQ13 DQ5 $F = \frac{F}{BY}$ · DQ12 DQ6 С F-WE F·RP T₂ (F · DQ₁₁ F·BYTE DQ, F · V_{cc} S - V_{cc} A₈ D FGND (Top View) F · DQ10 F • A19 T_3 T4 DQ_3 S-GND Ε F-WP DQ_1 F - DQ F F • A₁₇ NC A₁₄ DQ_2 A₇ F-GND A 15 F - DQ DQo A₁ A₅ G A₆ A, S - A₁₇ F·CE $(F \cdot \overline{OE})$ NC NC NC NC NC A₀ H NC A₃ A₂ Notes: All F-GND and S-GND pins must connect to GND. Two NC pins at the corner are connected. From T_1 to T_4 pins need to be open. Pin Description Address Inputs (Common) A_0 to A_{16} F-A.1, F-A17 to F-A18 Address Inputs (Flash) F-A.1: Not used in x16 mode. Address Input (SRAM) S-A17 F-CE Chip Enable (Flash) S-CE, , S-CE2 Chip Enable (SRAM) Write Enable (Flash) F-WE 1 S-WE Write Enable (SRAM) Output Enable (Flash) F-OE Output Enable (SRAM) S-OE F-RP Reset/Deep Power Down (Flash) Block erase and Word/Byte Write : V_{IH} or V_{HH} Read : VIH or V HB Deep Power Down : V_{IL} Write Protect (Flash) F-WP Two Boot Blocks Locked : V_{IL} (With F-RP=V NH Erase/Write can operate to all block) F-BYTE Byte Enable (Flash); x8 mode: V_{IL} x16 mode: V_{IH} F-RY/BY Ready/Busy (Flash) During an Erase or Write operation: V_{0L} Block Erase and Word/Byte Write Suspend: High-Z Deep Power Down : V_{OH} Data Input/Outputs (Common) DQ to DQ 7 F-DQ sto F-DQ 15 Data Inputs/Outputs (Flash); Not used in x8 mode. F-V_{cc} Power Supply (Flash) Power Supply (SRAM) S-V_{cc} F-V_{PP} Write, Erase Power Supply (Flash) Block Erase and Word/Byte Write: $F \cdot V_{PP} = V_{PPLK}$ All Blocks Locked : F-V_{PP} < V_{PPLK} F-GND GND (Flash) S-GND GND (SRAM) No Connect NC T_1 to T_4 Test pins (Should be open)

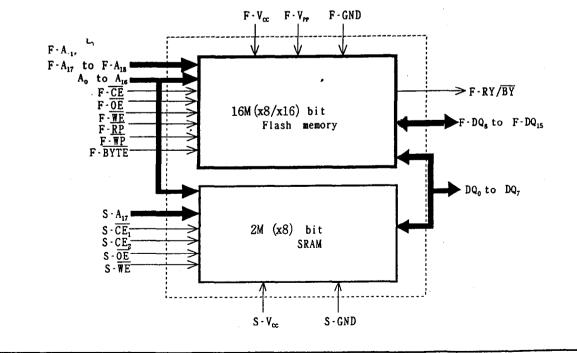
L R S 1 3 2 9

3. Truth Ta	ble (*1)												
Flash	SRAM	Note	F-CE	F-RP	FOE	F-WE	S-CE1	S-CE2	S-OE	S-WE	F-BYTI	DQ o to DQ o	F-DQ ₈ to F-DQ
Read		*4.5			L						H L	DO DOUT	UT High-Z
Output Disable	Standby		L	н	н	н		⊧7	x	x	H L		gh - Z
Write		*2, 3, 4			п	L					H L	DIN DIN	IN High-Z
Standby	Read	*6							L			DOUT	
	Output Disable	*6	H	н	x	x	L	н	HL	н	x	High-Z	High-Z
	Write	*6								L		DIN	
	Read	*6			x	x		L H	L	— Н		DOUT	
Reset Power Down	Output Disable	*6	x	L			X L		н		х	High-Z	High-Z
	Write	*6								L		DIN	
Standby '	Sha-dhu	*6	н	H	v	v		_	X	X	x	и:	a h - 7
Reset Power Down	Standby	*6	x	L	X	X	*	7	л	л	Λ	High-Z	

Notes) *1. $L=V_{1L}$, $H=V_{1H}$, X=H or L . Refer to DC Characteristics.

*2. Command writes involving block erase or word/byte write are reliably executed when $F \cdot V_{PP} = V_{PPH}$ and $F \cdot V_{CC} = 2.7V$ to 3.6V. Block erase or word/byte write with $V_{IH} < F \cdot \overline{RP} < V_{HH}$ produce spurious results and should not be attempted.

*3. Refer Section 5. Flash Memory Comand Definition for valid DIN during a write operation.


*4. Never hold $F-\overline{OE}$ low and $F-\overline{WE}$ low at the same timing.

*5. F-A.₁ set to V_{IL} or V_{IH} in byte mode $(F \cdot \overline{BYTE} = V_{IL})$.

- *6. F-WP set to V_{IL} or V_{IR}
- *7. See the following SRAM Standby mode.

SRAM	Standby Mod	e
Mode	$S-\overline{CE_1}$	S-CE ₂
SRAM	H	X
Standby	X	L

4. Block Diagram

5 Command Definitions for Flash Memory (*1)

		-	1	First Bus (Seco	Second Bus Cycle		
Command	Bus Cycles Req'd.	Note	0per (*2)	Address (*3)	Data (*3)	0per (*2)	Address (* 3)	Data (*3)
Read Array/Reset	1		Write	XA	FFH			
Read Identifier Codes	≥2	*4	Write	XA	90H	Read	IA	ID
Read Status Register	2		Write	XA	70H	Read	XA	SRD
Clear Status Register	1		Write	XA	50H			
Block Erase	2	*5	Write	BA	20H	Write	BA	DOH
Word/Byte Write	2	*5	Write	WA	40H or 10H	Write	WA	WD
Block Erase and Word/Byte Write Suspend	1	*5	Write	XA	BOH			
Block Erase and Word/Byte Write Resume	1	*5	Write	XA	DOH			

Note)

***1.** Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

*2. BUS operations are defined in 3. Truth Table.

***3.** XA=Any valid address within the device.

IA=Identifier Code Address.
BA=Address within the block being erased.
WA=Address of memory location to be written.
SRD=Data read from status register (See the next page"Status Register Definition").
WD=Data to be written at location WA. Data is latched on the rising edge of F-WE or F-CE (whichever goes high first).
ID=Data read from identifier codes.

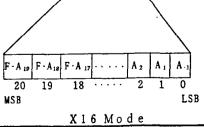
- ***4.** See the Following Identifier Codes.
- *5. See the following Write Protection Alternatives.

. Identi	fier Codes	
Codes	Address [A ₁₈ -A ₀]	Data [DQ ₇ ·DQ ₀]
Manufacture Code	00000H	BOH
Device Code	00001H	48 H

Write Protection Alternatives

Operation	F · V _{PP}	F-RP	FINP	Effect
	V _{IL}	X	X	All Blocks Locked.
Block Erase		V _{IL}	X	All Blocks Locked.
or Word/ByteWrite	>V _{pplk}	V	X	All Blocks Unlocked.
Word/Byte write	PPLK	VIH	V _{IL}	2 Boot Blocks Locked.
		V _{IH}	V _{IR}	All Blocks Unlocks.

L R S 1 3 2 9


WSMS	ESS	E S	WBWS	VPPS	WBWSS	DPS	R		
7.	6	5	4	3	2	1	0		
	<u></u>			NOTES:					
S R. 7 = WR 1 = Re 0 = Bu	•	CHINE STATU	S(WSMS)		rite complet		olock erase () are invalio		
1 = Bl	ASE SUSPEND ock Erase Su ock Erase in	spended							
1 = Er	ASE STATUS (ror in Block ccessful Blo	Erasure		If both SR.5 and SR.4 are "1"s after a block erase attempt, an improper command sequence was entered.					
1 = Er	RD/BYTE WRIT ror in Word/ ccessful Word	Byte Write				,			
••	STATUS (V V _{PP} Low Detec V _{PP} OK		n Abort	SR.3 does not provide a continuous indication of F–V _{PP} level. The WSM interrogates and indicates the F–V _{PP} level only after Block Erase or Word/ByteWrite command sequences. SR.					
	RD/BYTE WRIT d/ByteWrite	(WB	STATUS WSS)	is not guar			ate feedbac		
S R. 1 = DEV 1 = F - V	d/ByteWrite ICE PROTECT WP or F-RP Lo eration Abor Lock	STATUS (D ock Detected	PS)	The WSM interrogates the $F \cdot \overline{WP}$ and $F \cdot \overline{RP}$ only after Block Erase or Word/Byte Write command sequences. It informs the system, depending on the attempted operation, if the $F \cdot \overline{WP}$ is not V_{IH} , $F \cdot \overline{RP}$ is not V_{HH} .					
SR.0 = RES	SERVED FOR F	JTURE ENHAN	CEMENTS (R)		served for fu when polling				

L R S 1 3 2 9

7. Memory Map for Flash Memory

Memory		
Address [Au-Au]	Too Beat	Address [A ₁₉ ·A ₁₁]
FFFFF (Top Boot	1 IFFFFF
FF000 FEFTF	4K-word/8K-byte Boot Block	1FE000 1FDFFF
FE000 FDFFF	4K-word/8K-byte Boot Block	1FC000 1FBFFF
FD000 FCFFF	4K-word/8K-byte Parameter Block	1FA000
FC000	4K-word/8K-byte Parameter Block	1F9FFF 1F8000
FBFFF FB000	4K-word/8K-byte Parameter Block	1F7FFF 1F6000 1F5FFF
FAFFF FA000	4K-word/8K-byte Parameter Block	1F5FFF 1F4000 1F3FFF
F9FFF F9000	4K-word/8K-byte Parameter Block	1F2000
F8FFF F8000 F7FFF	4K-word/8K-byte Parameter Block	1F1FFF 1F0000
F0000	32K-word/64K-byte Main Block	1EFFFF 1E0000
EFFFF E8000	32K-word/64K-byte Main Block	1DFFFF 1D0000
E7FFF E0000	32K-word/64K-byte Main Block	1CFFFF 1C0000
DFFFF D8000	32K-word/64K-byte Main Block	1BFFFF 180000
D7FFF D0000	32K-word/64K-byte Main Block	1AFFFF 1A0000
CFFFF C8000	32K-word/64K-byte Main Block	19FFFF 190000
C7FFF	32K-word/64K-byte Main Block	18FFFF
COOOO BFFFF	32K-word/64K-byte Main Block	180000 17FFFF
88000 87FFF		170000 16FFFF
BODOD AFFFF	32K-word/64K-byte Main Block	160000 15FFFF
A8000 A7FFF	32K-word/64K-byte Main Block	150000 14FFFF
A0000 9FFFF	32K-word/64K-byte Main Block	140000 13FFFF
98000 97FFF	32K-word/64K-byte Main Block	130000 12FFFF
90000	32K-word/64K-byte Main Block	120000
8FFFF 88000	32K-word/64K-byte Main Block	11FFFF 110000 10FFFF
87FFF 80000	32K-word/64K-byte Main Block	10FFFF 100000 0FFFFF
7FFFF 78000	32K-word/64K-byte Main Block	0F0000
78000 77FFF 70000 6FFFF	32K-word/64K-byte Main Block	OEFFFF OE0000
	32K-word/64K-byte Main Block	ODFFFF OD0000
68000 67FFF 60000	32K-word/64K-byte Main Block	OCFFFF OC0000
SFFFF	32K-word/64K-byte Main Block	OBFFFF
58000 57FFF	32K-word/64K-byte Main Block	OBOOOO OAFFFF
50000 4FFFF	32K-word/64K-byte Main Block	040000 09FFFF
48000 47FFF	32K-word/64K-byte Main Block	090000 08FFFF
40000 3FFFF	32K-word/64K-byte Main Block	080000 07FFFF
38000 37FFF	32K-word/64K-byte Main Block	070000 06FFFF
30000 2FFFF		060000 05FFFF
28000 27FFF	32K-word/64K-byte Main Block 32K-word/64K-byte Main Block	050000 04FFFF
20000 1FFFF		040000 03FFFF
18000 17FFF	32K-word/64K-byte Main Block	030000 02FFFF
10000 0FFFF	32K-word/64K-byte Main Block	020000 01FFFF
08000 07FFF	32K-word/64K-byte Main Block	010000 00FFFF
00000	32K-word/64K-byte Main Block	000000
$\prime \land$		
	\backslash /	
	\backslash	\

8. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage (*1,2)	V _{cc}	-0.2 to $+4.6$	v
Input voltage (*1,3)	V _{IN}	-0.2 (*4) to Vcc+0.3	V
Operating temperature	T _{opr}	-25 to $+85$	C
Storage temperature	T _{stg}	-65 to $+125$	T
F-V _{pp} voltage (*1)	F-V _{PP}	-0.2 (*4) to +14.0(*5)	V
F-RP voltage (*1)	F-RP	-0.5 (*4) to +14.0(*5)	V

Notes) *1. The maximum applicable voltage on any pins with respect to GND.

*2. Except F-V_{PP.}

*3. Except F-RP.

*4. -2.0V undershoot is allowed when the pulse width is less than 20nsec.

*5. \pm 14.0V overshoot is allowed when the pulse width is less than 20nsec.

9. Recommended DC Operating Conditions

 $(T_{-25} C t_0 + 85 C)$

				•	
Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{cc}	2.7	3.0	3.6	V
Input voltage	VIR	2.2		$V_{cc} + 0.3(*1)$	V
	V _{IL}	-0.2 (*2)		0.8	V
	V _{III} (*3)	11.4		12.6	V

Notes) *1. V_{cc} is the lower one of S- V_{cc} and F- V_{cc} .

*2. -2.0V undershoot is allowed when the pulse width is less than 20nsec.

*3. This voltage is applicable to $F - \overline{RP}$ Pin only.

10. Pin Capacitance

 $(T_a=25^{\circ}C, f=1MHz)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit]
Input capacitance	C _{IN}	V _{IN} =OV	·		20	pF	*1
I/O capacitance	C _{1/0}	V _{I/0} =OV			22	pF	*1

Note) *1 Sampled but not 100% tested

L R S 1 3 2 9

	Parameter	Symbol	eristics $(T_a = -25)$ Conditions		Mín.	Typ. (*1)	Max.	Uni
Inp	ut leakage current (I _{LI})	I _{LI}	$V_{IN} = V_{CC}$ or GND		-1.5		+1.5	μA
	it leakage current (I _{LD})	I _{L0}	$V_{out} = V_{cc}$ or GND		-1.5		+1.5	, μ Α
	F-V _{cc} V _{cc} Standby Current		$F - \overline{CE} = F - \overline{RP} = F - V_{cc} = F - \overline{RP} = F - V_{cc} = 0.2V$ or F - GND ± 0.2V			25	50	μA
			$F \cdot \overline{CE} = F \cdot \overline{RP} = V_{IH}$ $F \cdot \overline{WP} = V_{IH} \text{ or } V_{IL}$			0.2	2	mА
	Deep Power–Down Current	I _{CCD} (*7)	$F \cdot \overline{RP} = F \cdot GND \pm 0.2V$, $I_{out} (F \cdot RY \overline{/BY}) = OmA$	•		5	10	μA
	V_{cc} Read Current	I _{ccr} (*3, 4)	CMOS Input F-CE=F-GND, f=5MH;	z, I _{our} =OmA			25	mA
		(40, 4/	TTL_Input F-CE=F-GND, f=5MH:	z, I _{qut} =OmA			30	mA
	V _{cc} Word/Byte Write Current	Iccw	F-V _{PP} =V _{PPH}				17	mA
	V _{cc} Block Erase Current	I _{cce}	F-V _{PP} =V _{PPH}				17	mА
	V _{cc} Word/Byte Write Block Erase Suspend Current	I _{ccws} I _{cces}	F-CE=VII				6	mА
F-V _{PP}	11 0: 11	IPPS	$F - V_{PP} = F - V_{CC}$			± 2	±15	μŀ
. vpp	Read Current	IPPR	F-V _{PP} > F-V _{cc}			10	200	μA
	V _{PP} Deep Power–Down Current	Ippd	$F - \overline{RP} = F - GND \pm 0.2V$			0.1	5	μΪ
	V _{PP} Word/Byte Write Current	Ippw	F-V _{PP} =V _{PPH}			12	40	mA
	V _{PP} Block Erase Current	I _{PPE}	F-V _{PP} =V _{PPH}			8	25	mA
	V _{PP} Word/Byte Write or Block Erase Suspend Current	I _{PPWS} I _{PPES}	F-V _{PP} =V _{PPH}			10	200	μ !
s۰V _{cc}		I _{SB}	$S \overline{-CE_1}, S \overline{-CE_2} \ge S \overline{-V_C}$ or $S \overline{-CE_2} \le 0.2V$				15	μ
		I _{SB1}	$S - \overline{CE}_1 = V_{IH}$ or $S - CE$	E ₂ =V _{IL}			3.0	mA
	Operation Current	I _{cc1}	$S \overline{CE}_{1} = V_{IL},$ $S \overline{CE}_{2} = V_{IH}$ $V_{IN} = V_{IL} \text{ or } V_{IH}$	t _{cycLE} =Min. I _{I/0} =OmA			30	mA
		I _{cc2}	$\frac{S - \overline{CE}_{1} = 0.2V}{S - CE_{2} = S - V_{cc} - 0.2V}$ S - CE ₂ = S - V _{cc} - 0.2V	t _{cycle} =1μs I _{1/0} =OmA			3	mА

LRS1329

Parameter	Symbol	Test Conditions	Min,	Typ. (*1)	Max.	Unit
Input Low Voltage	V ₁₁		-0.2		0.8	V
Input High Voltage	V _{IH}		2.2		$V_{cc} + 0.3$	V
Output Low Voltage	V _{0L} (*2)	$I_{oL} = 2.0 \text{ mA}$			0.4	V
Output High Voltage	V _{0H1} (*2)	$I_{OH} = -1.0 \text{ mA}$	2.4			V
F-V _{PP} Lockout during Normal Operations	V _{pplk} (*5)				1.5	V
F-V _{PP} Word/Byte Write or Block Erase Operations	V _{PPR}		2.7		3.6	V
F–V _{cc} Lockout Voltage	V _{LKO}		1.5			V
F-RP Unlock Voltage	V _{RH} (≭ 6)	Unavailable F-WP	11.4		12.6	V

Notes)

1. Reference values at $V_{cc}=3.0V$ and $T_a=+25^{\circ}C$.

2. Includes $F \cdot RY / \overline{BY}$.

- 3. Automatic Power Savings (APS) for Flash Memory reduces typical $I_{\rm CCR}$ to 3mA at 2.7V $V_{\rm CC}$ in static operation.
- 4. CMOS inputs are either $V_{cc} \pm 0.2V$ or GND $\pm 0.2V$. TTL inputs are either V_{IL} or V_{IH} .

5. Block erases and word/byte writes are inhibited when $F \cdot V_{PP} \leq V_{PPLK}$ and not guaranteed in the range between V_{PPLK} (max) and V_{PPH} (min), and above V_{PPH} (max).

6. F- \overline{RP} connection to a V_{HH} supply is allowed for a maximum cumulative period of 80 hours.

7. F- $\overline{\text{BYTE}}$ is $V_{\text{CC}}\pm0.2V$ in word mode and is GND±0.2V in byte mode.

 $F-\overline{WP}$ is $V_{cc}\pm 0.2V$ or GND $\pm 0.2V$.

•

L R S 1 3 2 9

12. Flash memory AC Characteristics									
AC Test Condiions									
Input pulse level	0 V to	2.7	V]					
Input rise and fall time	5	ns							
Input and Output timing Ref. level	1.35	V							
Output load	1TTL+C (30	DpF)							
Read Cycle		(T.=	-25°C	to +8	5°C	. V.=	2.7V to	3.6v)
Parame					Sym.	Min.	Max.	Unit	Í
Read Cycle Time					t _{avav}	100		ns	1
Address to Output Delay	······				t _{avov}		100	ns	-
F-CE to Output Delay	····				t _{ELQV}		100	ns	4
F-RP High to Output Delay					t _{PHQV}		10	μs	1
F-OE to Output Delay			·		t _{GLQV}		45	ns	+
$F-\overline{CE}$ to Output in Low Z					t _{elox}	0		ns	-
F-CE High to Output in High Z					t _{EHQZ}		45	ns	-
$\overline{F \cdot OE}$ to Output in Low Z	· · · · · · · · · · · · · · · · · · ·				t _{GLQX}	0	+		-
F-OE High to Output in High Z					t _{GHQZ}		20	ns	-
Output Hold from Address, F-CE or F	OF Change White	have	r Deaus	e Firet	t _{oh}	0	+	ns	-
F-BYTE and A_1 to Output Delay	on onange, mill			2 11121	COH t _{evov}		90	ns	
								-	-
F-BYTE Low to Output in High Z					t _{FLQZ} t _{ELFV}		30	ns	-
F-CE to F-BYTE High Z or Low					-FLFV		5	ns	
otes) *1. F-OE may be delayed up to	ter ov-ter ov after	the	falling	edge o		witho	ut impa	ct on i	 t
otes) *1. F-OE may be delayed up to	t _{ELQV} -t _{GLQV} after	the	falling	; edge o		witho	ut impa	ct on i	E _{ELQ}
otes) *1. F-OE may be delayed up to <u>Write Cycle (F-WE Controlled)</u> (*2)				; edge o C to +8	f F-OE				
					f F-0Ē 35 °C M	, V _{cc} =			
Write Cycle (F-WE Controlled) (*2)				$\frac{1}{1}$ to +8	f F-0Ē 35 °C M	, V _{cc} =	2.7V t	o 3.6	
Write Cycle (F-WE Controlled) (*2) Paramet	er			C to +8	f F-OE 35 °C M	, V _{cc} = in. 100	2.7V t	o 3.6 Unit	
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time	er			C to +8 Sym. t _{AVAV}	f F-OE 35 °C M	, V _{cc} = in.	2.7V t	o 3.6 Unit ns	
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going	er			C to +8 Sym. t _{AVAV} t _{PHWL}	f F-OE 35°C M 1	, V _{cc} = in. 100	2.7V t	o 3.6 Unit ns µs	
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low	er			C to +8 Sym. t _{AVAV} t _{PHWL}	f F-OE 35°C M 1	, V _{cc} = in. 100 0	2.7V t	o 3.6 Unit ns µs ns	
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width	g to Low			C to +8 Sym. t _{AVAV} t _{PHWL} t _{ELWL}	f F-OE 35 °C 1 1	, V _{cc} = in. 100 0 50	2.7V t	o 3.6 Unit ns µs ns ns	
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width F-RP V _{HH} Setup to F-WE Going High	g to Low			С to +8 Sym. t _{лулу} t _{рнис} t _{eluc} t _{ulut} t _{philut}	f F-OE 35 °C M 1 1	, V _{cc} = in. 100 10 50 100	2.7V t	o 3.6 Unit ns μs ns ns ns	
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width F-RP V _{HH} Setup to F-WE Going High F-WP V _{HH} Setup to F-WE Going High	g to Low			C to +8 Sym. t _{AVAV} t _{PHWL} t _{ELWL} t _{WLWH} t _{SHWH}	f F-OE 35 °C 35 °C 1 1 1	, V _{cc} = in. 100 10 50 100	2.7V t	o 3.6 Unit <u>μs</u> ns ns ns ns	V)
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width F-RP V _{HH} Setup to F-WE Going High F-WP V _{IH} Setup to F-WE Going High	g to Low			C to +8 Sym. t _{лvлv} t _{рнит} t _{ешит} t _{ещит} t _{ещит} t _{урин}	f F-OE 35 °C 35 °C 1 1 1	, V _{cc} = in. 100 10 50 100 100 100	2.7V t	o 3.6 Unit ns μs ns ns ns ns ns	v) *
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width F-RP V _{HH} Setup to F-WE Going High F-WP V _{HH} Setup to F-WE Going High F-VPP Setup to F-WE Going High Address Setup to F-WE Going High	g to Low			C to +8 Sym. t _{Avav} t _{bhnnl} t _{elnl} t _{ulnh} t _{bhnnh} t _{shnn} t _{avnh}	f F-OE 35 °C 35 °C 1 1 1	, V _{cc} = in. 00 10 50 .00 .00 50	2.7V t	o 3.6 Unit ns μs ns ns ns ns ns ns ns	V)
Write Cycle (F-WE Controlled) (*2)ParametWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-RP V _{HH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighF-VPP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going High	g to Low			C to +8 Sym. t _{AVAV} t _{PHWL} t _{ELWL} t _{WLWH} t _{SHWH} t _{AVWH} t _{AVWH} t _{WVWH}	f F-OE 35 °C 35 °C 1 1 1	, V _{cc} = in. 100 10 50 100 100 100 100 50 50	2.7V t	o 3.6 Unit ns µs ns ns ns ns ns ns ns ns	V)
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width F-WP V _{IH} Setup to F-WE Going High F-VPP Setup to F-WE Going High Address Setup to F-WE Going High Data Setup to F-WE Going High Data Hold from F-WE High	g to Low			to +8 Sym. t _{AVAV} t _H t _H t _{EL} t _U t _{TL} t _U t _{TL} t _U t _H t _H t _{AVAV} t _U	f F-OE 35 °C 35 °C 1 1 1	, V _{cc} = in. 100 10 50 100 100 50 50 50 0	2.7V t	o 3.6 Unit ns µs ns ns ns ns ns ns ns ns ns ns	V)
Write Cycle (F-WE Controlled) (*2)ParameteWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{IH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE High	g to Low			C to +8 Sym. LAVAV tPHTL tELTL tTLTH tFLTH typthtth typt	f F-OE 35 °C 1 1 1 1	, V _{cc} = in. 100 100 500 100 100 100 50 50 0 0	2.7V t	o 3.6 Unit ns μs ns ns ns ns ns ns ns ns ns ns ns ns ns	V)
Write Cycle (F-WE Controlled) (*2) Paramet Write Cycle Time F-RP High Recovery to F-WE going F-CE Setup to F-WE Going Low F-WE Pulse Width F-WP V _{IH} Setup to F-WE Going High F-WP Setup to F-WE Going High Address Setup to F-WE Going High Data Setup to F-WE Going High Data Hold from F-WE High F-CE Hold from F-WE High	g to Low			C to +8 Sym. t _{AVAV} t _{HWTL} t _{ELWL} t _{TLWH} t _{TLWH} t _{VPWH} t _{AVWH} t _{AVWH} t _{WVWH} t _{WVWH} t _{WHDX} t _{WHEH}	f F-OE 35 °C 1 1 1 1	, V _{cc} = in. 100 10 50 100 100 100 50 50 50 0 0 0 0	2.7V t	o 3.6 Unit ns µs ns ns ns ns ns ns ns ns ns ns ns ns ns	V)
Write Cycle (F-WE Controlled) (*2)ParametWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WP VHH Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-CE Hold from F-WE High	g to Low			C to +8 Sym. LAVAV t _{AVAV} t _{ELWL} t _{FLWL} t _{FLWL} t _{FLWH} t _{YPWH} t _{AVWH} t _{AVWH} t _{AVMH} t _{WHWH} t _{WHAX} t _{WHAX} t _{WHH}	f F-OE 35 °C 1 1 1 1	, V _{cc} = in. 100 10 50 100 100 100 50 50 50 0 0 0 0	2.7V t Max.	o 3.6 Unit ns ns ns	V)
Write Cycle (F-WE Controlled) (*2)ParametWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WP V _{IH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width High	to Low			C to +8 Sym. LAVAV LPHWL LELWL LTUL LTUL LTUL LUVWH LAVWH LAVWH LTUL LWHAX LWHAX LWHAX LWHAX LWHAX LWHAL LWHAL LWHAL LWHAL LWHAL	f F-OE 35 °C 1 1 1 1	, V _{cc} = in. 100 50 50 100 100 50 50 50 50 0 0 0 30	2.7V t Max.	o 3.6 Unit ns µs ns ns ns ns ns ns ns ns ns n	V)
Write Cycle (F-WE Controlled) (*2)ParametWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP VIH Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-WE Going LowWrite Recovery before ReadF-VPP Hold from Valid SRD, F-RY/E	rer g to Low			C to +8 Sym. t _{AVAV} t _{HWW} t _{ELWL} t _{ULWH} t _{WWW} t _{VPWH} t _{VVWH} t _{WWW} t _{WWW} t _{WWW} t _{WHAX} t _{WHEH} t _{WHEL} t _{WHEL} t _{WHEL}	f F-OE 35 °C 1 1 1 1	, V _{cc} = in. 100 100 500 1000 1000 500 500 500 00 00 300 00 000 00 000 0	2.7V t Max.	o 3.6 Unit ns ns ns	V)
Write Cycle (F-WE Controlled) (*2)ParametWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-RP V _{HH} Setup to F-WE Going HighF-WP V _{IH} Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Setup to F-WE Going HighData Setup to F-WE Going HighF-CE Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-RY/BY Going LowWrite Recovery before ReadF-RP V _{HH} Hold from Valid SRD, F-RY/E	y High Z Y/BY High Z			C to +8 Sym. LAVAV LPHWL LELWL LTUL LTUL LTUL LTUL LYPWH LAVWH LAVWH LAVWH LTUL LWHAX	f F-OE 35 °C 1 1 1 1	, V _{cc} = in. 10 0 50 00 00 50 50 0 0 0 30 0 0 0 0 0 0	2.7V t Max.	o 3.6 Unit ns µs ns ns ns ns ns ns ns ns ns n	V)
Write Cycle (F-WE Controlled) (*2)ParametWrite Cycle TimeF-RP High Recovery to F-WE goingF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP VIH Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-WE Going LowWrite Recovery before ReadF-VPP Hold from Valid SRD, F-RY/E	y High Z Y/BY High Z			C to +8 Sym. t _{AVAV} t _{HWW} t _{ELWL} t _{ULWH} t _{WWW} t _{VPWH} t _{VVWH} t _{WWW} t _{WWW} t _{WWW} t _{WHAX} t _{WHEH} t _{WHEL} t _{WHEL} t _{WHEL}	f F-OE 35 °C 35 °C 1 1 1 1 1	, V _c = in. 100 100 50 100 100 50 50 50 50 0 0 30 0 0 0 0 0 0 0	2.7V t Max.	o 3.6 Unit ns ns ns	

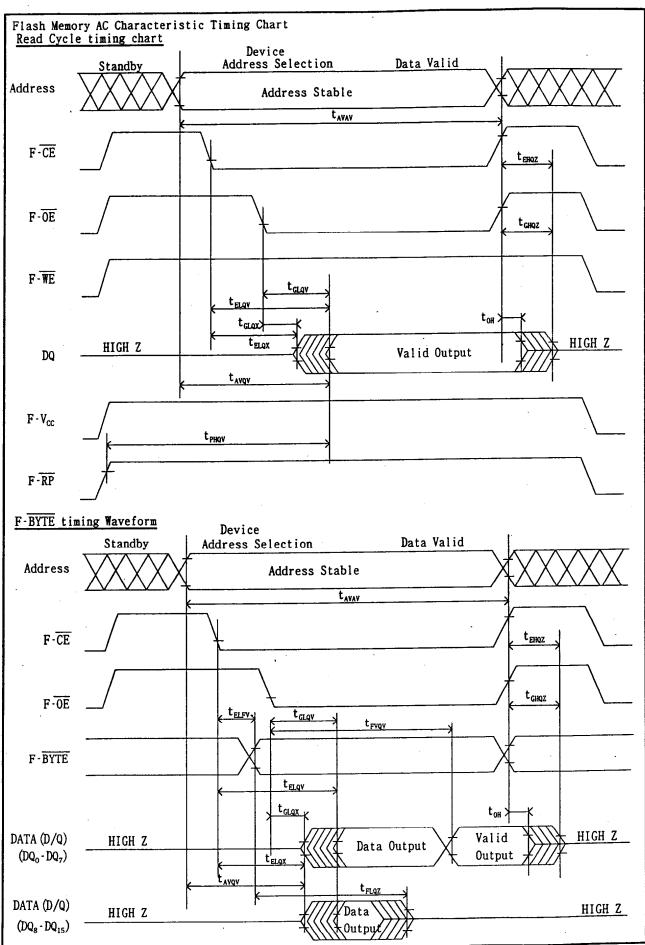
Write Cycle (F-CE Controlled) (*2)	(T _a = -25°	C to +85%	C , V _{cc} =	2.7V to	3.6V)
Parameter	Sym.	Min.	Max.	Unit	
Write Cycle Time	t _{avav}	100		ns	
$F \cdot \overline{RP}$ High Recovery to $F \cdot \overline{CE}$ going to Low	t _{PHEL}	10		μs	
F-WE Setup to F-CE Going Low	t _{illEL}	0		ns	
F-CE Pulse Width	t _{elen}	70		ns	
F-RP V _{HH} Setup to F-CE Going High	t _{phthen}	100		ns	
$F - \overline{WP} V_{1H}$ Setup to $F - \overline{CE}$ Going High	t _{shen}	100		ns	
F-VPP Setup to F-CE Going High	t _{vpEH}	100		ns	
Address Setup to F-CE Going High	t _{aven}	50		ns	*3
Data Setup to F-CE Going High	t _{DVEH}	50		ns	*3
Data Hold from F-CE High	t _{endx}	0		ns	
Address Hold from F-CE High	t _{ehax}	0		ns	
F-WE Hold from F-CE High	t _{enwn}	0		ns	
F-CE Pulse Width High	t _{ehel}	25		ns	
F-CE High to F-RY/BY Going Low	t _{ehrl}		100	ns	
Write Recovery before Read	t _{engl}	0		ns	
F–V _{PP} Hold from Valid SRD, F–RY/BY High Z	t _{ovvl}	0		ns	
$F \cdot \overline{RP} V_{HH}$ Hold from Valid SRD, $F \cdot RY / \overline{BY}$ High Z	t _{qvpH}	0		ns	
F-WP VIN Hold from Valid SRD, F-RY/BY High	t _{qvsl}	0		ns	
F-BYTE Setup to F-CE Going High	t _{fveh}	50		ns	
F-BYTE Hold from F-CE High	t _{ehfv}	100		ns	

Notes) *2. Read timing characteristics during block erase and word/byte write operations are the same as during read-only operations. Refer to AC Characteristics for Read Cycle.

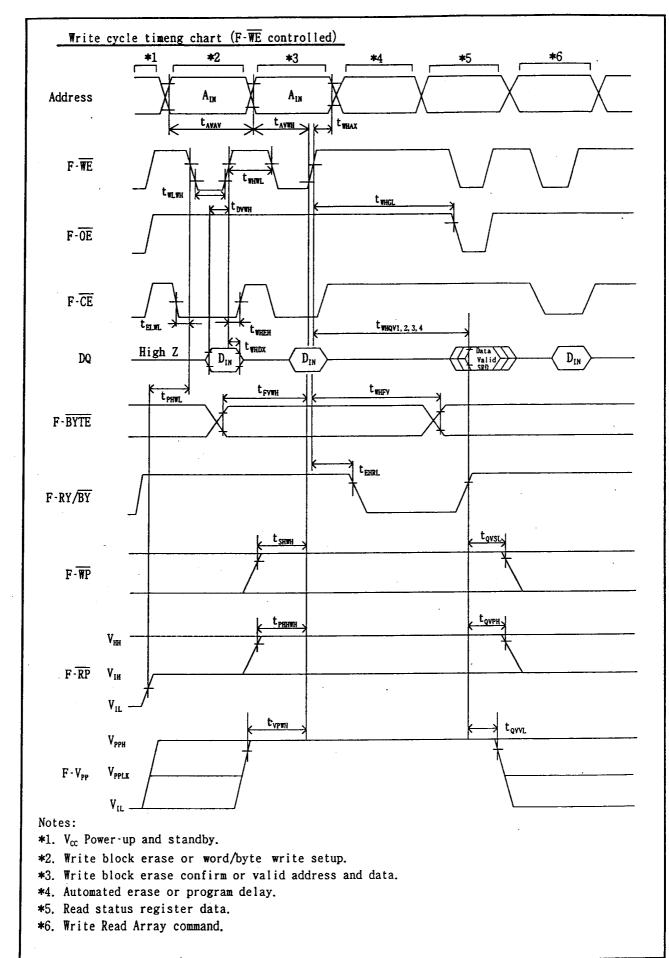
*3. Refer to Section 5. Flash Memory Command Definition for valid AIN and DIN for block erase or word/byte write.

L R S 1 3 2 9

		$(T_a = -25)$	C to +8	35℃, V _α	= 2.7 V	to 3.6 V)
Sym.	Para	neter	V _{po} = 2 Min.	2.7 V to Typ. ⁽⁴⁴⁾	3.6 V Max.	Unit
t _{whqvi} t _{ehqvi}	Word/Byte Write Time	32K-word Block /64K-byte Block		55		μs
		4K-word Block /8K-byte Block		60		μs
·	Block Write	32K-word Blcok		1.8		S
	Time (at word mode)	4K-word Block		0.3		3
	Block Write	64K-byte Block		3.6		s
	Time (at byte mode)	8K-byte Block		0.6		
t _{whqv2} t _{ehqv2}	Block Erase Time	32K-word Block 64K-byte Block		1.2		S
	TIME	4K-word Block 8K-byte Block		0.5		S
t _{whrz1} t _{ehrz1}	Word/Byte Write Sus Latency Time to Read			7.5	8.6	μs
t _{whrz2} t _{ehrz2}	Erase Suspend Latend			19.3	23.6	μs


Block Erase and Word/Byte Write Performance

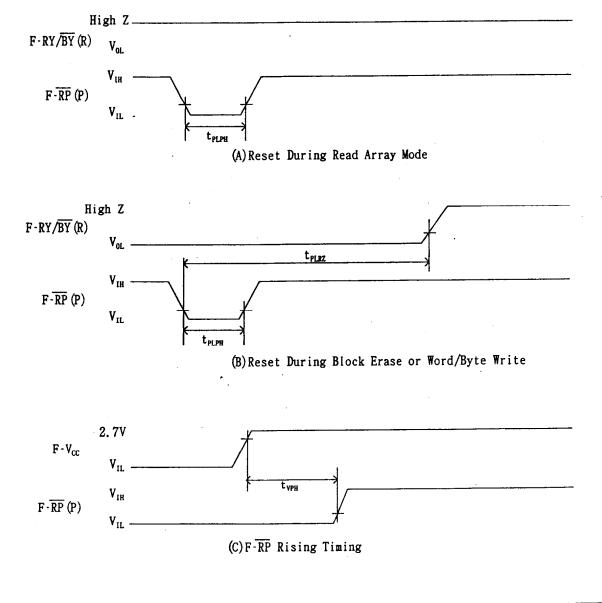
Notes) *4. Reference values at $T_a = +25^{\circ}C$ and $V_{cc}=3.0V$, $V_{PP}=3.0V$.


*5. Excludes system-lebel overhead.


LRS1329

LRS1329

LRS1329


<u>Reset Operations</u> $(T_a = -25 °C)$	to +85	5°C, V _a	= 2.7V	to 3.6	7)
Parameter	Sym.	Min.	Max.	Unit	
F-RP Pulse Low Time (If F-RP is tied to Vcc, this specification is not applicable.)	t _{pi.ph}	100		ns	
F-RP Low to Reset during Block Erase or Write	t _{plrz}		23.6	μs	*1,2
$F - V_{cc}$ 2.7V to $F - \overline{RP}$ High	t _{vPH}	100		пs	*3

Notes)*1. If F-RP is asserted while a block erase or word/byte write operation is not executing, the reset will complete with 100ns.

*2. A reset time, t_{PHQV} , is required from the later of F-RY/BY going High Z of F-RP going high until outputs are valid.

*3. When the device power-up, holding $F-\overline{RP}$ low minimum 100ns is required after V_{cc} has been in predefined range and also has been in stable there.

AC Waveform for Reset Operation

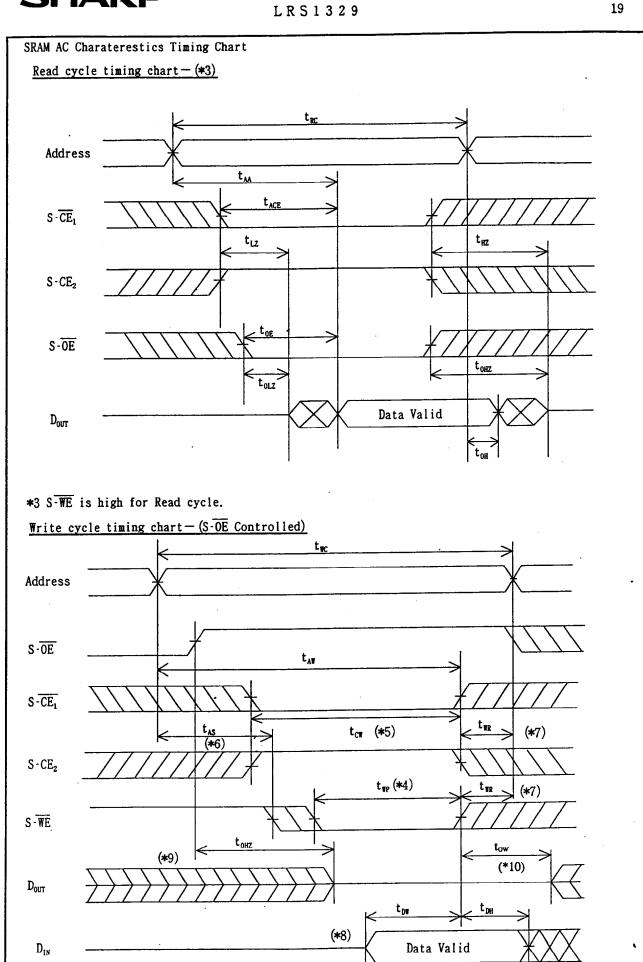
13. SRAM AC Electrical Characteristics

SRAM AC Test Conditions

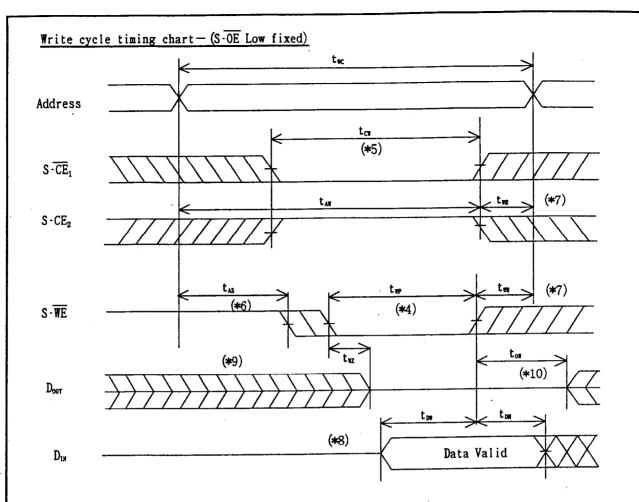
Input pulse level	0.4 V to 2.2 V
Input rise and fall time	5 ns
Input and Output timing Ref. level	1.5 V
Output load	$1TTL+C_{L}(30pF)$ (*1)

Note) *1. Including scope and jig capacitance.

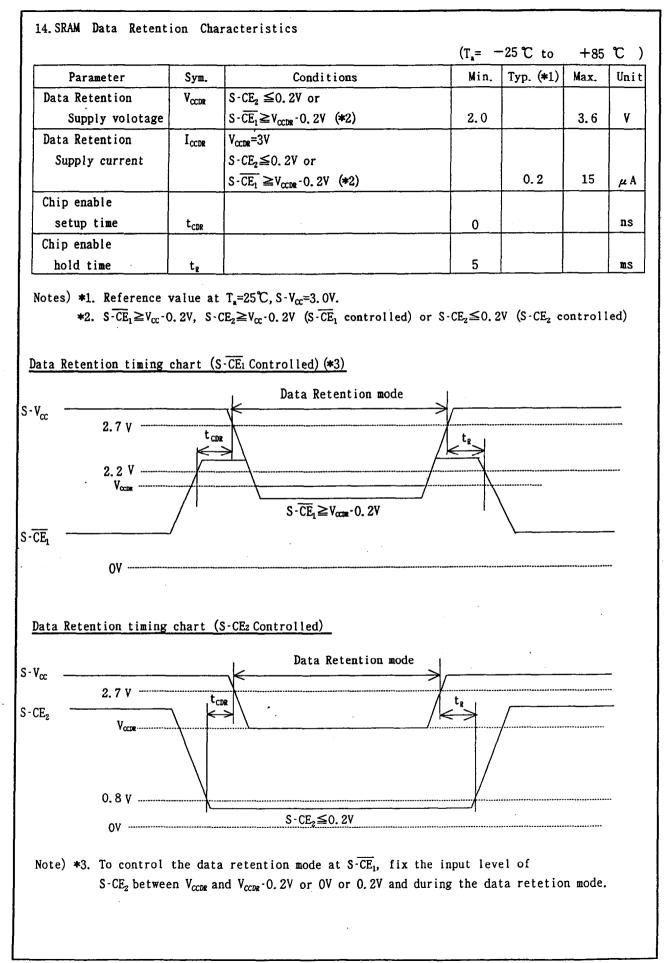
Read Cycle


$(T_a = -25 C)$	to +8	35°C,	$V_{cc} = 2.7 \text{ V to}$	3.6 V)
Parameter	Sym.	Min.	Max.	Unit	
Read Cycle Time	t _{RC}	85		ns	
Address access time	t _M		85	ns	
Chip enable access time $(S - \overline{CE_1})$	t _{ACE1}	· · · · · · · · · · · · · · · · · · ·	85	ns	
(S-CE ₂)	t _{ACE2}		85	ns	
Output enable to output valid	t _{oe}		40	ns	
Output hold from address change	t _{on}	10		ns	
$\overline{S - \overline{CE_1}}, \overline{S - CE_2}$ Low $(\overline{S - \overline{CE_1}})$	t _{LZ1}	10		ns	*
to output active (S–CE ₂)	t _{LZ2}	10		ns	*2
S-OE Low to output active	toLz	5		ns	*2
$\overline{S \cdot \overline{CE_1}}$, $\overline{S \cdot CE_2}$ High to $(\overline{S \cdot \overline{CE_1}})$	t _{HZ1}	-0	25	ns	*2
output in High impedance (S–CE ₂)	t _{HZ2}	0	25	ns	*2
S-OE High to output in High impedance	t _{oHZ}	0	25	ns	*2

Write Cycle


	$(T_a = -2!)$	5°C to +85 °C	$v_{cc} = 2.7$	V to 3.6
Parameter	Sym.	Min.	Max.	Unit
Write cycle time	t _{wc}	85		ns
Chip enable to end of write	t _{cr}	70		ns
Address valid to end of write	t _{AV} ·	70		ns
Address setup time	t _{AS}	0		ns
Write pulse width	t _{wp}	55		ns
Write recovery time	t _{wa}	0		ns
Input data setup time	t _{DW}	35		ns
Input data hold time	t _{DH}	0		ns
S-WE High to output active	t _{ow}	5		ns
S-WE Low to output in High impedance	t _{wz}	0	25	ns

*2. Active output to High impedance and High impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load.


Notes)

*4. A write occurs during the overlap of a low $S-\overline{CE_1}$, a high $S-CE_2$ and a low $S-\overline{WE}$, A write begins at the latest transition among $S-\overline{CE_1}$ going low, $S-CE_2$ going high and $S-\overline{WE}$ going low.

A write ends at the earliest transition among $S - \overline{CE}_1$ going high, $S - CE_2$ going low and $\overline{S - WE}$ going high. two is measured from the beginning of write to the end of write.

- *5. to is measured from the later of $S-\overline{CE_1}$ going low or $S-CE_2$ going high to the end of write.
- *6. this is measured from the address valid to the beginning of write.
- *7. two is measured from the end of write to the address change.
- *8. During this period, DQ pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- *9. If $S \overline{CE}_1$ goes low or $S CE_2$ goes high simultaneously with $S \overline{WE}$ going low or after $S \overline{WE}$ going low, the outputs remain in high impedance state.
- *10. If $S-\overline{CE_1}$ goes high or $S-\overline{CE_2}$ goes low simultaneously with $\overline{S-WE}$ going high or $\overline{S-WE}$ going high, the outputs remain in high impedance state.

L R S 1 3 2 9

L R S 1 3 2 9

15. Notes

This product is a stacked CSP package that a 16M(x8/x16) bit Flash Memory and a 2M(x8) bit SRAM are assembled into.

Supply Power

Maximum difference (between $F-V_{cc}$ and $S-V_{cc}$) of the voltage is less than 0.3V.

Power Supply and Chip Enable of Flash Memory and SRAM

 $S \cdot \overline{CE}_1$ should not be LOW and $S \cdot CE_2$ should not be HIGH when $F \cdot \overline{CE}$ is LOW simulataneously.

If the two memories are active together, possibly they may not operate normally by interference noises or data collision on DQ bus.

Both $F \cdot V_{cc}$ and $S \cdot V_{cc}$ are needed to be applied by the recommended supply voltage at the same time except SRAM data retention mode.

Power UP Sequence

When turning on Flash memory power supply, keep $F \cdot \overline{RP}$ LOW. After $F \cdot V_{cc}$ reaches over 2.7V, keep $F \cdot \overline{RP}$ LOW for more than 100nsec.

Device Decoupling

The power supply is needed to be designed carefully because one of the SRAM and the Flash Memory is in standby mode when the other is active. A careful decoupling of power supplies is necessary between SRAM and Flash Memory. Note peak current caused by transition of control signals ($F \cdot \overline{CE}$, $S \cdot \overline{CE}_1$, $S \cdot \overline{CE}_2$).

16. Flash Memory Data Protection

Noises having a level exceeding the limit specified in the specification may be generated under specific operating conditions on some systems.

Such noises, when induced onto $\overline{F \cdot WE}$ signal or power supply may be interpreted as false commands, causing undesired memory updating.

To protect the data stored in the flash memory against unwanted overwriting, systems operating with the flash memory should have the following write protect designs, as appropriate:

1) Protecting data in specific block

By setting a $F\overline{WP}$ to low, only the boot block can be protected against overwriting. Parameter and main blocks cannot be locked.

System program, etc., can be locked by storing them in the boot block.

When a high voltage is applied to $F \cdot \overline{RP}$, overwrite operation is enabled for all blocks. For further information on setting/resetting of block bit, and controlling of $F \cdot \overline{WP}$ and $\overline{F \cdot RP}$, refer to the specification. (See 5. Command Definitions P.5)

2) Data protection through Vpp

When the level of Vpp is lower than VPPLK (lockout voltage), write operation on the flash memory is disabled. All blocks are locked and the data in the blocks are completely write protected.

For the lockout voltage, refer to the specification. (See Chapter 11. DC Characteristics P. 10)

Data protection during voltage transition

1) Data protection thorough $F \overline{RP}$

When the $F \cdot \overline{RP}$ is kept low during power up and power down sequence, write operation on the flash memory is disabled, write protecting all blocks.

For the details of $F-\overline{RP}$ control, refer to the specification. (See chapter 12. Flash Memory AC Electrical Characteristics)

17. Design Considerations

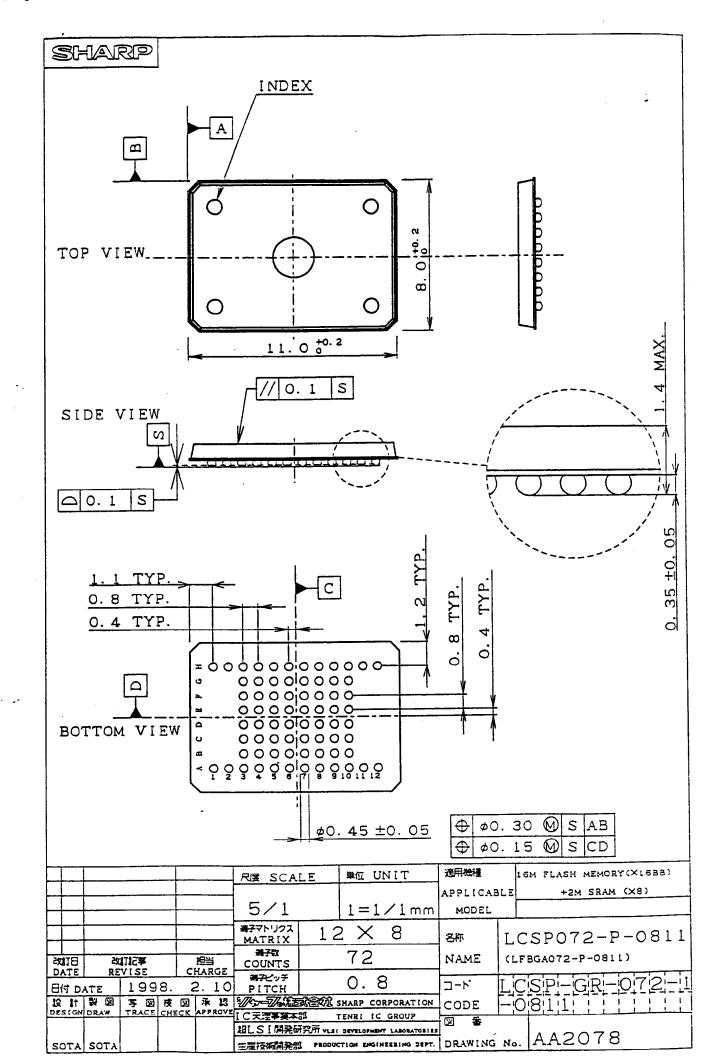
1. Power Supply Decoupling

To avoid a bad effect to the system by flash memory power switching characteristics, each device should have a 0.1μ F ceramic capacitor connected between its V_{cc} and GND and between its V_{PP} and GND. Low inductance capacitors should be placed as close as possible to package leads.

2. V_{PP} Trace on Printed Circuit Boards

Updating the memory contents of flash memories that reside in the target system requires that the printed circuit board designer pay attention to the V_{PP} Power Supply trace. Use similar trace widths and layout considerations given to the V_{CC} power bus.

3. The Inhibition of Overwrite Operation


Please do not execute reprogramming "0" for the bit which has already been programed "0". Overwrite operation may generate unerasable bit. In case of reprogramming "0" to the data which has been programed "1".

• Program "0" for the bit in which you want to change data from "1" to "0". • Program "1" for the bit which has already been programmed "0".

For example, changing data from "1011110110111101" to "1010110110111100" requires "11101111111110" programming.

4. Power Supply

Block erase, full chip erase, word/byte write and lock-bit configuration with an invalid V_{PP} (See 11. DC Characteristics) produce spurious results and should not be attempted. Device operations at invalid Vcc voltage (see 11. DC Characteristics) produce spurious results and should not be attempted.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (360) 834-2500 Fax: (360) 834-8903 http://www.sharpsma.com

EUROPE

SHARP Microelectronics Europe Sonninstraße 3 20097 Hamburg, Germany Phone: (49) 40 2376-2286 Fax: (49) 40 2376-2232 http://www.sharpsme.com

ASIA

SHARP Corporation Integrated Circuits Group 2613-1 Ichinomoto-Cho Tenri-City, Nara, 632, Japan Phone: +81-743-65-1321 Fax: +81-743-65-1532 http://www.sharp.co.jp