8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89930C Series 2

MB89P935C/PV930A

DESCRIPTION

The MB89930C series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as timers, serial interfaces, A/D converter and external interrupts.

FEATURES

- MB89600 Series CPU core
- Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- I/O ports: max. 21 channels
- 21-bit timebase timer
- 8-bit PWM timer
- 8/16-bit capture timer/counter
- 10-bit A/D converter: 8 channels
- UART
- 8-bit serial I/O
- External interrput 1 (Edge): 3 channels
- External interrupt 2 (Level): 8 channels
-Wild Register: 2 bytes
- OTPROM Read protection (Refer to "■ Programming the OTPROM in MB89P935C")
- Low-power consumption modes (sleep mode and stop mode)
- DIP and SH-DIP package
- CMOS Technology

PACKAGE

| 32-pin plastic DIP | 32-pin plastic SH-DIP |
| :---: | :---: | :---: |
| (DIP-32P-M04) | 48-pin ceramic MQFP |
| (DIP-32P-M05) | (MQP-48C-P01) |

MB89930C Series

PRODUCT LINEUP

Part number Parameter	MB89P935C	MB89PV930A
Classification	One-time PROM product (read protection)	Piggyback/evaluation product (for evaluation and development)
ROM size	$\begin{gathered} 16 \mathrm{~K} \times 8 \text {-bit } \\ \text { (internal PROM) } \end{gathered}$	$\begin{gathered} 32 \mathrm{~K} \times 8 \text {-bit } \\ \text { (external EPROM) } \end{gathered}$
RAM size	512×8 bits	
CPU functions	Number of instructions: $: 136$ Instruction bit length: $: 8$ bits Instruction length: $: 1$ to 3 bytes Data bit length: $: 1,8,16$ bits Minimum execution time: $: 0.4 \mu \mathrm{~s}$ to $6.4 \mu \mathrm{~s}(10 \mathrm{MHz})$ Minimum interrupt processing time: $: 3.6 \mu \mathrm{~s}$ to $57.6 \mu \mathrm{~s}(10 \mathrm{MHz})$	
Ports	General-purpose I/O ports (CMOS): 21 (also serve as peripherals) (4 ports can be set as N -ch open-drain type)	
21-bit timebase timer	21-bit Interrupt cycle: $0.82,3.3,26.2$, or 419.4 ms at $10-\mathrm{MHz}$ main clock	
Watchdog timer	Reset generation cycle: 209.7 ms minimum at $10-\mathrm{MHz}$ main clock	
8-bit PWM timer	8 -bit interval timer operation (square output capable, operating clock cycle: 1 tinst, 16 tinst, 64 tinst, and 8/16-bit capture timer/counter output) 8-bit resolution PWM operation (conversion cycle: 256 tinst, 4096 tinst, 16384 tinst and 256 times 8/16-bit capture timer/counter output)	
8/16-bit capture timer/counter	8 -bit capture timer/counter x 1 channel +8 -bit timer or 16-bit capture timer/counter $\times 1$ channel Capable of event count operation and square wave output using exteranl clock input with 8 -bit timer 0 or 16-bit counter	
UART	Transfer data length: 6/7/8 bits Transfer rate: 300 to 9600 bps at 10 MHz	
8-bit Serial I/O	8 bits LSB first/MSB first selectable One clock selectable from four operation clocks (one external shift clock, three internal shift clocks: 2 tinst, 8 tinst and 32 tinst)	
12-bit PPG timer	Output frequency: Pulse width and cycle selectable	
External interrupt 1 (wake-up function)	3 channels (interrupt vector, request flag, request output enable) Edge selectable (Rising edge, falling edge, or both edges) Also available for resetting stop/sleep mode (Edge detectable even in stop mode)	
External interrupt 2 (wake-up function)	1 channel with 8 inputs (Independent L-level interrupt and input enable) Also available for resetting stop/sleep mode (Level detectable even in stop mode)	
10-bit A/D converter	10-bit precision $\times 8$ channels A/D conversion function (Conversion time: 38 tinst) Continuous activation by 8/16-bit timer/counter output or timebase timer counter	
Wild Register	8 -bit x 2	
Standby mode	Sleep mode and Stop mode	
Power supply voltage	3.0 V to 5.5 V	2.7 V to 5.5V

Note: 1 Tinst = one instruction cycle (execution time) which can be selected as $1 / 4,1 / 8,1 / 16$, or $1 / 64$ of main clock.

MB89930C Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89P935C	MB89PV930A
DIP-32P-M04	O	X
DIP-32P-M05	O	X
MQP-48C-P01	X	O

O : Availabe $\quad \mathrm{X}$: Not available

DIFFERENCES AMONG PRODUCTS

1. A/D Converter Power Supply Pin (AVcc) and Reference Voltage Input Pin (AVR)

There are AVcc and AVR pins in MB89P935C. They are absent in MB89PV930A. Hence, the electrical characteristics of MB89P935C is different from that of MB89PV930A. (Refer to "■ ELECTRICAL CHARACTERISTICS 5. A/D Converter Electrical Characteristics")

2. Curent Consumption

In the case of the MB89PV930A, add the current consumed by the EPROM which is connected to the top socket.

MB89930C Series

PIN ASSIGNMENT

MB89930C Series

Pin No.	Pin Symbol						
49	Vpp	57	N.C.	65	O4	73	$\overline{\text { OE }}$
50	A12	58	A2	66	O5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	O7	76	A9
53	A5	61	O1	69	O8	77	A8
54	A4	62	O2	70	$\overline{\text { CE }}$	78	A13
55	A3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

N.C.: As connected internally, do not use.

PIN DESCRIPTION

Pin Number		Pin Name	I/O Circuit Type	Function
DIP*1	MQFP ${ }^{\text {2 }}$			
8	32	X0	A	Pins for connecting the crystal resonator for the main clock. To use an external clock, input the signal to X0 and leave X1 open.
9	33	X1		
5	29	MODO	B	Memory access mode setting input pins. Connect the pin directly to Vss.
6	30	MOD1		
7	31	$\overline{\text { RST }}$	C	Reset I/O pin. The pin is N-ch open-drain type with pullup resistor and a hysteresis input as well. The pin outputs the " L " level when an internal reset request is present. Inputting an "L" level initializes internal circuits.
28 to 31	10 to 13	$\begin{aligned} & \text { P00/INT20/AN4 to } \\ & \text { P03/INT23/AN7 } \end{aligned}$	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as an A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
1 to 4	25 to 28	$\begin{aligned} & \text { P04/INT24 to } \\ & \text { P07/INT27 } \end{aligned}$	D	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 . The input of external interrupt 2 is a hysteresis input.
19	5	P30/UCK/SCK	D	General-purpose CMOS I/O port. This pin also serves as the clock I/O pin for the UART or 8 -bit serial I/O. The resources is a hysteresis input.
18	4	P31/UO/SO	E	General-purpose CMOS I/O port. This pin also serves as the data output pin for the UART or 8-bit serial I/O.
17	3	P32/UI/SI	D	General-purpose CMOS I/O port. This pin also serves as the data input pin for the UART or 8 -bit serial I/O. The resources is a hysteresis input.
15	2	P33/EC	D	General-purpose CMOS I/O port. This pin also serves as the external clock input pin for the $8 / 16$-bit capture timer/counter. The resource is a hysteresis input.
14	1	P34/TO/INT10	D	General-purpose CMOS I/O port. This pin also serves as the output pin for the 8/16-bit capture timer/counter or as the input pin for external interrupt 1 . The resource is a hysteresis input.
13,12	48, 35	P35/INT11, P36/INT12	D	General-purpose CMOS I/O ports. These pins also serve as the input pins for external interrupt 1 . The resource is a hysteresis input.
11	34	P37/BZ/PPG	E	General-purpose CMOS I/O port. This pin also serves as the buzzer output pin or the 12-bit programmable pulse generator output.
20	24	P50/PWM	E	General-purpose CMOS I/O port. The pin also serves as the 8-bit PWM output pin.
24 to 27	6 to 9	P40/AN0 to P43/AN3	F	General-purpose CMOS I/O ports. These pins can also be used as N -channel open-drain ports. The pins also serve as A/D converter analog input pins.

[^0]
MB89930C Series

(Continued)

Pin No.		Pin Name	I/O Circuit Type	Function
DIP*1	MQFP ${ }^{2}$			
32	18	Vcc	-	Power supply pin
10	42	Vss	-	Power (GND) pin
23	-	AVcc	-	Power supply pin for A/D converter.
21	14	AVss	-	Power supply pin for A/D converter. Apply equal potential to this pin and the Vss pin.
22	-	AVR	-	Reference voltage input pin for the A/D converter.
16	-	C	-	Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$

*1: DIP-32P-M04 and DIP-32P-M05
*2: MQP-48C-P01

MB89930C Series

-External EPROM Socket (MB89PV930A only)

Pin Number	Pin	I/O	Function
MQFP*1	Name	$1 /$	Function
49	V_{pp}	O	"H" level output pin
50	A12		
51	A7		
52	A6		
53	A5		
54	A4	O	Address output pins.
55	A3		
58	A2		
59	A1		
60	A0		
61	O1		
62	O2	1	Data input pins.
63	O3		
64	Vss	O	Power supply pin (GND).
65	O4		
66	O5		
67	O6	1	Data input pins.
68	07		
69	08		
70	$\overline{\mathrm{CE}}$	O	Chip enable pin for the ROM. Outputs "H" in standby mode.
71	A10	O	Address output pin.
72	$\overline{\mathrm{OE}}$	O	Output enable pin for the ROM. Always outputs "L".
75	A11		
76	A9		
77	A8	O	Address output pins.
78	A13		
79	A14		
80	Vcc	O	Power supply pin for the EPROM.
56			
57	N.C.	-	Internally connected pins. Always leave open.
$\begin{aligned} & 72 \\ & 74 \end{aligned}$			Inaly connected pins. Always leave open.

MB89930C Series

I/O CIRCUIT TYPE

$\begin{aligned} & \text { I/O } \\ & \text { Circuit } \\ & \text { Type } \end{aligned}$	Circuit	Remarks
A		- Crystal oscillation type
B		- CMOS input
C		- The pull-up resistance (P channel) Approx. $50 \mathrm{k} \Omega$. - Hysteresis input
D		- CMOS output - CMOS input - Hysteresis input (Resource input) - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$.
E		- CMOS output - CMOS input - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$

MB89930C Series

(Continued)

F		- CMOS output - CMOS input - Analog input - N -ch open-drain output available
G		- CMOS output - CMOS input - Hysteresis input (Resource input) - Analog input - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$.

MB89930C Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ Electrical Characteristics" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AV cc and AVR) and analog input from exceeding the digital power supply (V_{Cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor of at least 2 kilohms between the pin and the power supply.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V cc ripple fluctuations (P -P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Treatment of Power Supply Pins on Microcontrollers with A/D Converter

Connect to be $\mathrm{AV} \mathrm{Vc}=\mathrm{Vcc}$ and $\mathrm{AVss}=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ even if the A / D converter is not in use.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wakeup from stop mode.

7. About the Wild Register Function

No wild register can be debugged on the MB89PV930A. For the operation check, test the MB89P935C installed on a target system.

8. Program Execution in RAM

When the MB89PV930A is used, no program can be executed in RAM.

MB89930C Series

PROGRAMMING THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

2. Programming Socket Adaptor

To program to the PROM using an EPROM programmer, use the socket adaptor (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adaptor socket part number
LCC-32	ROM-32LC-28DP-S

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3986-0403
FAX 81-3-5396-9106

3. Memory Space

Memory space in each mode is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7 FFFн.
(3) Program to 0000 to 7 7FFFH with the EPROM programmer.

MB89930C Series

PROGRAMMING THE OTPROM IN MB89P935C

1. Memory Space

Address

2. Programming the OTPROM

- To program the OTPROM using EPROM programmer AF200 (manufacturer: Yokogawa Digital Computer Corp.).

Inquiry : Yokogawa Digital Computer Corp. : TEL (81)-42-333-6224

- To program the OTPROM using FUJITSU MCU programmer MB91919-001.

Inquiry : Fujitsu Microelectronics Asia Pte Ltd. : TEL (65)-2810770
FAX (65)-2810220

Note : Programming the OTPROM in MB89P935C is serial programming mode only.

MB89930C Series

3. Programming Adaptor for OTPROM

- To program the OTPROM using EPROM programmer AF200, use the programming adaptor (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adaptor socket part number
DIP-32P-M04	ROM3-FPT30M02-8LA-FJ
DIP-32P-M05	Not available

Inquiry : Sun Hayato Co., Ltd : TEL (81)-3-3986-0403
FAX (81)-3-5396-9106

- To program the OTPROM using FUJITSU MCU programmer MB91919-001, use the programming adaptor listed below.

Package	Adaptor socket part number
DIP-32P-M04	MB91919-809 + MB91919-800
DIP-32P-M05	MB91919-814 + MB91919-800

Inquiry : Fujitsu Microelectronics Asia Pte Ltd. : TEL (65)-2810770
FAX (65)-2810220

4. OTPROM Content Protection

OTPROM content can be read using serial programmer if the OTPROM content protection mechanism is not activated.

One predefined area of the OTPROM (FFFCн) is assigned to be used for preventing the read access of OTPROM content. If the protection code " 00_{μ} " is written in this address ($\mathrm{FFFCH}_{\mathrm{H}}$), the OTPROM content cannot be read by any serial programmer.
Note: The program written into the OTPROM cannot be verified once the OTPROM protection code is written ("00н" in FFFCH). It is advised to write the OTPROM protection code at last.

Block Diagram

MB89930C Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89930C series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89930C series is structured as illustrated below.

MB89930C Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator. When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP): A 16-bit pointer for indicating a memory address
Stack pointer (SP): A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

16 bits		Initial value
PC	: Program counter	FFFD ${ }_{\text {н }}$
A	: Accumulator	Undefined
T	: Temporary accumulator	Undefined
IX	: Index register	Undefined
EP	: Extra pointer	Undefined
SP	: Stack pointer	Undefined
PS	: Program status I-fla	= $0, \mathrm{IL} 1,0=$

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89930C Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

													RP				ower	OP	codes
	"0"	"0"	"0"	"0"	"0	0"	"0"	"0"	"		R4	R3	R2	R1	R0		b2	b1	b0
	\downarrow	\downarrow	\downarrow	\downarrow		\downarrow		\downarrow	\downarrow	\downarrow									
Generated addresses	A15 A	A14	A13	A12	A	11	A10	A9	A	8	A7	A6	A5	A4	A3		A2	A1	A0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low = no interrupt

N -flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89930C Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit resister for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 32 banks can be used on the MB89930C series. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

MB89930C Series

■ I/O MAP

Address	Register name	Register Description	Read/Write	Initial value
00н	PDR0	Port 0 data register	R/W	ХХХХХХХХв
01H	DDR0	Port 0 data direction register	W	00000000в
02н to 06н	(Reserved)			
07H	SYCC	System clock control register	R/W	1--11100в
08н	STBC	Standby control register	R/W	00010---в
09н	WDTC	Watchdog timer control register	W	$0--$-XXXX
ОАн	TBTC	Timebase timer control register	R/W	00---000в
OBн	(Reserved)			
ОСн	PDR3	Port 3 data register	R/W	XXXXXXXX
OD ${ }_{\text {H }}$	DDR3	Port 3 data direction register	W	00000000в
ОЕн	RSFR	Reset flag register	R	XXXX----в
$0 \mathrm{~F}_{\text {H }}$	PDR4	Port 4 data register	R/W	----XXXX
10н	DDR4	Port 4 direction register	R/W	----0000в
11H	OUT4	Port 4 output format register	R/W	----0000в
12н	PDR5	Port 5 data register	R/W	-------Хв
13H	DDR5	Port 5 data direction register	R/W	-------0в
14 H	RCR21	12-bit PPG control register 1	R/W	00000000в
15 н	RCR22	12-bit PPG control register 2	R/W	--000000в
16н	RCR23	12-bit PPG control register 3	R/W	0-000000в
17\%	RCR24	12-bit PPG control register 4	R/W	--000000в
18H	BZCR	Buzzer register	R/W	-----000в
19н	TCCR	Capture control register	R/W	00000000в
1 Ан	TCR1	Timer 1 control register	R/W	00000000в
$1 \mathrm{Bн}$	TCR0	Timer 0 control register	R/W	00000000в
$1 \mathrm{CH}_{\mathrm{H}}$	TDR1	Timer 1 data register	R/W	ХХХХХХХХв
1䉼	TDR0	Timer 0 data register	R/W	
$1 \mathrm{EH}^{\text {¢ }}$	TCPH	Capture data register H	R	ХХХХХХХХВ
1 FH	TCPL	Capture data register L	R	XXXXXXXX
20H	TCR2	Timer output control register	R/W	------00в
21H	(Reserved)			
22 H	CNTR	PWM control register	R/W	$0-000000$ в
23н	COMR	PWM compare register	W	ХХХХХХХХв
24H	EIC1	External interrupt 1 control register 1	R/W	00000000в
25-	EIC2	External interrupt 1 control register 2	R/W	----0000в
26\%	(Reserved)			
27 ${ }^{\text {}}$				
28H	SMC	Serial mode control register	R/W	00000-00в
29н	SRC	Serial rate control register	R/W	--011000в
2 Ан $^{\text {¢ }}$	SSD	Serial status and data register	R/W	$00100-1$ Хв $^{\text {¢ }}$

(Continued)

MB89930C Series

(Continued)

Address	Register name	Register Description	Read/Write	Initial value
2 BH	SIDR	Serial input data register	R	XXXXXXXХв
	SODR	Serial output data register	W	1111111B
2 CH	UPC	Clock division selection register	R/W	----0010в
2 Dh to 2FH	(Reserved)			
30н	ADC1	A/D converter control register 1	R/W	-0000000в
31н	ADC2	A/D converter control register 2	R/W	-0000001в
32н	ADDH	A/D converter data register H	R/W	------ХХв
33н	ADDL	A/D converter data register L	R/W	ХХХХХХХХХв
34	ADEN	A/D enable register	R/W	00000000 в
35	(Reserved)			
36	EIE2	External interrupt 2 control register1	R/W	$00000000{ }_{\text {B }}$
37	EIF2	External interrupt 2 control register 2	R/W	-------0в
38н	(Reserved)			
39н	SMR	Serial mode register	R/W	00000000в
ЗАн	SDR	Serial data register	R/W	ХХХХХХХХв
3BH	SSEL	Serial function switching register	R/W	-------0в
3CH to 3F\%	(Reserved)			
40н	WRARH1	Upper-address setting register 1	R/W	ХХХХХХХХХ
41н	WRARL1	Lower-address setting register 1	R/W	ХХХХХХХХХв
42н	WRDR1	Data setting register 1	R/W	XXXXXXXX
43-	WRARH2	Upper-address setting register 2	R/W	ХХХХХХХХ
44H	WRARL2	Lower-address setting register 2	R/W	ХХХХХХХХВ
45 H	WRDR2	Data setting register 2	R/W	ХХХХХХХХв
46н	WREN	Wild-register enable register	R/W	XXXXXX00в
47 H	WROR	Wild-register data test register	R/W	------00в
48 to 6FH	(Reserved)			
70н	PULO	Port 0 pull-up setting register	R/W	00000000в
71H	PUL3	Port 3 pull-up setting register	R/W	00000000 ${ }_{\text {B }}$
72н	PUL5	Port 5 pull up setting register	R/W	-------0в
73н to 7Ан	(Reserved)			
7Вн	ILR1	Interrupt level setting register 1	W	11111111в
7 CH	ILR2	Interrupt level setting register 2	W	11111111 ${ }_{\text {B }}$
7Dн	ILR3	Interrupt level setting register 3	W	11111111в
7Ен	ILR4	Interrupt level setting register 4	W	11111111в
7F\%	ITR	Interrupt test register	Not available	------00в

- : Unused, X : Undefined

Note : Do not use reserved area.

MB89930C Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$(\mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V})$					
Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	Vss-0.3	Vss +6.0	V	AVcc must not exceed VCC
A/D converter reference input voltage	AVR	Vss-0.3	Vss +6.0	V	AVR must not exceed AVcc
Input voltage	V	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss-0.3	$\mathrm{Vcc}+6.0$	V	
"L" level maximum output current	loL1	-	20	mA	Pins P40 to P43
	loL2	-	10	mA	Pin excluding P40 to P43
"L" level average output current	lolav	-	4	mA	Average value (operating current x operating rate)
"L" level total maximum output current	SloL	-	100	mA	
"H" level maximum output current	Іон	-	-10	mA	
"H" level average output current	Iohav	-	-2	mA	Average value (operating current x operating rate)
"H" level total maximum output current	ऽ ${ }_{\text {loн }}$	-	-50	mA	
Power consumption	Po	-	200	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor device can be permanently damaged by application of stress (voltage, current, temperature etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89930C Series

2. Recommended Operating Conditions
$(\mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	3.0*	5.5	V	Operation assurance range
		1.5	5.5	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	4.5	AV ${ }_{\text {cc }}$	V	
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	P00 to P07, P30 to P37, P40 to P43, P50, UIISI
	Vıнs	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	MOD0/1, $\overline{\mathrm{RST}}, \mathrm{EC}, \overline{\overline{N N T 20}}$ to INT27, UCK/SCK, INT10 to INT12
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	$\begin{aligned} & \text { P00 to P07, P30 to P37, P40 to } \\ & \text { P43, P50, UI/SI } \end{aligned}$
	VILs	Vss - 0.3	0.2 Vcc	V	MOD0/1, $\overline{\mathrm{RST}}, \mathrm{EC}, \overline{\mathrm{NNT20}}$ to INT27, UCK/SCK, INT10 to INT12
Open-drain output pin application voltage	Vo	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	P40 to P43
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

${ }^{*}$: This value depend on the operating conditions and the analog assurance range. See Figure 1 and " 5 . A/D converter Electrical Characteristics."

MB89930C Series

Figure 1 Operating Voltage vs. Operating Frequency
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89930C Series

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{cH}}=10 \mathrm{MHz}\right.$ (External clock), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\text {H }}$	$\begin{aligned} & \text { P00 ~ P07, } \\ & \text { P30 ~ P37, P40 ~ P43, } \\ & \text { P50, UI/SI } \end{aligned}$	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	V ${ }_{\text {нs }}$	RST, MODO/1, $\frac{\mathrm{UCK} / \mathrm{SCK}, \mathrm{EC},}{\text { NT20 }} \sim$ INT10 ~ INT12	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 ~ P07 } \\ & \text { P30 ~ P37, P40 ~ P43, } \\ & \text { P50, UI/SI } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	
	Vıs	$\overline{\text { RST, MODO/1, }}$ UCK/SCK, EC, INT20 ~ INT27, INT10 ~ INT12	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P40 ~ P43	-	Vss - 0.3	-	$\mathrm{Vcc}+0.3$	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 ~ P07, P30~ P37, } \\ & \text { P40 ~ P43, P50 } \end{aligned}$	1 он $=-4.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Vol1	$\begin{aligned} & \text { P00 ~ P07, P30 ~ P37, } \\ & \text { P50, } \mathrm{RST} \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	P40 ~ P43	$\mathrm{loL}=12.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current	l,	$\begin{aligned} & \text { P00 ~ P07, P30 ~ P37, } \\ & \text { P40~P43, P50, } \\ & \text { MODO/1 } \end{aligned}$	$\begin{aligned} & 0.45 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	Without pullup resistor
Pull-up resistance	Rpulu	$\begin{aligned} & \text { P00 ~ P07, P30~ P37, } \\ & \text { P40 ~ P43, P50 } \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	
Power supply current	Icc	Vcc (External clock operation)	$\mathrm{F}_{\mathrm{CH}}=10.0 \mathrm{MHz}$ Tinst $=0.4 \mu \mathrm{~s}$ Main clock run mode	-	6	9	mA	
	Iccs		$\mathrm{F}_{\mathrm{CH}}=10.0 \mathrm{MHz}$ Tinst $=0.4 \mu \mathrm{~s}$ Main clock sleep mode	-	3	5	mA	
	Іссн		$\begin{aligned} & \text { Stop mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	
	IA	$\mathrm{AV}_{\mathrm{cc}}$	When A/D converting	-	2.3	6	mA	
	IAH		When A/D stops $\mathrm{Ta}=+25^{\circ} \mathrm{C}$	-	-	5	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than AV cc, $\mathrm{A} \mathrm{V}_{\mathrm{ss}}$, AVR, Vcc, Vss	-	-	10	-	pF	

MB89930C Series

4. AC Characteristics

(1) Reset Timing

$$
\left(\mathrm{AV} \mathrm{Vss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST }} \mathrm{L}$ " pulse width	tzLzH	-	48 thcy L^{*}	-	ns	

* : thcyl is the oscillation cycle $\left(1 / \mathrm{F}_{\mathrm{c}}\right)$ to input to the X0 pin.
\square

Note: The MCU operation is not guaranteed when the "L" pulse width is shorter than tzzzH.
(2) Power-on Reset
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

\square
Note: The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation setting time.

MB89930C Series

(3) Clock Timing

$$
\left(\mathrm{AV} \mathrm{Vss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Clock frequency	Fch	-	1	10	MHz	
Clock cycle time	thcyl		100	1000	ns	
Input clock pulse width	$\begin{aligned} & \text { twh } \\ & \text { twL } \end{aligned}$		20	-	ns	
Input clock rising/falling time	$\begin{aligned} & \mathrm{tcR} \\ & \mathrm{t} \subset F \end{aligned}$		-	10	ns	

X0 and X1 Timing and Conditions

Main Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{CH}}, 8 / \mathrm{F}_{\mathrm{CH}}, 16 / \mathrm{F}_{\mathrm{CH}}, 64 / \mathrm{F}_{\mathrm{CH}}$	$\mu \mathrm{s}$	tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$

MB89930C Series

(5) Peripheral Input Timing

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width	tııн	$\frac{\text { INT10 }}{\text { INT20 }} \sim \frac{\text { INT12 }}{\sim}$	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width	tHHL		2 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Peripheral input "H" noise limit	tinnc	INT10 to INT12, EC	7	15	23	ns	
Peripheral input "L" noise limit	tinc		7	15	23	ns	

*: For information on tinst, see "(4) Instruction Cycle."

MB89930C Series

(6) UART, Serial I/O Timing

$$
\left(\mathrm{A} \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Unit
				Min.	Max.	
Serial clock cycle time	tscrc	UCK/SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		-200	200	ns
Valid SI \rightarrow UCK/SCK \uparrow	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$
UCK/SCK $\uparrow \rightarrow$ valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst**	-	$\mu \mathrm{S}$
Serial clock "H" pulse width	tshsL	UCK/SCK	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$
Serial clock "L" pulse width	tslsh	UCK/SCK		1 tins**	-	$\mu \mathrm{s}$
UCK/SCK $\downarrow \rightarrow$ SO time	tsovo	UCK/SCK, SO		0	200	ns
Valid SI \rightarrow UCK/SCK \uparrow	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$
UCK/SCK $\uparrow \rightarrow$ valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$

*: For information on tinst, see "(4) Instruction Cycle."
Internal Shift Clock Mode

External Shift Clock Mode

MB89930C Series

5. A/D Converter Electrical Characteristics

(1) A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	$\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{Vss}=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$				
			Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	10	-	bit	
Total error			-	-	± 3.0	LSB	MB89P935C
					± 5.0		MB89PV930A
Linearity error			-	-	± 2.5	LSB	MB89P935C
					± 3.0		MB89PV930A
Differential linearity error			-	-	± 1.9	LSB	MB89P935C
					± 2.5		MB89PV930A
Zero transition voltage	Vot		AV ${ }_{\text {ss }}$ - 1.5 LSB	AVss +0.5 LSB	AVss +2.5 LSB	LSB	MB89P935C
			$\mathrm{AV}_{\text {ss }}-3.5$ LSB	AVss + 0.5 LSB	$\mathrm{AV}_{\text {ss }}+4.5 \mathrm{LSB}$		MB89PV930A
Full-scale transition voltage	$V_{\text {fst }}$		AVR - 3.5 LSB	AVR - 1.5 LSB	AVR + 0.5 LSB	LSB	MB89P935C
			AVR - 6.5 LSB	AVR - 1.5 LSB	AVR + 2.0 LSB		MB89PV930A
A/D mode conversion time			-	-	38 tinst*	$\mu \mathrm{s}$	
Analog port input current	Iain	ANO to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain		$\mathrm{AV}_{\text {ss }}$	-	AVR	V	
Reference voltage	-	AVR	AVss + 3.0	-	AVcc	V	
Reference voltage supply current	If		-	140	260	$\mu \mathrm{A}$	At A/D start
	Ів ${ }^{\text {H }}$		-	-	5	$\mu \mathrm{A}$	At A/D stop

* For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."
(2) A/D Converter Glossary
- Resolution

Analog changes that are identifiable with the A/D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " $\leftrightarrow " 0000000001$ ") with the full-scale transition point ("11 1111 1111" $\leftrightarrow " 111111$ 1110") from actual conversion characteristics.

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value.

- Total error (unit: LSB)

The difference between theoretical and actual conversion values.

MB89930C Series

(3) Notes on Using A/D Converter

- Input impedance of the analog input pins

The A/D converter used for the MB89930C series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for 16 instruction cycles after activation A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $4 \mathrm{k} \Omega$).

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

- Error

The smaller the |AVR - AVss|, the greater the error would become relatively.

MB89930C Series

EXAMPLE CHARACTERISTICS

- Power Supply Current (External Clock)

MB89930C Series

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim :	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction
TL, TH, AH:	A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: - "-" indicates no change. - dH is the 8 upper bits of operation description data. - AL and AH must become the contents of AL and AH immediately before the instruction is executed. - 00 becomes 00.
N, Z, V, C:	An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code:	Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
	Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89930C Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$(\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$($ ext $) \leftarrow$ (A)	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(\mathrm{A}) \leftarrow \mathrm{d} 8$	AL	-	-	+ + --	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	+ + - -	06
MOV A,ext	4	3	(A) $\leftarrow($ ext $)$	AL	-	-	+ +--	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A})$)	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	(dir) \leftarrow d8	-	-	-	--- -	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri$) \leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	(dir) $\leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-		D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-		E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(\mathrm{AL}) \leftarrow((\mathrm{IX})+$ off +1$)$	AL	AH	dH	+ +--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ +--	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow(\mathrm{A})),(\mathrm{AL}) \leftarrow((\mathrm{A})+\mathrm{l})$	AL	AH	dH	+ + - -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A$) \mathrm{)} \leftarrow(\mathrm{~T})$	-	-	-	----	82
MOVW @A,T	4	1	$($ (A)) $\leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow$ (A$)$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, T	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{dir})+\mathrm{C}$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$($ A $) \leftarrow(A)+((X)+$ off $)+C$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((E P))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{X})+$ off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{EP}) \mathrm{)}-\mathrm{C}$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + +	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	+ + R -	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\longrightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3		(A) $-($ (EP) $)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +Off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A, \#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ dir $)$	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+$ off $)$	-	-	-	+ + R -	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2	1	$(A) \leftarrow(A L) \wedge(T L)$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

MB89930C Series

(Continued)

Mnemonic	~	\#	Operation	TL	TH	AH	NZ V C	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9 F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 1 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	--	FC
BC/BLO rel	3	2	If $C=1$ then $P C \leftarrow P C+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $N=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then PC $\leftarrow P \mathrm{PC}+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	_	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 1 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1			-	-	-	---
CLRI	1		-	91				
SETI	1		-	-	-	---	80	

MB89930C Series

－INSTRUCTION MAP

4		$\begin{aligned} & 30 \\ & 3_{0}^{0} \\ & \sum_{2}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{x}{\alpha} \\ & 3_{\alpha}^{\alpha} \\ & \frac{1}{2} \end{aligned}$		$\begin{array}{\|l\|} \hline 0 \\ \hline \frac{20}{2} \\ x_{1}^{4} \\ \times 1 \\ \hline \end{array}$						¢ ${ }_{\text {¢ }}^{\text {¢ }}$		${ }^{\overline{\mathrm{o}}}$	N ${ }_{\text {N }}^{\text {¢ }}$		$\stackrel{\square}{\text { ¢ }}$
ш	$\sum_{\zeta}^{\text {§ }}$	$\begin{aligned} & 3^{4} \\ & 3_{0}^{0} \\ & 0^{2} \end{aligned}$							$\begin{aligned} & \text { 율 } \\ & z_{0}^{3} \end{aligned}$		$\begin{aligned} & \text { ~~ } \\ & \frac{1}{む} \end{aligned}$	$\begin{aligned} & \text { 告 } \\ & \frac{1}{d} \end{aligned}$		$\begin{aligned} & z^{0!} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { 尝 } \end{aligned}$	$\overrightarrow{3}_{\frac{\wedge}{4}}$
\bigcirc	$\begin{array}{\|l} \hline z_{0}{ }^{4} \\ \text { un } \end{array}$	$\begin{aligned} & 3_{0}^{00} \\ & \text { un } \end{aligned}$	${\underset{y}{z_{u}^{a}}}^{x}$	${\underset{u}{u}}^{\frac{3}{u}}$					$\begin{aligned} & \text { ® 오 } \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \text { ๗̃ } \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { 凹ீ } \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \text { 近 } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 凹ீ } \\ & \underset{\sim}{0} \end{aligned}$	
0		$\underset{\substack{\text { z } \\ \hline}}{ }$	$\begin{aligned} & \text { 3} \\ & \underline{Z} \end{aligned}$	${\underset{\underline{0}}{\underline{3}}}^{\frac{\text { un }}{u}}$	\sum_{0}^{2}	$\begin{aligned} & 3^{\frac{1}{2}} \\ & 3^{0} \\ & \sum^{2} \end{aligned}$					O				$\xrightarrow{\underline{Z}}$	$\begin{aligned} & 0 \\ & \underline{Z} \end{aligned}$
∞									\sum_{0}^{∞}	亳	品					
«																
σ	岩	苞	方		0						$\sum_{0}^{n} \stackrel{\stackrel{y}{c}}{\substack{2}}$	$\sum_{0}^{n} \stackrel{+}{0}$				
∞	$\overline{\widetilde{x}}$	$\frac{\mathrm{x}}{\mathrm{u}}$			$\frac{8}{8}$				－						$\mathrm{z}^{\text {D }}$ 免	
－			¢	$\underset{\substack{\mathrm{x}}}{\substack{2}}$			$\stackrel{\times}{\circ}$	cie	$\stackrel{\Upsilon}{0}$		${ }_{\square}^{\text {¢ }}$	$\stackrel{\Upsilon}{0}$		$\underset{\substack{\text { 厄o }}}{\substack{c}}$	¢	
－			${ }_{2}^{2}$	$\sum_{\sum_{<}^{4}}^{z^{4}}$	単	$\sum^{\frac{2}{4}}$	号苃㒸	号宸	$\sum^{\text {年 }}$		$\sum^{\text {2 }}$	\sum_{i}^{2}	\sum_{i}^{0}		\sum°	$\sum^{\frac{0}{<}}$
\bigcirc	$\begin{array}{\|l} 2 \\ z_{0}{ }^{2} \\ 0 \\ 0 \end{array}$	$3_{3_{0}^{2}}^{\underline{x}}$	$\begin{aligned} & \\ & \underset{\sim}{x} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & 3^{4} \\ & z_{0}^{2} \\ & 0 \\ & x \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{\mathrm{x}} \\ & \underset{x}{2} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}^{\text {¢ }}$		$\stackrel{\stackrel{x}{x}}{\stackrel{x}{\gtrless}}$			$\begin{aligned} & \substack{\hat{x} \\ \underset{\sim}{x} \\ \underset{x}{x} \\ \hline} \end{aligned}$
－							$\frac{\text { D }}{2} \frac{x}{~}$		$\stackrel{0}{0}^{\text {® }}$	$\frac{\stackrel{\pi}{x}}{\stackrel{\rightharpoonup}{x}}$	$\stackrel{\rightharpoonup}{\circ}^{\text {® }}$	$\stackrel{\rightharpoonup}{\Sigma}^{\text {® }}$	$\stackrel{\rightharpoonup}{0}^{\text {® }}$		$\rangle_{\Sigma}^{\text {D }}$	
∞	$\underset{\underset{x}{x}}{\underset{\sim}{x}}$	䨌亮	$\begin{aligned} & \\ & \hline 0 \\ & 0 \\ & \stackrel{y}{0} \end{aligned}$	$\begin{array}{\|l} {\underset{\sim}{u}}^{\varangle} \\ \stackrel{0}{\omega} \\ \omega \end{array}$			$\begin{aligned} & \text { OX} \\ & \text { 搝 } \\ & \hline \end{aligned}$					$\begin{aligned} & 0 \\ & \stackrel{0}{9} \\ & \text { ex } \end{aligned}$			$\begin{aligned} & \text { O「 } \\ & \text { 官 } \end{aligned}$	年
\sim	$\underset{\text { ¢ }}{\text { ¢ }}$	$\sum_{\sum_{j}^{0}}^{0}$		$\begin{array}{\|l} 3_{0}^{〔} \\ { }_{0}^{4} \end{array}$	$\begin{aligned} & \text { 槀 } \\ & \text { 品 } \\ & \text { 安 } \end{aligned}$											
－	$\left\lvert\, \begin{aligned} & n \\ & y_{0}^{n} \end{aligned}\right.$	3	\sum_{0}^{0}	\sum_{0}^{3}	$\sum_{0}^{\frac{\infty}{\text { 品 }}}$	\sum_{0}^{0}	$\sum_{0}^{0} \underset{i}{\text { ex }}$	\sum_{0}^{0}	\sum_{0}^{0}	\sum_{0}^{0}	\sum_{0}^{n}	\sum_{0}^{0}	$\sum_{0}^{\frac{d y}{*}}$	$\sum_{0}^{\frac{10}{8}}$	$\sum_{0}^{0}{ }^{\text {c }}$	$\sum_{0}^{0} \frac{\hat{k}}{\substack{4}}$
－	$\frac{0}{2}$		$\begin{aligned} & { }^{2} \\ & 0 \\ & 0 \\ & \hline \mathbf{x} \end{aligned}$							$\underset{\underset{\Sigma}{\circ}}{\stackrel{\rightharpoonup}{\alpha}}$						
I	－	－	\sim	∞	\checkmark	\llcorner	－	－	∞	\bigcirc	＜	∞	0	\bigcirc	ш	4

MB89930C Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89P935CP	32-pin Plastic DIP (DIP-32P-M04)	
MB89P935CP-G-SH	32-pin Plastic SH-DIP (DIP-32P-M05)	
MB89PV930ACF	48-pin Ceramic MQFP (MQP-48C-P01)	

MB89930C Series

- PACKAGE DIMENSIONS

32-pin Plastic DIP
 DIP-32P-M04

© 2001 FUJITSU LIMITED

32-pin Plastic SH-DIP

DIP-32P-M05

© 2002 FUJITSU LIIITED D32017SC-1-1

MB89930C Series

48-pin Ceramic MQFP
 MQP-48C-P01

MB89930C Series

MEMO

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

[^0]: *1: DIP-32P-M04 and DIP-32P-M05
 *2: MQP-48C-P01

