Lithium Ion Battery Charging Control Monolithic IC MM1485

Outline

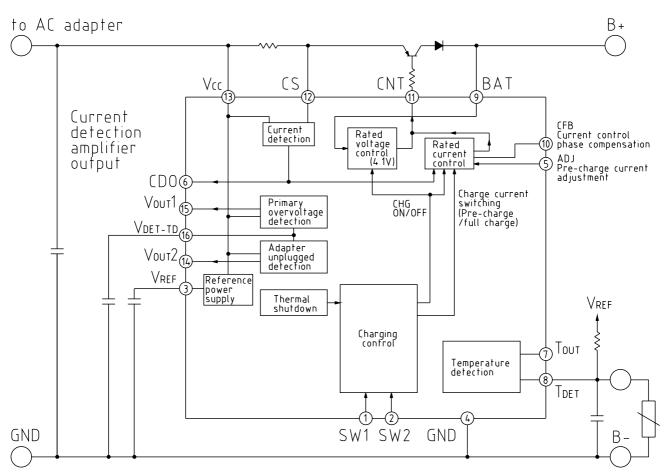
This IC is a lithium ion battery charging controller, with protection circuits such as constant-current, constantvoltage charging and pre-charge, battery temperature detection function and others all on one chip. The timer function on charging IC MM1475 has been omitted to achieve a smaller package.

Features

- 1. Output voltage (Ta = $0 \sim +50^{\circ}$ C) 4.120±30mV
- 2. Consumption current 1 1.5mA typ.
 Pre-charge function
 Adaptor (primary side) abnormality detection function
- 3. Battery temperature detection function

Package

TSOP-16A


Applications

1. Lithium ion battery charging control

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	VCCMAX	-0.3~+15	V
Allowable loss	PD	250	mW

Block Diagram

SW1 and SW2 Specifications

SW1	SW2	Charge	Current Limit
L	Н	OFF	
Н	Н	ON	Controlled by the IC (current limit 2:25mV)
L	L	ON	Controlled by the adaptor (current limit 1:450mV)
Н	L	ON	Controlled by the adaptor (current limit 1:450mV)

Pin Assignment

16 15 14 13 12 11 10	9
1 2 3 4 5 6 7 	8

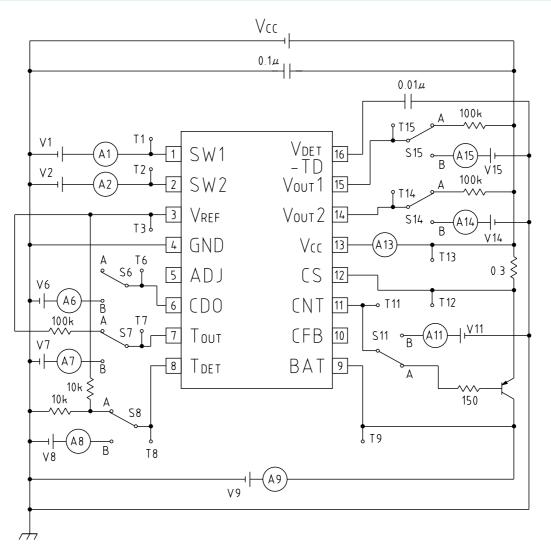
1	SW1	9	BAT
-		9	DAI
2	SW2	10	CFB
3	$\mathbf{V}_{\mathrm{REF}}$	11	CNT
4	GND	12	CS
5	ADJ	13	Vcc
6	CDO	14	Vout2
7	Тоит	15	Vout1
8	Tdet	16	Vdet-td

Pin Description

Pin No.	Pin Name	I/O	Function	
1	SW1	Input	Charging control switching pin.	
2	SW2	Input	– Switches charging ON/OFF and charging current by combinations of SW1 and SW2 L and H.	
3	VREF	Output	Reference power supply output pin. Outputs 1.2V typ. reference voltage.	
4	GND	Input	GROUND pin.	
5	ADJ	Input	Pre-charge current adjustment pin. Pin voltage is set at 100mV typ. Pre-charge current can be adjusted by adjusting the pin voltage with an external resistor, etc. Pre-charge current is controlled by comparing the ADJ pin voltage and voltage drop value of 12dB between Vcc-CS.	
6	Сро	Output	Current detection output pin. Outputs current difference value of 18dB between Vcc-CS.	
7	Тоит	Output	Temperature detection output pin. Normal temperature: Output Tr OFF High temperature detection: Output Tr ON	
8	TDET	Input	Temperature detection input pin. Use external resistor and thermistor to apply resistance-divided potential from reference voltage.	
9	BAT	Input	Battery voltage input pin. Detects battery voltage and controls charging.	
10	CFB	Input	Constant-current control phase compensation pin. Connect an external capacitor (around 100pF) between CFB and CNT to perform phase compensation for improved oscillation.	
11	CNT	Output	Charging control output pin. Controls external PNP-Tr base and performs constant-current, constant- voltage charging.	
12	CS	Input	Current detection pin. Current is detected by voltage drop at external resistor between Vcc-CS and charging current is controlled.	
13	Vcc	Input	Power supply input pin.	
14	Vout2	Output	Adaptor unplugged detection output pin. Vcc low voltage input: Output Tr OFF Vcc recommended operating voltage: Output Tr ON	
15	Vout1	Output	Overvoltage detection output pin. Vcc overvoltage input: Output Tr OFF Vcc recommended operating voltage: Output Tr ON	
16	VDET-TD	Input	Overvoltage detection delay time setting pin. Delay time can be set by connecting an external capacitor.	

Pin No.	Pin name	Internal equivalent circuit diagram	Pin No.	Pin name	Internal equivalent circuit diagram
1	SW1	100k	9	BAT	
2	SW2	100k	10	CFB	
3	VREF		11	CNT	
5	ADJ	1 2V 177k 16k	12	CS VOUT2	
6	CDO		15	VOUT1	
7	TOUT		16	VDET-TD	
8	TDET		-		100k 230k 80k 77

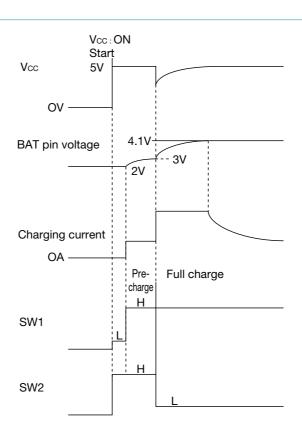
Pin Description The following valaeis typical

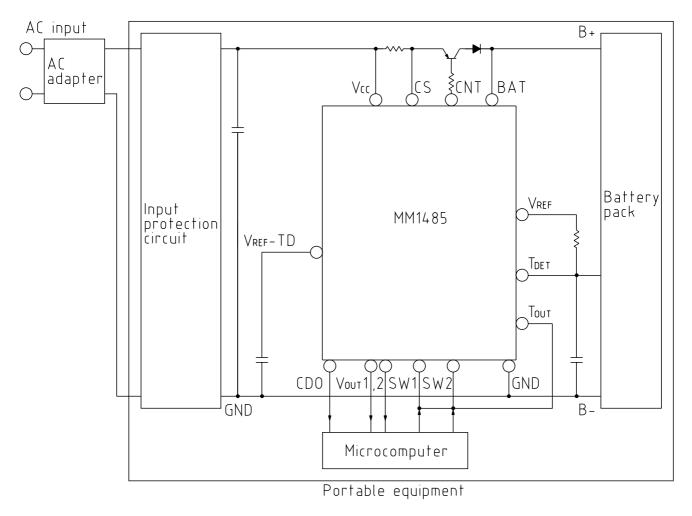

Electrical Characteristics (Except where otherwise indicated Ta=25°C, Vcc=5V)

Item	Symbol	Conditions	Measurement pin	Min.	Тур.	Max.	Unit
Consumption current 1	Icc1	SW1, 2 : H	13		1.5	2.3	mA
Consumption current 2	Icc2	SW1, 2 : L	13		3.5	5.3	mA
Reference voltage	VREF		3		1.207		V
ADP detection voltage L	VADPL	Vcc : H→L	14	2.70	2.80	2.90	V
ADP detection voltage L hysteresis voltage width	VADPLW		14	50	100	150	mV
ADP detection voltage H	VADPH	Vcc : L→H	15	5.8	6.0	6.2	V
ADP detection voltage H hysteresis voltage width	VADPHW		15	50	100	150	mV
BAT pin leak current	Ibat		9			1	μA
BAT pin output voltage	VBAT	Ta=0~+50°C	9	4.090	4.120	4.150	V
CNT pin output voltage	VCNT	ICNT=20mA	11			0.5	V
SW1 pin input current	Isw1		1	40	60	80	μA
SW1 pin input voltage H	Vsw1h		1	0.6		1.20	V
SW1 pin input voltage L	Vsw1L		1			0.25	V
SW2 pin input current	Isw2		2	40	60	80	μA
SW2 pin input voltage H	Vsw2h		2	0.6		1.20	V
SW2 pin input voltage L	Vsw2L		2			0.25	V
Current limit 1	VL1	Quick charge	12,13	0.35	0.45	0.55	V
Current limit 2	VL2	Pre-charge	12,13	20	25	30	mV
Current detection amp gain	Gı		6	17.5	18.0	18.5	dB
Current detection amp output offset voltage	Voff		6	-4.5	0	4.5	mV
Current detection amp output current outflow	Ісдо		6	0.5	1.0		mA
Vout1 pin output voltage	Vout1	Iout1=0.12mA	15		0.2	0.4	V
Vout2 pin output voltage	Vout2	Iout2=0.12mA	14		0.2	0.4	V
Battery temperature detection voltage	VTDET	VTDET : $H \rightarrow L$	8	0.390	0.413	0.435	V
Battery temperature detection voltage hysteresis voltage width	VTDETW		8	30	60	90	mV
Tout pin output voltage	VTOUT	ITOUT=0.12mA	7		0.2	0.4	V
TDET input bias current	Iт		8		30	150	nA

* Current limits 1 and 2 are prescribed by the amount of current detection resistor voltage drop.

* Safety can not be guaranteed if this IC is damaged and control no longer is possible. Please protect with something other than this IC.


Measuring Circuit


Measurement Procedures (Except where otherwise indicated Ta = 25°C, Vcc = 5V, Vcc: current limit 0.5A, V1 = V2 = 0V, V9 = 4.2V, S6, 7, 8, 11, 14, 15: A)

Item	Measurement Procedure	
Consumption current 1	Measure A13 current value Icc1 at V1 = V2 = 1.2V.	
Consumption current 2	Measure A13 current value Icc2.	
Reference voltage	Measure T3 potential VREF.	
ADP detection voltage L	Gradually lower Vcc from 5V. Vcc potential is VADPL when T14 potential goes above Vcc – 0.5V.	
ADP detection voltage L	Gradually raise Vcc from 2V. Vcc potential is VADPL2 when T14 potential goes under 0.5V. VADPLW = VADPL2 – VADPL	
hysteresis voltage width		
ADP detection voltage H	Gradually raise Vcc from 5V. Vcc potential is VADPH when T15 potential goes above Vcc – 0.5V.	
ADP detection voltage H	Gradually lower Vcc from 7V. Vcc potential is VADPH2 when T15 potential goes	
hysteresis voltage width	under 0.5V. VADPHW = VADPH – VADPH2.	
BAT pin leak current	Vcc = 0V, S11: B, V11 = 0V. Measure A9 current value IBAT.	
BAT pin output voltage	Gradually raise V9 from 3.5V. T9 potential is VBAT when the potential difference between T13–T12 is 20mV or less.	
CNT pin output voltage	V9 = 3.5V, S11: B. Gradually raise V11 from 0V. T11 potential is VCNT when A11 current value is 20mA.	
SW1 pin input current	Measure A1 current value Isw ₁ .	
	V9 = 3.5V, $V2 = 1.2V$. Raise V1 from 0V to 1.2V. Identify Vsw1 H or L; when A9	
SW1 pin input voltage H	is 50mA or higher, charging ON at current limit 2, and when A9 is 1mA or	
SW1 pin input voltage L	lower, charging is OFF.	
SW2 pin input current	Measure A2 current value Isw2.	
SW2 pin input voltage H	V9 = 3.5V. Raise V2 from 0V to 1.2V. Identify Vsw2 H or L; when A9 is 450mA	
SW2 pin input voltage Lor higher, charging ON at current limit 1, and when A9 is 1mA or low charging is OFF.		
Current limit 1	V9 = 3.5V. Gradually raise Vcc current limit value and measure the potential	
	difference between T13–T12, VL1.	
Current limit 2	V9 = 2.5V, $V1 = V2 = 1.2V$. Potential difference between T13–T12 is V _{L2} .	
	V9 = 3.5V. The potential difference fluctuation between T13-T12 when Vcc	
Current detection amp gain	current limit value is changed from 100mA to 200mA is ⊿Va and the T6	
	potential fluctuation is \angle Vb.	
Oursent data at	$G_1 = 20\log \triangle Vb / \triangle Va $	
Current detection amp output offset voltage	V9 = 4.0V. T6 potential is Vb2 when Vcc current limit is 100mA. VoFF = Vb2/8 - 30 mV	
Current detection amp	V0FF = VD2/8 - 30HV V9 = 3.5V, Vcc current limit value is 300mA, S6: B, V6 = 0V. Measure A6	
output current outflow	current value.	
	S15: B. Gradually raise V15 from 0V. T15 potential is Vouti when A15 current	
Vout1 pin output voltage	value is 0.12mA.	
	S14: B. Gradually raise V14 from 0V. T14 potential is Vout2 when A14 current	
Voute pin output voltage	value is 0.12mA.	
Battery temperature detection	S8: B. Gradually lower V8 from 0.6V. T8 potential is VTDET when T7 potential is	
voltage hysteresis voltage width	0.3V or under.	
Battery temperature detection	S8: B. Gradually raise V8 from 0V. T8 potential is VTDET2 when T7 potential is	
voltage hysteresis voltage width	0.8V or higher. VTDETW = VTDET2 – VTDET.	
Tout pin output voltage	S8: B, V8 = 0V, S7: B. Gradually raise V7 from 0V. T7 potential is VTOUT when A7 current value is 0.12mA.	
TDET input bias current	A7 current value is 0.12mA. S8: B, V8 = 0V. Measure A8 potential value IT.	
Ther input bias current	50. D, $70 - 07$. Incasure to potential value II.	

Timing Chart

Application Circuits

