STBV32

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- MEDIUM VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

APPLICATIONS:

- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability.
It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.
The STBV32 is designed for use in compact fluorescent lamp application.
Ordering codes:
$\begin{array}{ll}\text { STBV32 } & \text { (shipment in bulk) } \\ \text { STBV32-AP } & \text { (shipment in ammopack) }\end{array}$

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CES }}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	700	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	400	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0, \quad \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A}, \quad \mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s}, \quad \mathrm{~T}_{\mathrm{j}}<150^{\circ} \mathrm{C}\right)$	$\mathrm{BV}_{\mathrm{EBO}}$	V
I_{C}	Collector Current	1	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	3	A
I_{B}	Base Current	0.5	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	1.5	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	1.1	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

R $_{\text {thj-a }}$	Thermal Resistance Junction-ambient	Max	112	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Tcase $=25{ }^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
ICEV	Collector Cut-off Current (V BE $=-1.5 \mathrm{~V}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=700 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$B V_{\text {Ebo }}$	Emitter-Base Breakdown Voltage ($\mathrm{Ic}=0$)	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$		9		18	V
$\mathrm{V}_{\text {CEO }}$ (sus)*	Collector-Emitter Sustaining Voltage ($\mathrm{IB}_{\mathrm{B}}=0$)	$\begin{aligned} & \mathrm{IC}=10 \mathrm{~mA} \\ & \mathrm{~L}=25 \mathrm{mH} \end{aligned}$		400			V
$V_{\text {CE(sat)* }}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=0.5 \mathrm{~A} \\ & \mathrm{I}=1 \mathrm{~A} \\ & \mathrm{I}=1.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A} \end{aligned}$			$\begin{gathered} 0.5 \\ 1 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE}(\mathrm{sat)}}{ }^{*}$	Base-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}=0.5 \mathrm{~A} \\ & \mathrm{IC}=1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A} \end{aligned}$			$\begin{gathered} 1 \\ 1.2 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$h_{\text {FE }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 5 \end{aligned}$		$\begin{aligned} & 35 \\ & 25 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \hline \end{aligned}$	RESISTIVE LOAD Rise Time Storage Time Fall Time	$\begin{aligned} & I_{C}=1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{p}}=25 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 2}=-0.2 \mathrm{~A} \end{aligned}$			$\begin{gathered} 1 \\ 4 \\ 0.7 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
t_{s}	INDUCTIVE LOAD Storage Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BE}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=300 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A} \\ \mathrm{~L}=50 \mathrm{mH} \end{gathered}$		0.8		$\mu \mathrm{s}$

* Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle $=1.5 \%$.

Safe Operating Areas

DC Current Gain

Collector Emitter Saturation Voltage

Derating Curve

DC Current Gain

Base Emitter Saturation Voltage

Inductive Fall Time

Inductive Storage Time

Reverse Biased SOA

Figure 1: Inductive Load Switching Test Circuits.

Figure 2: Resistive Load Switching Test Circuits.
tronic switch
2) Non-inductive Resistor

TO-92 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.58		5.33	0.180		0.210
B	4.45		5.2	0.175		0.204
C	3.2		4.2	0.126		0.165
D	12.7			0.500		
E		1.27			0.050	
F	0.4		0.51	0.016		0.020
G	0.35			0.14		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

