

4S/3HQ/4T+2Per Speech+Melody Processor (BandDirectorTM Series)

GENERAL DESCRIPTION

The W566Cxxx is a powerful embedded microcontroller (uC) dedicated to speech and melody synthesis applications. This series IC is tailored for plush toys, educational toys, or musical instruments. In multi-tasking requirements, W566Cxxx series can make toy more funny than before. With the help of 16-bit microprocessor (uP) W566-16, W566Cxxx can synthesize multi-channel speech and melody. 3-track of synthesized speech can be in different kinds of format, for example ADPCM and MDPCM. Regarding synthesized melody, W566Cxxx can provide 4-track of Tone melody (T-melody), or 3-track of High-Quality melody (HQ-melody) that can emulate the characteristics of musical instruments. These signals can be mixed flexibly through 6-input Mixer to produce colorful effects. The result of Mixer is converted to analog signal to drive speaker output.

W566Cxxx has two kinds of power saving modes: one is HOLD mode and the other is STOP mode. In HOLD mode, the specific peripherals can be inactivated and IC can operate at the sub-clock. Consequently, the W566Cxxx can perform some special tasks periodically. In STOP mode, all the IC's peripherals are disable which is designated specially for try-me application. Besides, W566Cxxx can sink 8mA at most for high-current application.

The characteristics of W566Cxxx series are depicted in the following table.

Publication Release Date: October 2001

- 1 - Revision A5

Part Number	W566C210	W566C210 W566C260		W566C340	
ROM (byte)	650K	792K	922K	1020K	
RAM (byte)	512	512	512	512	
Duration1 (sec)*	212"	260"	304"	338"	
Duration2 (sec)*	159"	195"	228"	253"	
In: Bid ¹	8:16	8:16	8:16	8:16	
Speaker Driver	DAC	DAC	DAC	DAC	
Mixer Inputs	6	6	6	6	
Speech Tracks ²	4	4	4	4	
Speech Algorithms	ADPCM MDPCM PCM	ADPCM MDPCM PCM	ADPCM MDPCM PCM	ADPCM MDPCM PCM	
Melody Tracks	3	3	3	3	
Instrument Types	HQ Tone Voice	HQ Tone Voice	HQ Tone Voice	HQ Tone Voice	
IR-Carrier	✓	✓ ✓		✓	
Numbers of System Clock	2	2	2	2	
Power Management	HOLD STOP	HOLD STOP	HOLD STOP	HOLD STOP	

^{*}The Duration1 is calculated based on 6000Hz*4-bits=24Kbps, 24Kbps on the assumption that all the ROM space is used to store speech data.

^{*}The Duration2 is calculated based on 8000Hz*4-bits=32Kbps, 32Kbps on the assumption that all the ROM space is used to store speech data.

¹ "In" is the number of input pins; "Bid" is the number of I/O pins.

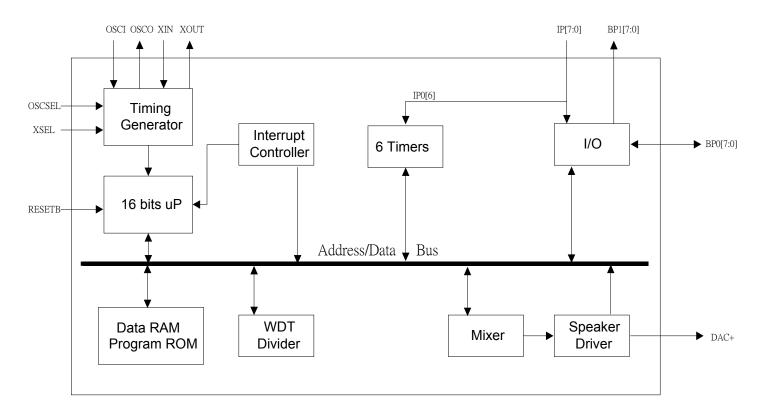
² Synthesized speech in ADPCM/MDPCM format.

FEATURES

• Wide range of operating voltage: 4 M Hz @ 2.4 volt ~ 5.5 volt

6 M Hz @ 3.6 volt ~ 5.5 volt

- Sophisticated power management:
 - dual system clocks, one in 6M Hz and the other in 32768 Hz
 - HOLD mode for dealing with interrupt events only
 - STOP mode for stopping all IC operations
- 8 input pins
- 16 I/O pins and 8 of them can sink 8mA in their output portion
- Versatile Digital-to-Analog Converter (DAC) to drive speaker output:
 - 10-bit Current type DAC (DAC) with programmable output current
- Multiple synthesized speech formats: ADPCM/MDPCM/PCM
- 3 tracks synthesized ADPCM/MDPCM speech at programmable playback rate
- 4 tracks Tone melody that can emulate envelope of musical instruments
- 3 tracks High-Quality melody that can emulate characteristic of musical instruments
- 6-input/10-bit-resolution Mixer can mix the speech and melody signals flexibly
- Built-in IR carrier generation circuit for simplification firmware IR application
- Built-in 6 timers for speech/melody synthesis and general purpose applications
- Built-in Watch-Dog Timer (WDT)
- Built-in Divider for real-time clock application
- Available package: COB



PIN DESCRIPTION

PIN NAME	I/O	FUNCTION
RESETB	In	IC reset input.
XIN	In	Sub-clock oscillation input.
XOUT	Out	Sub-clock oscillation output.
XSEL	In	Pin selection of sub-clock type. When XSEL is logic 1, RC type is used. When XSEL is logic 0, crystal type is used.
OSCI	In	Main-clock oscillation input.
osco	Out	Main-clock oscillation output.
OSCSEL	ln	Pin selection of main-clock type. When OSCSEL is logic 1, Ring type is used. When OSCSEL is logic 0, crystal type is used.
IP0[7:0]	In	General input port with pull-high selection. Each input pin can be programmed to generate interrupt request and used to release IC from HOLD/STOP mode.
		IP0.6 can be used as the external clock source of the general timer TimerG.
BP0[7:0]	I/O	General input/output pins. When used as output pin, it can be opendrain or CMOS type and it can sink 8mA for high-current application. When used as input pin, there may have a pull-high option and generate interrupt request to release IC from HOLD/STOP mode.
		When BP0[7] is used as output pin, it can be the IR transmission carrier for firmware IR application.
BP1[7:0]	I/O	General input/output pins. When used as output pin, it can be opendrain or CMOS type. When used as input pin, there may have a pull-high option and generate interrupt request to release IC from HOLD/STOP mode.
DAC+	Out	Current type DAC
NC_DAC2	Out	Reserved, non connect
NC_SPK1	Out	Reserved, non connect
NC_SPK2	Out	Reserved, non connect
TEST	In	Test input. Do not connect during normal operation.
VDD	Power	Positive power supply for uP.
VSS	Power	Negative power supply for uP.
VDD1	Power	Positive power supply for peripherals.
VSS1	Power	Negative power supply for peripherals.
OVDD	Power	Positive power supply for oscillation.
OVSS	Power	Negative power supply for oscillation.
PVDD	Power	Positive power supply for speaker output.
PVSS	Power	Negative power supply for speaker output.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Supply Voltage to Ground Potential	-0.3 to +7.0	V
D.C. Voltage on Any Pin to Ground Potential	-0.3 to VDD+0.3	V
Operating Temperature	0 to +70	°C
Storage Temperature	-55 to +150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

D.C. ELECTRICAL CHARACTERISTICS

 $(V_{DD}-V_{SS}=4.5\ V,\ F_{M}=6\ MHz,\ F_{S}=32768\ Hz,\ Ta=25^{\circ}C;\ No\ Load\ unless\ otherwise\ specified)$

PARAMETER	SYMBOL	TEST CONDITIONS	SPEC.			UNIT
		TEST CONDITIONS	Min.	Тур.	Max.	UNII
Operating Voltage	V_{DD}	F _{SYS} = 6 MHz	3.6		5.5	V
Operating Current	I _{OP}	F _{SYS} =F _M , F _S active, normal operation			12	mA
Hold Current	I _{HD}	$F_{SYS}=F_S$, F_M inactive, HOLD mode			25	uA
Standby Current	I _{SB}	STOP mode			1	uA
Input Low Voltage	V _{IL}	All input pins	V _{SS}		0.3V _{DD}	V
Input High Voltage	V _{IH}	All input pins	0.7V _{DD}	-	V_{DD}	٧
Output Low Current	I _{OL}	Vout=0.4V, all output pins expect BP0			4	mA
		Vout=0.4V, BP0 only			8	mA
Output High Current	I _{OH}	Vout=2.4V, all output pins	-4			mA
DAC Full Scale Current	I _{DAC}	VDD=4.5V, RL=100Ω	-1.6	-2.0	-2.4	
			-2.4	-3.0	-3.6	mA
			-3.2	-4.0	-4.8	
			-4.0	-5.0	-6.0	
Pull High Resistance	R _{IN}	All input pins except RESETB	160		300	ΚΩ
		RESERB	100			ΚΩ

A.C. ELECTRICAL CHARACTERISTICS

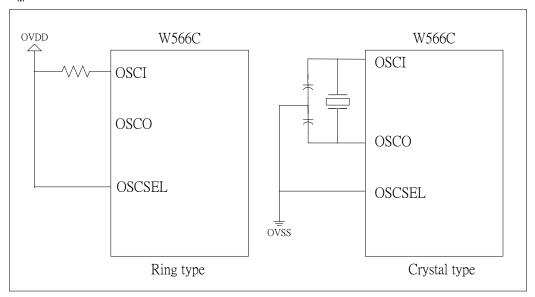
 $(V_{DD}-V_{SS}=4.5~V,~F_{M}=6~MHz,~F_{S}=32768~Hz,~Ta=25^{\circ}C;~No~Load~unless~otherwise~specified)$

PARAMETER	SYMBOL	TEST CONDITIONS	SPEC.			UNIT
			Min.	Тур.	Max.	UNIT
Main-Clock	F _M	Ring type, R= 370 K Ω	5.7	6	6.3	MHz
		Crystal type		6		MHz
Sub-Clock	F _S	RC type, R= 1650 KΩ	26.214	32.768	39.322	KHz
		Crystal type		32.768		Hz
Cycle Time	T _{CYC}	F _{SYS} = 6 MHz	167		DC	ns
Main-Clock Wake-up Stable Time	T _{WSM}	Ring type, R= 370 K Ω		3	5	ms
		Crystal type, F _M = 6 MHz		3	5	ms
Sub-Clock Wake-up Stable Time	T _{wss}	RC type, R= 1650 KΩ		1	2	S
		Crystal type, F _S =32768 Hz		1	2	S
Main-Clock Frequency Deviation, Ring type	$\frac{\Delta F}{F}$	1 FMAX - FMIN FMIN		3	5	%
RESETB Active Width	T _{RES}	After F _{SYS} stable	4			T _{CYC}

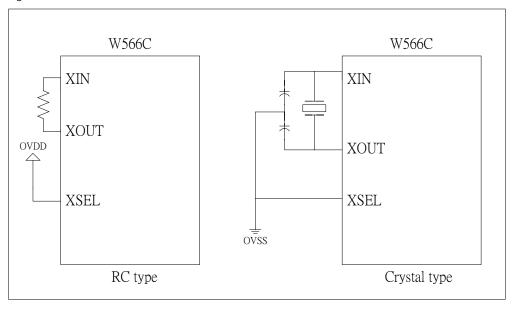
STABILITY DATA

- Resistance vs. Frequency for W566C340 at V_{DD} = 4.5V, main-clock in Ring Type
- Resistance vs. Frequency for W566C340 at V_{DD} = 4.5V, sub-clock in RC Type

 1 "F $_{MAX}$ " is max oscillation frequency for operating voltage $V_{DD},\ \text{"F}_{MIN}$ " is minimum oscillation frequency for operating voltage V_{DD}

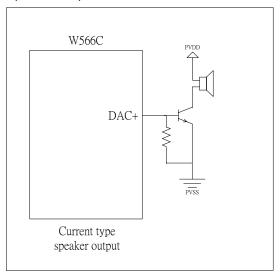

Publication Release Date: October 2001

- 7 - Revision A5

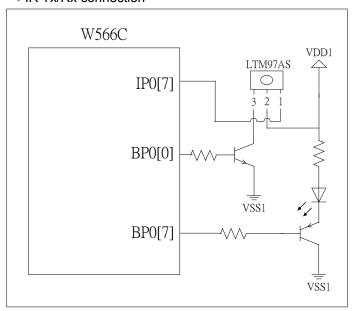


APPLICATION CIRCUITS

• F_M connection



• F_S connection



• Speaker output connection

• IR Tx/Rx connection

Headquarters

No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice & Fax-on-demand: 886-2-27197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-27190505 FAX: 886-2-27197502

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp. Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.

123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064 Winbond Memory Lab.
Winbond Microelectronics Corp.
Winbond Systems Lab.
2727 N. First Street, San Jose,
CA 95134, U.S.A.
TEL: 408-9436666
FAX: 408-5441798

Note: All data and specifications are subject to change without notice.

Publication Release Date: October 2001

- 10 - Revision A5