FAIRCHILD				June 1999 Revised February 2002
SEMICONDபCTORTM				
74VCXH245				
Low Voltage Bidirectional Transceiver with Bushold				
General D	scription		Features	
The VCXH245 buffers with 3-S ented application of data flow. The by placing them data inputs inclu need for externa ing data inputs a The 74VCXH245 V_{CC} applications The 74VCXH24 technology to a taining low CMO	ntains eight non-in TE outputs and is The T / \bar{R} input det OE input disables bo a high impedance active bushold cir pull-up resistors to valid logic level. is designed for low is fabricated with ieve high-speed op power dissipation.	nverting bidirectional intended for bus oriermines the direction th the A and B Ports state. The VCXH245 cuitry, eliminating the hold unused or float- voltage (1.4 V to 3.6 V) an advanced CMOS peration while main-	1.4 V to 3.6 V Bushold on pull-up/pull- tpD 3.5 ns ma - Static Drive $\pm 24 \mathrm{~mA}$ @ Uses patent circuitry Latchup per ESD perform Human bod Machine	$V_{C C}$ supply operation ata inputs eliminates the need for external wn resistors for 3.0 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ OH $/ \mathrm{l}_{\mathrm{OL}}$) $3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$ Quiet Series noise/EMI reduction rmance exceeds 300 mA nce: y model > 2000V del > 200V
Ordering Code:				
Order Number	Package Number		Packag	Description
74VCXH245WM	M20B	20-Lead Small Outlin	ntegrated Circuit	(SOIC), JEDEC MS-013, 0.300" Wide
74VCXH245MTC	MTC20	20-Lead Thin Shrink	all Outline Pack	ge (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code. Logic Symbol Pin Descriptions				

Truth Table

Inputs		Outputs
$\overline{\mathrm{OE}}$	T/ $\overline{\mathbf{R}}$	
L	L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$
L	H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$
H	X	HIGH Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$
$\begin{aligned} &=\text { HIGH } \\ &=\text { LOW } \\ & \text { Imma } \\ & \text { High }\end{aligned}$	dance	

Absolute Maximum Ratings（Note 1）	
Supply Voltage（ V_{CC} ）	-0.5 V to +4.6 V
DC Input Voltage（ V_{l} ）	-0.5 V to +4.6 V
DC Output Voltage（ V_{0} ）	
Outputs 3－STATE	-0.5 V to +4.6 V
Outputs Active（Note 2）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current（ I_{K} ） $\mathrm{V}_{1}<0 \mathrm{~V}$	－50 mA
DC Output Diode Current（lok）	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	－50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$+50 \mathrm{~mA}$
DC Output Source／Sink Current	
（ $\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$ ）	$\pm 50 \mathrm{~mA}$
DC V $\mathrm{CCC}^{\text {or Ground Current }}$	$\pm 100 \mathrm{~mA}$
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions（Note 3）

Power Supply	
Operating	1.4 V to 3.6 V
Input Voltage	-0.3 V to 3.6 V
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	
Output in Active States	0 V to V_{CC}
Output in 3－STATE	0 V to 3.6 V
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 18 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 6 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.65 V	$\pm 2 \mathrm{~mA}$
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$	
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	$10 \mathrm{~ns} / \mathrm{V}$

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	$\begin{gathered} 2.0 \\ 1.6 \\ 0.65 \times \mathrm{V}_{\mathrm{CC}} \\ 0.65 \times \mathrm{V}_{\mathrm{CC}} \end{gathered}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35 \times V_{C C}$ $0.35 \times V_{C C}$	V
V_{OH}	HIGH Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ \hline \end{array}$	$2.7-3.6$ 2.7 3.0 3.0 $2.3-2.7$ 2.3 2.3 2.3 $1.65-2.3$ 1.65 $1.4-1.6$ 1.4	 $\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.25 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05		V

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \mathrm{l}=24 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.4 \\ 0.4 \\ 0.55 \end{gathered}$	v
		$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \end{gathered}$		$\begin{aligned} & \hline 0.2 \\ & 0.4 \\ & 0.6 \\ & \hline \end{aligned}$	
		$\begin{aligned} & \mathrm{lOL}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.65-2.3 \\ 1.65 \end{gathered}$		$\begin{aligned} & \hline 0.2 \\ & 0.3 \end{aligned}$	
		$\begin{aligned} & \mathrm{l} \mathrm{lQL}^{2}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=2 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.4-1.6 \\ 1.4 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.35 \end{gathered}$	
1	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.4-3.6		± 5.0	$\mu \mathrm{A}$
I(HOLD)	Bushold Input Minimum Drive Hold Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 75 \\ -75 \end{array}$		$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{array}{r} 45 \\ -45 \end{array}$		
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.57 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.07 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.65 \end{aligned}$	$\begin{array}{r} 25 \\ -25 \end{array}$		
$I_{\text {(OD) }}$	Bushold Input Over-Drive Current to Change State	$\begin{aligned} & \hline \text { (Note 4) } \\ & (\text { Note 5) } \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	$\begin{array}{r} 450 \\ -450 \end{array}$		$\mu \mathrm{A}$
		$\begin{array}{\|l\|} \hline \text { (Note 4) } \\ \text { (Note 5) } \end{array}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{array}{r} 300 \\ -300 \end{array}$		
		$\begin{array}{\|l} \hline \text { (Note 4) } \\ \text { (Note 5) } \end{array}$	$\begin{aligned} & 1.95 \\ & 1.95 \end{aligned}$	$\begin{array}{r} \hline 200 \\ -200 \end{array}$		
$\overline{\mathrm{l}} \mathrm{OZ}$	3-STATE Output Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.4-3.6		± 10	$\mu \mathrm{A}$
${ }_{\text {ICC }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.4-3.6		20	$\mu \mathrm{A}$
$\Delta{ }^{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$
Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.						

AC Electrical Characteristics (Note 6)

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.5	ns	Figures 1, 2
			2.5 ± 0.2	0.8	4.2		
			1.8 ± 0.15	1.5	8.4		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	16.8		$\begin{gathered} \hline \text { Figures } \\ 5,6 \end{gathered}$
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	4.5	ns	Figures$1,3,4$
			2.5 ± 0.2	0.8	5.6		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		Figures $5,7,8$
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.6	ns	Figures$1,3,4$
			2.5 ± 0.2	0.8	4.0		
			1.8 ± 0.15	1.5	7.2		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	14.4		Figures $5,7,8$
toshl tosth	Output to Output Skew (Note 7)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		

Note 6. For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximaty 300 ps to the AC maximum speciication.
Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.3	V
			2.5	0.7	
			3.3	1.0	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	-0.3	v
			2.5	-0.7	
			3.3	-1.0	
$\mathrm{V}_{\mathrm{OHV}}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	1.3	V
			2.5	1.7	
			3.3	2.0	
Capacitance					
Symbol	Parameter	Conditions		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		6	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	or 3.3 V	20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.5 \mathrm{~V}$)

FIGURE 1. AC Test Circuit

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2} \mathbf{V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

FIGURE 6. Waveform for Inverting and Non-Inverting Functions

FIGURE 7. 3-STATE Output High Enable and Disable Times for Low voltage Logic

FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
