DATA SHEET

BLF0810-180; BLF0810S-180 Base station LDMOS transistors

BLF0810-180; BLF0810S-180

FEATURES

- Easy power control
- Excellent ruggedness
- High power gain
- Excellent thermal stability
- Designed for broadband operation (800 MHz to 1 GHz)
- Internally matched for ease of use.

APPLICATIONS

- Common source class-AB operation applicable in the 860 to 960 MHz frequency range
- CDMA and multi carrier applications

PINNING - SOT502A

PIN	DESCRIPTION
1	drain
2	gate
3	source; connected to flange

Top view
MBK394
Fig. 1 Simplified outline SOT502A (BLF0810-180)

DESCRIPTION

180 W LDMOS power transistor for base station applications at frequencies from 800 MHz to 1000 MHz .

Typical CDMA IS95 performance at standard settings at a supply voltage of 28 V and $\mathrm{I}_{\mathrm{DQ}}=1125 \mathrm{~mA}$, channel bandwidth is 30 kHz , adjacent channels at $\pm 750 \mathrm{kHz}$ and at $\pm 1.98 \mathrm{MHz}$:

Output power $=35 \mathrm{~W}$
Gain $=15.6 \mathrm{~dB}$
Efficiency $=26$ \%
$\mathrm{ACPR}<-45 \mathrm{dBc}$ at 750 kHz and $\mathrm{BW}=30 \mathrm{kHz}$
ACPR <-63 dBc at 1.98 MHz and $\mathrm{BW}=30 \mathrm{kHz}$

PINNING - SOT502B

PIN	DESCRIPTION
1	drain
2	gate
3	source; connected to flange

Top view MBL105

Fig. 2 Simplified outline SOT502B (BLF0810S-180)

QUICK REFERENCE DATA

Typical RF performance at $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$ in a common source test circuit.

MODE OF OPERATION	\mathbf{f} $(\mathbf{M H z})$	$\mathbf{V}_{\mathbf{D S}}$ (\mathbf{V})	$\mathbf{P}_{\mathbf{L}}$ (\mathbf{W})	$\mathbf{G}_{\mathbf{p}}$ $(\mathbf{d B})$	$\eta_{\mathbf{D}}$ $(\%)$	$\mathbf{d}_{\mathbf{3}}$ $(\mathbf{d B c})$	$\mathbf{A C P R}$ $(\mathbf{d B})$
Class-AB (2-tone)	$\mathrm{f}_{1}=890.0$ $\mathrm{f}_{2}=890.1$	28	$140($ PEP $)$	15.2	35	-30	-
CDMA $^{(1)}$	881.5	28	32	15.6	26	-	$<-45^{(2)}$ $<-63^{(3)}$
CDMA multi carrier signal(4)	881.5	28	14	15.6	16	-	$<-52^{(2)}$ $<-56^{(3)}$

Note

1. IS95 CDMA (Pilot, Paging, Sync, and Trafic Codes 8 trough 13)
2. ACPR 750 kHz at $\mathrm{BW}=30 \mathrm{kHz}$
3. ACPR 1.98 MHz at $\mathrm{BW}=30 \mathrm{kHz}$
4. 3 adjacent carriers with 32 channels walsh codes each.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DS}	drain-source voltage		-	75	V
$\mathrm{~V}_{\mathrm{GS}}$	gate-source voltage		-	± 15	V
$\mathrm{~T}_{\text {Stg }}$	storage temperature		-65	150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th } j-\mathrm{c}}$	thermal resistance from junction to case	$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L}}=35 \mathrm{~W}$ avg, note 1	<0.42	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th hs-j }}$	thermal resistance from heatsink to junction	$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L}}=32 \mathrm{~W}$ avg, note 2	<0.62	$\mathrm{~K} / \mathrm{W}$

Note

1. Thermal resistance is determined under RF operating conditions.
2. Depends of installation.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {(BR) }{ }^{\text {d }} \text { Ss }}$	drain-source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}$	75	-	-	V
$\mathrm{V}_{\text {GSth }}$	gate-source threshold voltage	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA}$	4	-	5	V
I ${ }_{\text {DSS }}$	drain-source leakage current	$\mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{V}_{\mathrm{DS}}=36 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
I ${ }_{\text {DSX }}$	on-state drain current	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS}(\mathrm{th})}+9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	45	-	-	A
$\mathrm{I}_{\text {GSS }}$	gate leakage current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$	-	-	1	$\mu \mathrm{A}$
g_{fs}	forward transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	-	9	-	S
$\mathrm{R}_{\text {DSon }}$	drain-source on-state resistance	$\mathrm{V}_{\mathrm{GS}}=9 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	-	60	-	$\mathrm{m} \Omega$

APPLICATION INFORMATION

RF performance in a common source class-AB circuit. $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$;.

MODE OF OPERATION	\mathbf{f} $(\mathbf{M H z})$	$\mathbf{V}_{\mathbf{D S}}$ (\mathbf{V})	$\mathbf{P}_{\mathbf{L}}$ (\mathbf{W})	\mathbf{I}_{DQ} $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{p}}$ $(\mathbf{d B})$	$\eta_{\mathbf{D}}$ $(\%)$	\mathbf{d}_{3} $(\mathbf{d B c})$	$\mathbf{A C P R}$ (dB)
Class-AB (2-tone)	$\mathrm{f}_{1}=890.0$ $\mathrm{f}_{2}=890.1$	28	$140(\mathrm{PEP})$	1125	15.2	35	-30	-
CDMA $^{(1)}$	881.5	28	32	1250	15.6	26	-	$<-45^{(2)}$ $<-63^{(3)}$
CDMA multi carrier signal(4)	881.5	28	14	1250	15.6	16	-	$<-52^{(2)}$ $<-56^{(3)}$

Note

1. IS95 CDMA (Pilot, Paging, Sync, and Trafic Codes 8 trough 13)
2. ACPR 750 kHz at $\mathrm{BW}=30 \mathrm{kHz}$
3. ACPR 1.98 MHz at $\mathrm{BW}=30 \mathrm{kHz}$
4. 3 adjacent carriers with 32 channels walsh codes each.

Ruggedness in class-AB operation

The BLF0810-180 and BLF0810S-180 are capable of withstanding a load mismatch corresponding to VSWR = 15:1 through all phases at $\mathrm{V}_{\mathrm{DS}}=27 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=126 \mathrm{~W}$ (PEP).

$V_{D S}=27 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=1.1 \mathrm{~A} ; \mathrm{f}_{1}=890.0 \mathrm{MHz} ; \mathrm{f}_{2}=890.1 \mathrm{MHz}$.
Efficiency at $T_{\text {heatsink }}$
(1) $=-40^{\circ} \mathrm{C}$
(2) $=20^{\circ} \mathrm{C}$
(3) $=80^{\circ} \mathrm{C}$
Gain at $T_{\text {heatsink: }}$
(4) $=-40^{\circ} \mathrm{C}$
(5) $=20^{\circ} \mathrm{C}$
(6) $=80^{\circ} \mathrm{C}$

Fig. 3 Two tone power gain and efficiency as functions of the load power at different temperatures.
 temperatures.

$V_{D S}=27 \mathrm{~V} ; \mathrm{l}_{\mathrm{DQ}}=1.1 \mathrm{~A} ; \mathrm{f}_{1}=890.0 \mathrm{MHz} ; \mathrm{f}_{2}=890.1 \mathrm{MHz}$
$T_{\text {heatsink }}:(1)=-40^{\circ}$
(2) $=20^{\circ} \mathrm{C}$
(3) $=80^{\circ} \mathrm{C}$

Fig. 5 Fifth order intermodulation distortion as a function of the load power at different temperatures.

$V_{D S}=27 \mathrm{~V} ; \mathrm{f}_{1}=890.0 \mathrm{MHz} ; \mathrm{f}_{2}=890.1 \mathrm{MHz}$.
Gain:
(1) : $\mathrm{I}_{\mathrm{DQ}}=1.0 \mathrm{~A} ;(2): \mathrm{I}_{\mathrm{DQ}}=1.45 \mathrm{~A}$
Efficiency:
(3) : $\mathrm{I}_{\mathrm{DQ}}=1.0 \mathrm{~A}$; (4) : $\mathrm{I}_{\mathrm{DQ}}=1.45 \mathrm{~A}$

Fig. 7 Two tone power gain and efficiency as functions of the load power and I_{DQ}.

$V_{D S}=27 \mathrm{~V} ; \mathrm{l}_{\mathrm{DQ}}=1.1 \mathrm{~A} ; \mathrm{f}_{1}=890.0 \mathrm{MHz} ; \mathrm{f}_{2}=890.1 \mathrm{MHz}$
$\mathrm{T}_{\text {heatsink: }}$: (1) $=-40^{\circ} \mathrm{C} \quad(2)=20^{\circ} \mathrm{C} \quad(3)=80^{\circ} \mathrm{C}$
Fig. 6 Seventh order intermodulation distortion as a function of the load power at different temperatures.

$V_{D S}=27 \mathrm{~V} ; \mathrm{f}_{1}=890.0 \mathrm{MHz} ; \mathrm{f}_{2}=890.1 \mathrm{MHz}$.
$I_{D Q}=1.0 \mathrm{~A}:(1)=d_{3} \quad(2)=d_{5} \quad(3)=d_{7} ;$
$I_{D Q}=1.3 \mathrm{~A}: \quad(4)=d_{3} \quad(5)=d_{5} \quad(6)=d_{7} ;$
Fig. 8 Intermodulation distortion as a function of the load power

$V_{D S}=27 \mathrm{~V} ; \mathrm{f}=894 \mathrm{MHz} ;$
ACPR @ 750 kHz :
(1): $I_{D Q}=1.1 \mathrm{~A} \quad$ (2): $I_{D Q}=1.4 \mathrm{~A}$;

ACPR @1.98 MHz:
(3): $\mathrm{I}_{\mathrm{DQ}}=1.1 \mathrm{~A} \quad$ (4) $: \mathrm{I}_{\mathrm{DQ}}=1.4 \mathrm{~A}$

Fig. 9 CDMA IS95 ACPR distortion as a function of the average load power and I_{DQ}.

$\mathrm{V}_{\mathrm{DS}}=27 \mathrm{~V} ; \mathrm{f}=890 \mathrm{MHz} ; \mathrm{l}_{\mathrm{DQ}}=1.1 \mathrm{~A}$;
ACPR @ 750 kHz :
(1): $T_{\text {heatsink }}=20^{\circ} \mathrm{C}$
(2): $T_{\text {heatsink }}=80^{\circ} \mathrm{C}$;

ACPR @1.98 MHz:
(3): $T_{\text {heatsink }}=20^{\circ} \mathrm{C}$
(4): $T_{\text {heatsink }}=80^{\circ} \mathrm{C}$.

Fig. 10 CDMA IS95 ACPR distortion as a function of the load power at different temperatures.

Class- $A B$ operation; $V_{D S}=27 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=1125 \mathrm{~mA} ; \mathrm{P}_{\mathrm{L}}=35 \mathrm{~W}$.

Fig. 11 Input impedance as a function of frequency (series components):typical values; values compromised for different parameters

Class-AB operation; $\mathrm{V}_{\mathrm{DS}}=27 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=1125 \mathrm{~mA} ; \mathrm{P}_{\mathrm{L}}=35 \mathrm{~W}$.

Fig. 12 Load impedance as a function of frequency (series components); typical values; values compromised for different parameters.

Fig. 13 Definition of transistor impedance.

08L-S0180」
9

Dimensions in mm.
The components are situated on one side of the copper-clad Rogers 6006 printed-circuit board ($\varepsilon_{r}=6.15$); thickness $=25$ mils.
The other side is unetched and serves as a ground plane
Fig. 15 Circuit for 860 to 900 MHz test circuit.
sıols!suext SOWOר uo!̣els əseg

List of components

COMPONENT	DESCRIPTION	VALUE	DIMENSIONS
C1, C6, C13, C14, C15, C16, C17	multilayer ceramic chip capacitor; note 1	68 pF	
C2		multilayer ceramic chip capacitor; note 1	330 nF
C3	multilayer ceramic chip capacitor; note 1	100 nF	
C4, C9, C10, C11, C12	tantalum capacitor	$10 \mu \mathrm{~F}$	
C5, C18	air trimmer capacitor	5 pF	
C7, C8	multilayer ceramic chip capacitor	8.2 pF	
R1	potentiometer	$1 \mathrm{k} \Omega$	
Q1	7808 voltage regulator		
Q2	BLF0910-140 LDMOS transistor		
L1	stripline; note 2		$5.22 \times 0.92 \mathrm{~mm}$
L2	stripline; note 2		$5.38 \times 0.92 \mathrm{~mm}$
L3	stripline; note 2		$2.4 \times 0.92 \mathrm{~mm}$
L4	stripline; note 2		$9.73 \times 0.92 \mathrm{~mm}$
L5	Ferroxcube		$1.82 \times 9.3 \mathrm{~mm}$
L6	stripline; note 2		$8.15 \times 17.9 \mathrm{~mm}$
L7	stripline; note 2		$44 \times 0.92 \mathrm{~mm}$
L8	stripline; note 2		$18.45 \times 28.3 \mathrm{~mm}$
L9	stripline; note 2		$9.95 \times 5.38 \mathrm{~mm}$
L10	stripline; note 2		$2.36 \times 0.92 \mathrm{~mm}$
L11	stripline; note 2		
L12, L13	stripline; note 2		
L14	stripline; note 2		
L15, L16	stripline; note 2		

Notes

1. American Technical Ceramics type 100A or capacitor of same quality.
2. The striplines are on a double copper-clad Rogers 6006 printed-circuit board $\left(\varepsilon_{r}=6.15\right)$; thickness $=0.64 \mathrm{~mm}$

PACKAGE OUTLINE

Flanged LDMOST ceramic package; 2 mounting holes; 2 leads

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A}	\mathbf{b}	\mathbf{c}	\mathbf{D}	$\mathbf{D}_{\mathbf{1}}$	\mathbf{E}	$\mathbf{E}_{\mathbf{1}}$	\mathbf{F}	\mathbf{H}	\mathbf{L}	\mathbf{p}	\mathbf{Q}	\mathbf{q}	$\mathbf{U}_{\mathbf{1}}$	$\mathbf{U}_{\mathbf{2}}$	$\mathbf{w}_{\mathbf{1}}$	$\mathbf{w}_{\mathbf{2}}$
	4.72	12.83	0.15	20.02	19.96	9.50	9.53	1.14	19.94	5.33	3.38	1.70		27.94	34.16	9.91	0.25
	3.99	12.57	0.08	19.61	19.66	9.30	9.25	0.89	18.92	4.32	3.12	1.45		33.91	9.65		
inches	0.186	0.505	0.006	0.788	0.786	0.374	0.375	0.045	0.785	0.210	0.133	0.067	1.100	1.345	0.390		0.01
	0.157	0.495	0.003	0.772	0.774	0.366	0.364	0.035	0.745	0.170	0.123	0.057		1.335	0.380	0.02	

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
					$-99-10-13-$	

PACKAGE OUTLINE

Earless flanged LDMOST ceramic package; 2 leads

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A}	\mathbf{b}	\mathbf{c}	\mathbf{D}	$\mathbf{D}_{\mathbf{1}}$	\mathbf{E}	$\mathbf{E}_{\mathbf{1}}$	\mathbf{F}	\mathbf{H}	\mathbf{L}	\mathbf{Q}	$\mathbf{U}_{\mathbf{1}}$	$\mathbf{U}_{\mathbf{2}}$	$\mathbf{w}_{\mathbf{2}}$
	4.72	12.83	0.15	20.02	19.96	9.50	9.53	1.14	19.94	5.33	1.70	20.70	9.91	
	3.99	12.57	0.08	19.61	19.66	9.30	9.25	0.89	18.92	4.32	1.45	20.45	9.65	
inches	0.186	0.505	0.006	0.788	0.786	0.374	0.375	0.045	0.785	0.210	0.067	0.815	0.390	
	0.157	0.495	0.003	0.772	0.774	0.366	0.364	0.035	0.745	0.170	0.057	0.805	0.380	

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT502B				\square	$\begin{aligned} & 99-12-16 \\ & 99-12-28 \end{aligned}$

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)}$	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

CAUTION

This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands budgetnum/printrun/ed/pp14 Date of release: 2002 Aug $02 \quad$ Document order number: 939775010684

PHILIPS

