

HT23C040 CMOS 512K×8-Bit Mask ROM

Features

- Operating voltage: 2.7V~5.5V
- Low power consumption

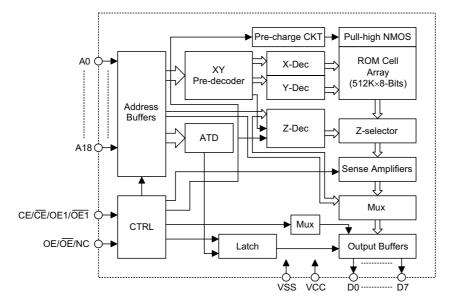
 Operation: 25mA max. (V_{CC}=5V) 10mA max. (V_{CC}=3V)
 - Standby: 30μA max. (V_{CC}=5V) 10μA max. (V_{CC}=3V)
- Access time: 120ns max. (V_{CC} =5V) 250ns max. (V_{CC} =3V)

General Description

The HT23C040 is a read-only memory with high performance CMOS storage device whose 4096K of memory is arranged into 524288 word by 8 bits.

For application flexibility, the chip enable and output enable control pins can be selected as active high or active low. This flexibility not only allows easy interface with most microprocessors, but also eliminates bus contention in mul-

- 524288×8-bit of mask ROM
- Mask option: chip enable CE/ $\overline{\rm CE}/\rm OE1/\overline{\rm OE1},$ and output enable OE/ $\overline{\rm OE}/\rm NC$
- TTL compatible inputs and outputs
- Tristate outputs


1

- Fully static operation
- Package type: 32-pin DIP/SOP

tiple bus microprocessor systems. An additional feature of the HT23C040 is its ability to enter the standby mode whenever the chip enable (CE/ \overline{CE}) is inactive, thus reducing current consumption to below $30\mu A$. The combination of these functions makes the chip suitable for high density low power memory applications.

Block Diagram

 $\mathbf{2}$

Pin Assignment

	. 0		Lun
NC 🗆	1	32	□vcc
A16 🗆	2	31	🗆 A18
A15 🗆	3	30	🗆 A17
A12 🗆	4	29	🗆 A14
A7 🗆	5	28	🗆 A13
A6 🗆	6	27	□ A8
A5 🗆	7	26	□ A9
A4 🗆	8	25	🗆 A11
A3 🗆	9	24	
A2 🗆	10	23	🗆 A10
A1 🗆	11	22	
A0 🗆	12	21	D D7
D0 🗆	13	20	🗆 D6
D1 🗆	14	19	🗆 D5
D2 🗆	15	18	🗆 D4
vss 🗆	16	17	🗆 D3
	HT23C	140	1
-	32 DIP/	50	P

Pin Description

Pin Name	I/O	Description	
NC		No connection	
A0~A18	Ι	ddress inputs	
D0~D7	0	Data outputs	
VSS		Negative power supply	
CE/CE/OE1/OE1	Ι	Chip enable/Output enable input	
OE/OE/NC	Ι	Output enable input	
VCC		Positive power supply	

Operation Truth Table

Mode	CE/CE	OE/OE	A0~A18	D0~D7
Read	H/L	H/L	Valid	Data Out
Deselect	H/L	L/H	Х	High Z
Standby	L/H	Х	Х	High Z

Note: H=V_{IH}, L=V_{IL}, X=V_{IH} or V_{IL}

Absolute Maximum Ratings

Supply Voltage0.3V to 6V	St
Input Voltage–0.3V to $V_{CC}\mbox{+}0.3V$	Ol

Storage Temperature50°C to 125°C	
Operating Temperature–40°C to 85°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

3

 $T_a{=}{-}40^\circ C$ to $85^\circ C$

D.C. Characteristics

Supply voltage: 4.5V~5.5V

Test Conditions Symbol **Parameter** Min. Тур. Max. Unit Conditions v_{cc} **Operating Voltage** V $V_{\rm CC}$ 4.55.5____ ____ _ O/P Unload, $I_{\rm CC1}$ 5V**Operating Current** 25mA ____ ____ f=5MHz V V_{IL1} Input Low Voltage 5V0.8 $\mathbf{V}_{\mathbf{SS}}$ ____ ____ $\mathbf{V}_{\mathrm{IH1}}$ 5V2.2V_{CC} V Input High Voltage _____ V_{OL1} V Output Low Voltage 5V0.4 I_{OL} =3.2mA ____ V V_{OH1} Output High Voltage 5V $I_{OH}\text{=}-1mA$ V_{CC} 2.4Input Leakage Current 5V $V_{\rm IN} \mbox{=} 0$ to $V_{\rm CC}$ I_{LI} 10 ____ μA $V_{\rm OUT} {=} 0$ to $V_{\rm CC}$ 5V $I_{\rm LO}$ **Output Leakage Current** 10 μA ____ _____ $\begin{array}{c} \underline{\mathrm{CE}} = \! V_{\mathrm{IL}} \\ \overline{\mathrm{CE}} = \! V_{\mathrm{IH}} \end{array}$ 5V I_{STB1} Standby Current 1.5mA ____ $CE \le 0.2V$ I_{STB2} 5VStandby Current 30μA $\overline{CE} \!\!\geq \!\! V_{CC} \!\!= \!\! 0.2V$ Input Capacitance (See note) f=1MHz $\mathbf{C}_{\mathbf{IN}}$ 10 \mathbf{pF} ____ $\mathbf{C}_{\mathbf{OUT}}$ Output Capacitance (See note) f=1MHz 10 \mathbf{pF}

January 20, 2000

4

Supply voltage: 2.7V~3.3V

 $T_a{=}{-}40^\circ C$ to $85^\circ C$

Growbal	Demension	Те	st Conditions	Min.	T	Man	Unit
Symbol	Parameter	V _{CC}	Conditions	Min.	Тур.	Max.	
V _{CC}	Operating Voltage			2.7		3.3	V
I _{CC2}	Operating Current	3V	O/P Unload, f=5MHz			10	mA
V _{IL2}	Input Low Voltage	3V		V _{SS}		0.4	V
V _{IH2}	Input High Voltage	3V	—	1.5		V _{CC}	V
V _{OL2}	Output Low Voltage	3V	I _{OL} =2mA			0.4	V
V _{OH2}	Output High Voltage	3V	I _{OH} =-0.6mA	1.5	_	V _{CC}	V
I _{LI}	Input Leakage Current	3V	$V_{\rm IN} {=} 0$ to $V_{\rm CC}$			10	μΑ
I _{LO}	Output Leakage Current	3V	$V_{\rm OUT} {=} 0$ to $V_{\rm CC}$		_	10	μΑ
C _{IN}	Input Capacitance (See Note)		f=1MHz			10	pF
C _{OUT}	Output Capacitance (See Note)		f=1MHz			10	pF

Note: These parameters are periodically sampled but not 100% tested.

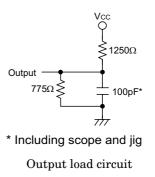
A.C. Characteristics

 T_a =-40°C to 85°C

Symbol	Parameter	3V±10%		5V±10%		Unit
Symbol		Min.	Max.	Min.	Max.	Unit
t _{CYC}	Cycle Time	200		120		ns
t _{AA}	Address Access Time		250		120	ns
t _{ACE}	Chip Enable Access Time		250		120	ns
t _{AOE}	Output Enable Access Time		150		80	ns
t _{OH}	Output Hold Time			10		ns
t _{OD}	Output Disable Time (See Note)				70	ns
t _{OE}	Output Enable Time (See Note)			10		ns

 $\mathbf{5}$

Note: These parameters are periodically sampled but not 100% tested.



A.C. test condition

Output load: see figure right Input rise and fall time: 10ns

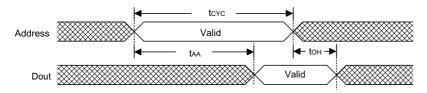
Input pulse levels: 0.4V to 2.4V

Input and output timing reference levels: 0.8V and 2.0V (V_{CC}=5V) 1.5V (V_{CC}=3V)

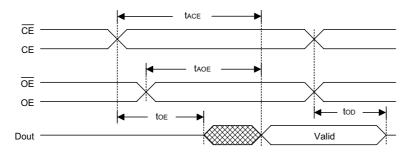
Functional Description

The HT23C040 has two modes, namely data read mode and standby mode, controlled by CE/CE/OE1/OE1 and OE/OE/NC inputs.

• Standby mode

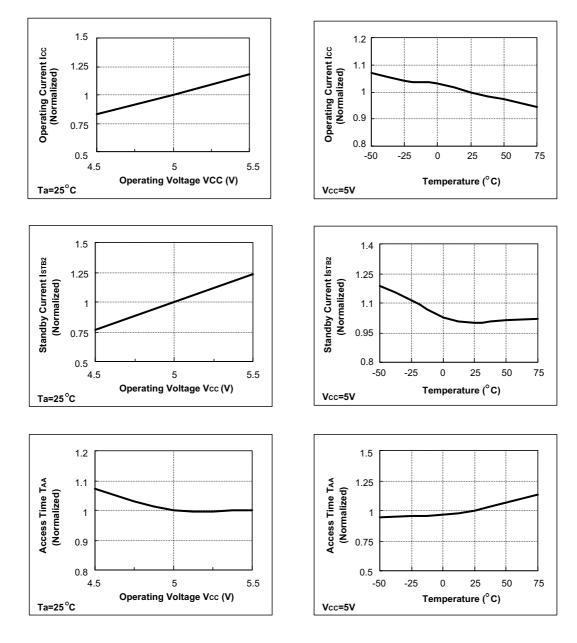

The HT23C040 has lower current consumption, controlled by the chip enable input (CE/ \overline{CE}). When a low/high level is applied to the CE/ \overline{CE} input regardless of the output enable (OE/ \overline{OE} /NC) states, the chip will enter the standby mode.

• Data read mode

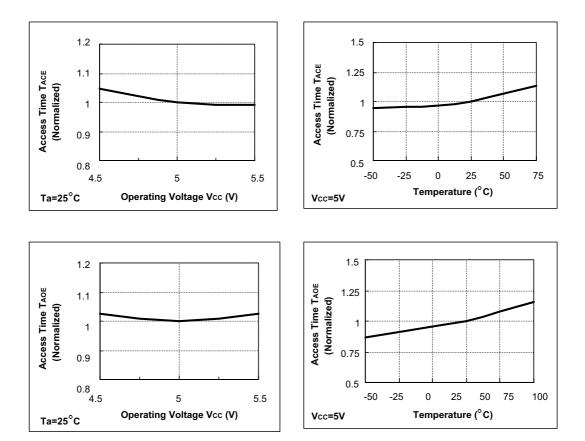

When both the chip enable $(\underline{CE}/\underline{OE1}/\overline{OE1})$ and the output enable $(\underline{OE}/\overline{OE}/NC)$ are active, the chip is in data read mode. Otherwise, active CE/CE and inactive OE/OE/NC result in deselect mode. The output will remain in Hi-Z state.

Timing Diagrams

• Propagation delay due to address (CE/ $\overline{\text{CE}}/\text{OE1}/\overline{\text{OE1}}$ and OE/ $\overline{\text{OE}}$ are active)


• Propagation delay due to chip and output enable (address valid)

6



Characteristic Curves

7

January 20, 2000

8

HT23C040 MASK ROM ORDERING SHEET

Custom:_____

Input Medium:

EPROM DISK File (Mail Address: romfile@holtek.com.tw) OTHER_____

1	User No.	Type/Ref. Name	0/#	Check Sum	Memory Address		
	User No.	Type/Kel. Name	Q'ty		Start	End	

Control Pin and Package Form Op	otion:
(a) 32 Pin Type Pin 22:	$(1) CE (2) \overline{CE} (3) OE1 (4) \overline{OE1}$
Pin 24:	$(1) OE (2) \overline{OE} (3) NC$
(b) Package Form:(1)	Chip Form (2) 32 DIP (3) 32 SOP

Companion Use	r No		_
Package Markir	ng :		_
Delivery Date	:	Q'ty:	_

CUSTOM CONFIRMED BY:

(NAME, DATE, POSITION & CO. CHOP)

HOLTEK CONFIRMED BY:

(SALES)

(SALES MANAGER)

9

Holtek Semiconductor Inc. (Headquarters) No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C. Tel: 886-3-563-1999 Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office) 5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C. Tel: 886-2-2782-9635 Fax: 886-2-2782-9636 Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Hong Kong) Ltd. RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong Tel: 852-2-745-8288 Fax: 852-2-742-8657

Copyright © 2000 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

10