

Current Transducer LA 125-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I_{PN} 125 Α Primary nominal r.m.s. current I_P Primary current, measuring range $0.. \pm 200$ \mathbf{R}_{M} Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_{A} = 85^{\circ}C$ @ ± 125 A _{max} 52 with ± 12 V 14 50 Ω @ ± 200 A _{max} 20 5 14 18 Ω @ ± 125 A _{max} 25 74 40 72 Ω with ± 15 V @ $\pm 200 A_{max}$ $40^{\,1)}\ \ \, 40^{\,1)}$ 25 34 Ω 125 mΑ Secondary nominal r.m.s. current Conversion ratio 1:1000 Supply voltage (± 5 %) ± 12 .. 15 Current consumption $16(@ \pm 15 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn kV Accuracy - Dynamic performance data X Accuracy @ I_{PN} , $T_{A} = 25$ °C $@ \pm 15 \ V \ (\pm 5 \%)$ ± 0.60 % @ ± 12 .. 15 V (± 5 %) ± 0.80 % e, Linearity < 0.15 % Тур Max Offset current @ $I_p = 0$, $T_A = 25$ °C ± 0.40 I mΑ Residual current 2) @ $I_p = 0$, after an overload of 3 x I_{PN} ± 0.50 mΑ Thermal drift of I 0°C .. + 70°C $\pm 0.15 \pm 0.50$ mΑ I_{OT} - 25°C .. + 85°C $\pm 0.15 \pm 0.60$ mΑ \mathbf{t}_{ra} Reaction time @ 10 % of $I_{\rm P\ max}$ < 500 ns Response time $^{3)}$ @ 90 % of $I_{P max}$ < 1 μs di/dt di/dt accurately followed 4) > 200 A/µs Frequency bandwidth 4) (- 1 dB) DC .. 100 kHz General data °C T_A - 25 .. + 85 Ambient operating temperature \mathbf{T}_{s} °C Ambient storage temperature - 40 .. + 90

Notes: 1) Measuring range limited to ± 180 A max

Secondary coil resistance @

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs
- 4) The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer

 $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$ $\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$

32

40

33.5

EN 50178

Ω

Ω

g

5) A list of corresponding tests is available

125 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- · Insulated plastic case recognized according to UL 94-V0.

Advantages

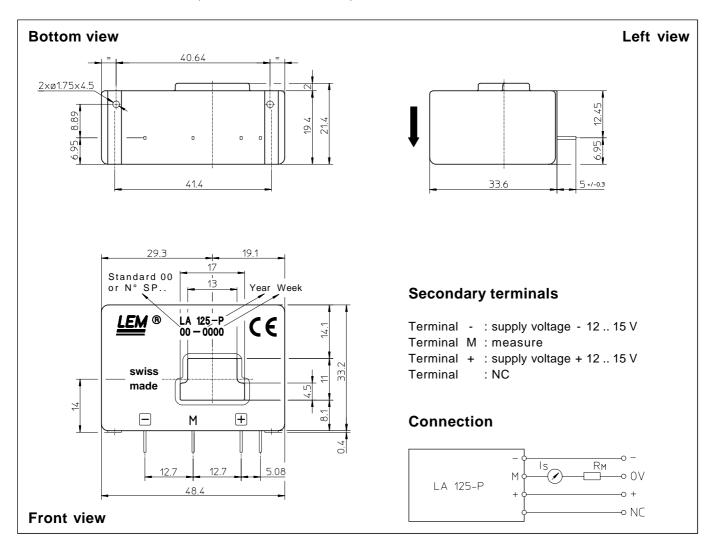
- Excellent accuracy
- Very good linearity
- · Low temperature drift
- · Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980716/5

Mass


Standards 5)

 $\mathbf{R}_{\,\mathrm{s}}$

m

Dimensions LA 125-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary 4 pins 0.63 x 0.56 mm Recommended PCB hole

• Supplementary fastening Recommended PCB hole Recommended screws

LEM code

± 0.2 mm

17 x 11 mm

0.9 mm

2 holes Ø 1.75 mm

2.4 mm

KA 22 x 6

47.30.60.006.0

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.