FUJITSU SEMICONDUCTOR

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89630 Series

MB89635/T635/636/637/T637/P637/W637/PV630

■ DESCRIPTION

The MB89630 series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, a UART, timers, a PWM timer, a serial interface, an A / D converter, an external interrupt, and a watch prescaler.
*: F²MC stands for FUJITSU Flexible Microcontroller.

- FEATURES

- High-speed operating capability at low voltage
- Minimum execution time: $0.4 \mu \mathrm{~s} / 3.5 \mathrm{~V}, 0.8 \mu \mathrm{~s} / 2.7 \mathrm{~V}$
- F^{2} MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- Five types of timers

8-bit PWM timer: 2 channels (Also usable as a reload timer)
8 -bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc.)
16-bit timer/counter
21-bit time-base timer

- UART

CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits)

- Serial interface

Switchable transfer direction to allows communication with various equipment.

- 10 -bit A/D converter

Activation by an external input capable

MB89630 Series

(Continued)

- External interrupt: 4 channels

Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal.)
Subclock mode
Watch mode

- Bus interface function

With hold and ready function

PACKAGE

64-pin Plastic SH-DIP	64-pin Plastic QFP	64-pin Plastic QFP
		 (FPT-64P-M09)
64-pin Ceramic SH-DIP	64-pin Ceramic MDIP	64-pin Ceramic MQFP
(DIP-64C-A06)	(MDP-64C-P02)	(MQP-64C-P01)

PRODUCT LINEUP

Part number Parameter	MB89635	MB89636	MB89637	MB89T635	MB89T637	MB89P637	MB89W637	MB89PV630
Classification	Mass production products (mask ROM products)			External ROM products		One-time PROM product	EPROM product	Piggyback/ evaluation product for evaluation and development)
ROM size	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$24 \mathrm{~K} \times 8$ bits (internal mask ROM)	$32 \mathrm{~K} \times 8$ bits (internal mask ROM)	Fixed to external ROM		(Intemal PROM with general-p EPROM prog	8 bits , programming urpose ammer)	$32 \mathrm{~K} \times 8$ bits (extemal ROM)
RAM size	512×8 bits	768×8 bits	1024×8 bits	512×8 bits	1024×8 bits			
CPU functions	Number of instructionns: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: 0.4 to $6.4 \mu \mathrm{~s} / 10 \mathrm{MHz}, 61 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$ Interrupt processing time: 3.6 to $57.6 \mu \mathrm{~s} / 10 \mathrm{MHz}, 562.5 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$							
Ports	Input ports: Output ports (N-ch open-drain): I/O ports (N-ch open-drain): Output ports (CMOS): I/O ports (CMOS): Total:			5 (All also serve as peripherals.) 8 (All also serve as peripherals.) 4 (All also serve as peripherals.) 8 (All also serve as bus control.) 28 (27 ports also serve as bus pins and peripherals.) 53				
Clock timer	21 bits $\times 1$ (in main clock)/15 bits $\times 1$ (at 32.768 kHz)							
8-bit PWM timer	8-bit reload timer operation (toggled output capable, operating clock cycle: $0.4 \mu \mathrm{~s}$ to 3.3 ms) $\times 2$ channels 7/8-bit resolution PWM operation (conversion cycle: $51.2 \mu \mathrm{~s}$ to 839 ms) $\times 2$ channels							
8-bit pulse width count timer	8-bit timer operation (overflow output capable, operating clock cycle: 0.4 to $12.8 \mu \mathrm{~s}$) 8 -bit reload timer operation (toggled output capable, operating clock cycle: 0.4 to $12.8 \mu \mathrm{~s}$) 8 -bit pulse width measurement operation (continuous measurement capable, measurement of " H " pulse width/ " L " pulse width/ from \uparrow to $\uparrow /$ from \downarrow to \downarrow capable)							
16-bit timer/ counter	16-bit timer operation (operating clock cycle: $0.4 \mu \mathrm{~s}$) 16-bit event counter operation (rising edge/falling edge/both edge selectability)							
8-bit serial I/O	8 bitsLSB first/MSB first selectabilityOne clock selectable from four transfer clocks(one external shift clock, three internal shift clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)							
UART	Switching two I/O systems by software capable Transfer data length (6, 7, and 8 bits) Transfer rate (300 to 62500 bps . at 10 MHz osciliation)							
10-bit A/D converter	10-bit resolution $\times 8$ channels A/D conversion mode (conversion time: $13.2 \mu \mathrm{~s}$) Sense mode (conversion time: $7.2 \mu \mathrm{~s}$) Continuous activation by an external activation or an internal timer capable							

(Continued)
(Continued)

Part number	MB89635	MB89636	MB89637	MB89T635	MB89T637	MB89P637	MB89W637	MB89PV630
External interrupt input	4 independent channels (edge selection, interrupt vector, source flag). Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)							
Standby mode	Sleep mode, stop mode, watch mode, and subclock mode							
Process	CMOS							
Operating voltage*1	2.2 V to 6.0 V			2.7 V to 6.0 V				
EPROM for use								MBM27C256A-20

*1: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") In the case of the MB89PV630, the voltage varies with the restrictions of the EPROM for use.

- PACKAGE AND CORRESPONDING PRODUCTS

Package	$\begin{aligned} & \text { MB89635 } \\ & \text { MB89T635 } \end{aligned}$	$\begin{aligned} & \text { MB89636 } \\ & \text { MB89637 } \\ & \text { MB89T637 } \end{aligned}$	MB89P637	MB89W637	MB89PV630
DIP-64P-M01	\bigcirc	\bigcirc	\bigcirc	\times	\times
DIP-64C-A06	\times	\times	\times	\bigcirc	\times
FPT-64P-M06	\bigcirc	\bigcirc	\bigcirc	\times	\times
FPT-64P-M09	\bigcirc	\bigcirc	\times^{*}	${ }^{*}$	${ }^{*}$
MDP-64C-P02	\times	\times	\times	\times	\bigcirc
MQP-64C-P01	\times	\times	\times	\times	\bigcirc

\bigcirc : Available $\quad x$:Not available

* : To convert pin pitches, an adapter socket (manufacturer: Sun Hayato Co., Ltd.) is available. 64SD-64QF2-8L: For conversion from (DIP-64P-M01, DIP-64C-A06, or MDP-64C-P02) to FPT-64P-M09 Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: For more information about each package, see section "■ Package Dimensions."

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:
On the MB89P637/W637, the program area starts from address 8007н but on the MB89PV630 and MB89637 starts from 8000н.
(On the MB89P637/W637, addresses 8000 н to 8006 н comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV630/MB89637, addresses 8000н to 8006н could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P637/ W637.)

- The stack area, etc., is set at the upper limit of the RAM.
- The external area is used.

2. Current Consumption

- In the case of the MB89PV630, add the current consumed by the EPROM which connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see sections
" \square Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section " \square Mask Options."
Take particular care on the following points:

- A pull-up resistor cannot be set for P50 to P53 on the MB89P637 and MB89W637.
- Options are fixed on the MB89PV630, MB89T635, and MB89T637.

■ CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES

- The MB89630R series is the reduction version of the MB89630 series. For their differences, refer to the MB89630R series data sheet.
- The the MB89630 and MB89630R series consist of the following products:

MB89630 series	MB89635	MB89T635	MB89636	MB89637	MB89P637	MB89W637	MB89PV630
	MB89630R series	MB89635R	MB89T635R	MB89636R			

PIN ASSIGNMENT

- Pin assignment on package top (MB89PV630 only)

Pin no.	Pin name						
65	N.C.	73	A2	81	N.C.	89	$\overline{\text { OE }}$
66	VPp	74	A1	82	O4	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	O1	85	O7	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	$\overline{\text { CE }}$	95	A14
72	A3	80	Vss 3	88	A10	96	Vcc

N.C.: Internally connected. Do not use.

PIN DESCRIPTION

Pin no.			Pin name	Circuit type	Function
SH-DIP**	QFP2 ${ }^{3}$	QFP1*4 MQFP ${ }^{5}$			
30	22	23	X0	A	Main clock crystal oscillator pins
31	23	24	X1		
28	20	21	MOD0	D	Operating mode selection pins Connect directly to Vcc or Vss
29	21	22	MOD1		
27	19	20	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of " L ".
56 to 49	48 to 41	49 to 42	$\begin{aligned} & \text { P00/AD0 to } \\ & \text { P07/AD7 } \end{aligned}$	F	General-purpose I/O ports When an external bus is used, these ports function as the multiplex pins of the lower address output and the data I / O.
48 to 41	40 to 33	41 to 34	$\begin{aligned} & \text { P10/A08 to } \\ & \text { P17/A157 } \end{aligned}$	F	General-purpose I/O ports When an external bus is used, these ports function as an upper address output.
40	32	33	P20/BUFC	H	General-purpose output-only port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
39	31	32	P21/HAK	H	General-purpose output-only port When an external bus is used, this port can also be used as a hold acknowledge by setting the BCTR.
38	30	31	P22/HRQ	F	General-purpose output-only port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
37	29	30	P23/RDY	F	General-purpose output-only port When an external bus is used, this port functions as a ready input.
36	28	29	P24/CLK	H	General-purpose output-only port When an external bus is used, this port functions as a clock output.
35	27	28	P25/WR	H	General-purpose output-only port When an external bus is used, this port functions as a write signal output.
34	26	27	P26/RD	H	General-purpose output-only port When an external bus is used, this port functions as a read signal output.

[^0](Continued)
(Continued)

Pin no.			Pin name	Circuit type	Function
SH-DIP*1 MDIP 2	QFP2*3	$\begin{aligned} & \text { QFP1 }^{* 4} \\ & \text { MQFP } \end{aligned}$			
33	25	26	P27/ALE	H	General-purpose output-only port When an external bus is used, this port functions as an address latch signal output.
2	58	59	P30/UCK1	G	General-purpose I/O port Also serves as the clock I/O 1 for the UART. This port is a hysteresis input type.
1	57	58	P31/UO1	F	General-purpose I/O port Also serves as the data output 1 for the UART.
63	55	56	P32/U11	G	General-purpose I/O port Also serves as the data input 1 for the UART. This port is a hysteresis input type.
62	54	55	P33/SCK1	G	General-purpose I/O port Also serves as the data input for the 8 -bit serial I / O. This port is a hysteresis input type.
61	53	54	P34/SO1	F	General-purpose I/O port Also serves as the data output for the 8 -bit serial I/O.
60	52	53	P35/SI1	G	General-purpose I/O port Also serves as the data input for the 8 -bit serial I / O. This port is a hysteresis input type.
59	51	52	P36/PWC	G	General-purpose I/O port Also serves as the measured pulse input for the 8 -bit pulse width counter. This port is a hysteresis input type.
58	50	51	P37/WTO	F	General-purpose I/O port Also serves as the toggle output for the 8 -bit pulse width counter.
6	62	63	P40/UCK2	G	General-purpose I/O port Also serves as the clock I/O 2 for the UART. This port is a hysteresis input type.
5	61	62	P41/UO2	F	General-purpose I/O port Also serves as the data output 2 for the UART.
4	60	61	P42/UI2	G	General-purpose I/O port Also serves as the data input 2 for the UART. This port is a hysteresis input type.
3	59	60	P43/PTO1	F	General-purpose I/O port Also serves as the toggle output for the 8 -bit PWM timer.
10	2	3	P50/ADST	K	General-purpose I/O port Also serves as an A/D converter external activation. This port is a hysteresis input type.
9	1	2	P51/BZ	J	General-purpose I/O port Also serves as a buzzer output.

[^1]*4: FPT-64P-M06
*5: MQP-M64C-P01
(Continued)

| Pin no. | | | | Punction |
| :---: | :---: | :---: | :--- | :--- | :--- |

*1: DIP-64P-M01, DIP-64C-A06
*2: MDP-64C-P02
*3: FPT-64P-M09
*4: FPT-64P-M06
*5: MQP-M64C-P01

- External EPROM pins (MB89PV630 only)

Pin no.		Pin name	I/O	Function
MDIP	MQFP			
65	66	VPP	0	"H" level output pin
$\begin{aligned} & 66 \\ & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \end{aligned}$	$\begin{aligned} & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \end{aligned}$	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 75 \\ & 76 \\ & 77 \end{aligned}$	$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & \mathrm{O} 1 \\ & \mathrm{O} 2 \\ & \mathrm{O} 3 \end{aligned}$	I	Data input pins
78	80	Vss	0	Power supply (GND) pin
$\begin{aligned} & 79 \\ & 80 \\ & 81 \\ & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & 82 \\ & 83 \\ & 84 \\ & 85 \\ & 86 \end{aligned}$	$\begin{aligned} & \text { O4 } \\ & 05 \\ & 06 \\ & 06 \\ & 07 \\ & 08 \end{aligned}$	I	Data input pins
84	87	$\overline{\mathrm{CE}}$	0	ROM chip enable pin Outputs "H" during standby.
85	88	A10	0	Address output pin
86	89	$\overline{\mathrm{OE}}$	0	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & 87 \\ & 88 \\ & 89 \end{aligned}$	$\begin{aligned} & 91 \\ & 92 \\ & 93 \end{aligned}$	$\begin{aligned} & \hline \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	0	Address output pins
90	94	A13	0	
91	95	A14	0	
92	96	Vcc	0	EPROM power supply pin
-	$\begin{aligned} & 65 \\ & 76 \\ & 81 \\ & 90 \end{aligned}$	N.C.	-	Internally connected pins Be sure to leave them open.

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal or ceramic oscillation type (main clock) External clock input selection versions of MB89PV630, MB89P637, MB89W637, MB89635, MB89T635, MB89636, MB89637, and MB89T637 At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5 \mathrm{~V}$
		- Crystal or ceramic oscillation type (main clock) Oscillation selection versions of MB89PV630, MB89P637, MB89W637, MB89635, MB89T635, MB89636, MB89637, and MB89T637 At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5 \mathrm{~V}$
B		- Crystal or ceramic oscillation type (subclock) MB89PV630, MB89P637, MB89W637, MB89635, MB89636, and MB89637 with dual-clock system At an oscillation feedback resistor of approximately 4.5 $\mathrm{M} \Omega / 5 \mathrm{~V}$
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5 \mathrm{~V}$ - Hysteresis input
D	$\square \square$	
E		- Hysteresis input - Pull-up resistor optional (except P70 and P71)
F		- CMOS output - CMOS input - Pull-up resistor optional (except P22 and P23)

(Continued)

Type	Circuit	Remarks
G		- CMOS output - Hysteresis input - Pull-up resistor optional
H		- CMOS output
I	Analog input	- Analog input
J		- CMOS input - Pull-up resistor optional
K		- Hysteresis input - Pull-up resistor optional

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section " \square Electrical Characteristics" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AV cc and AVR) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V c c=\operatorname{DVC}=\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{AVss}=A V R=\mathrm{V}_{\mathrm{ss}}$ even if the A / D and D / A converters are not in use .

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (option selection) and wake-up from stop mode.

PROGRAMMING TO THE EPROM ON THE MB89P637

The MB89P637 is an OTPROM version of the MB89630 series.

1. Features

- 32-Kbytes PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode is illustrated below.

3. Programming to the EPPROM

In EPROM mode, the MB89P637 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter.
However, the electronic signature mode cannot be used.
When the operating ROM area for a single chip is 32 Kbytes (8007н to FFFFH) the EPROM can be programmed as follows:

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0007H to 7 FFF .
(Note that addresses 8000 н to FFFFH 2 in the operating mode assign to 0000 н to 7 FFFн in EPROM mode).
(3) Load option data into addresses 0000 н to 0006 н of the EPROM programmer.
(For information about each corresponding option, see "8. OTPROM Option Bit Map.").
(4) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W -seconds $/ \mathrm{cm}^{2}$ is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (\AA)) with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure time will be much longer than with UV source at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

7. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
DIP-64C-M01	ROM-64SD-28DP-8L
FPT-64P-M06	ROM-64QF-28DP-8L
FPT-64P-M09	ROM-64QF2-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

8. OTPROM Option Bit Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						Power-on reset	Oscillation stabilization (F/CH)	
O000 H	Readable and writable	Readable and writable	Readable and writable	1: Dual clock 0 : Single clock	$\begin{aligned} & \text { 1:Yes } \\ & \text { 0: No } \end{aligned}$	$\begin{aligned} & \text { 1:Yes } \\ & 0: \text { No } \end{aligned}$	$\begin{aligned} & 11: 2^{18} \\ & 10: 2^{14} \end{aligned}$	$\begin{aligned} & 01: 2^{17} \\ & 00: 2^{4} \end{aligned}$
0001H								
0002н	$\begin{array}{\|l\|} \hline \text { P17 } \\ \text { Pull-up } \\ \text { 1: No } \\ 0: Y e s \end{array}$	$\begin{aligned} & \text { P16 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P15 Pull-up 1: No 0:Yes	P14 Pull-up 1: No 0:Yes	$\begin{aligned} & \text { P13 } \\ & \text { Pull-up } \\ & 1: \text { No } \\ & 0: Y e s \end{aligned}$	P12 Pull-up 1: No $0: Y e s$	$\begin{aligned} & \text { P11 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P10 Pull-up 1: No 0:Yes
0003H	$\begin{array}{\|l\|} \hline \text { P37 } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0: Yes } \end{array}$	$\begin{aligned} & \text { P36 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	$\begin{array}{\|l} \text { P35 } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0: Yes } \end{array}$	P34 Pull-up 1: No 0:Yes	$\begin{aligned} & \text { P33 } \\ & \text { Pull-up } \\ & 1: \text { No } \\ & 0: \text { Yes } \end{aligned}$	P32 Pull-up 1: No 0 :Yes	$\begin{aligned} & \text { P31 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{array}{\|l} \text { P30 } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0: Yes } \end{array}$
0004H	Vacancy Readable and writable	$\begin{aligned} & \text { P43 } \\ & \text { Pull-up } \\ & 1: \text { No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P42 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P41 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P40 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$			
0005H	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	$\begin{array}{\|l\|} \hline \text { P74 } \\ \text { Pull-up } \\ \text { 1: No } \\ 0: Y e s \end{array}$	$\begin{array}{\|l} \hline \text { P73 } \\ \text { Pull-up } \\ \text { 1: No } \\ 0: Y e s \end{array}$	$\begin{aligned} & \text { P72 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: Y e s \end{aligned}$	Vacancy Readable and writable	Vacancy Readable and writable
0006н	Vacancy Readable and writable	Reserved bit Readable and writable						

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the blank bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

- Always write 1 to the reserved bit.

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV, MBM27C256A-20CZ

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG
LCC-32(Square)	ROM-32LC-28DP-S

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006н to 7FFFн.
(3) Program to 0000 to 7 FFFн with the EPROM programmer.

BLOCK DIAGRAM

CPU CORE

1. Memory Space

The microcontrollers of the MB89630 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89630 series is structured as illustrated below.

Memory Space

*1: The ROM area is an external area depending on the mode. The internal ROM cannot be used on the MB89T635 and MB89T637.
*2: Addresses 8000 н to 8006 н for the MB89P637 and MB89W637 comprise an option area, do not use this area for the MB89PV630 and MB89637.

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T) : A16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX): A16-bit register for index modification
Extra pointer (EP): A16-bit pointer for indicating a memory address
Stack pointer (SP): A16-bit register for indicating a stack area
Program status (PS): A16-bit register for storing a register pointer, a condition code

16 bits		Initial value
PC	: Program counter	FFFD ${ }_{\text {н }}$
A	: Accumulator	Undefined
T	: Temporary accumulator	Undefined
IX	: Index register	Undefined
EP	: Extra pointer	Undefined
SP	: Stack pointer	Undefined
PS	: Program status I-fla	= $0, \mathrm{LL} 1,0=$

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1	2	Low $=$ no interrupt 1$(0$

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89653A (RAM 512×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuraiton

MB89630 Series

- I/O MAP

Address	Read write	Register name	Register description	Bit7	Bit6	Bit5	Bit 4	Bit3	Bit2	Bit 1	Bit0
00-	(R/W)	PDR0	Port 0 data register	PD07	PD06	PD05	PD04	PD03	PD02	PD01	PD00
01н	(W)	DDR0	Port 0 data direction register	DD07	DD06	DD05	DD04	DD03	DD02	DD01	DD00
02н	(R/W)	PDR1	Port 1 data register	PD17	PD16	PD15	PD14	PD13	PD12	PD11	PD10
03н	(W)	DDR1	Port 1 data direction register	DD17	DD16	DD15	DD14	DD13	DD12	DD11	DD10
04н	(R/W)	PDR2	Port 2 data register	PD27	PD26	PD25	PD24	PD23	PD22	PD21	PD20
05H	(W)	BCTR	External bus pin control register	-	-	-	-	-	-	HLD	BUF
06\%	Vacancy										
07H	(R/W)	SYCC	System clock control register	SMC	-	-	WT1	WTO	SCS	CS1	CSO
08н	(R/W)	STBC	System clock control register	STP	SLP	SPL	RST	TMD	-	-	-
09н	(R/W)	WDTE	Watchdog timer control register	CS	-	-	-	WTE3	WTE2	WTE1	WTEO
ОАн	(R/W)	TBCR	Time-base timer control register	TBOF	TBIE	-	-	-	TBC1	TBCO	TBR
ОВн	(R/W)	WPCR	Watch prescaler control register	WIF	WIE	-	-	-	WS1	WSO	WCLR
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	CHG3	Port 3 switching register	-	-	CG35	CG34	CG33	-	-	-
ODH	(R/W)	PDR3	Port 3 data register	PD37	PD36	PD35	PD34	PD33	PD32	PD31	PD30
ОЕн	(W)	DDR3	Port 3 data direction register	DD37	DD36	DD35	DD34	DD33	DD32	DD31	DD30
OFH	(R/W)	PDR4	Port 4 data register	-	-	-	-	PD43	PD42	PD41	PD40
10н	(W)	DDR4	Port 4 data direction register	-	-	-	-	DD43	DD42	DD41	DD40
11,	(R/W)	BUZR	Buzzer register	-	-	-	-	-	-	BUZ1	BUZO
12H	(R/W)	PDR5	Port 5 data register	-	-	-	-	PD53	PD52	PD51	PD50
13H	(R/W)	PDR6	Port 6 data register	PD67	PD66	PD65	PD64	PD63	PD62	PD61	PD60
14н	(R)	PDR7	Port 7 data register	-	-	-	PD74	PD73	PD72	PD71	PD70
15 ${ }^{\text {H}}$	(R/W)	PCR1	PWC pulse width control register 1	EN	TOE	IE	-	-	UF	IR	BF
16H	(R/W)	PCR2	PWC pulse width control register 2	FC	RM	TO	-	C1	C0	W1	W0
17 H	(R/W)	RLBR	PWC reload buffer register	RLB7	RLB6	RLB5	RLB4	RLB3	RLB2	RLB1	RLB0
18н	(R/W)	TMCR	16-bit timer control register	-	-	TCR	TCS1	TCSO	TCEF	TCIE	TCS
19н	(R/W)	TCHR	16-bit timer count register (H)	TC15	TC14	TC13	TC12	TC11	TC10	TC09	TC08
$1 \mathrm{AH}^{\text {H}}$	(R/W))	TCLR	16-bit timer count register (L)	TC07	TC06	TC05	TC04	TC03	TC02	TC01	TC00
1 BH	Vacancy										
$1 \mathrm{CH}^{\text {}}$	(R/W)	SMR1	Serial mode register	SIOF	SIOE	SCKE	SOE	CKS1	CKSO	BDS	SST
1D	(R/W)	SDR1	Serial data register	SD07	SD06	SD05	SD04	SD03	SD02	SD01	SD00
$1 \mathrm{E}_{\mathrm{H}}$	Vacancy										
1 FH	Vacancy										

(Continued)

To Top / Lineup / Index MB89630 Series
(Continued)

Address	Read write	Register name	Register description	Bit7	Bit6	Bit5	Bit 4	Bit3	Bit2	Bit 1	Bit0
20н	(R/W)	ADC1	A/D converter control register 1	ANS3	ANS2	ANS1	ANSO	ADI	ADMV	SIFM	AD
21H	(R/W)	ADC2	A/D converter control register 2	-	TIM1	TIMO	ADCK	ADIE	ADMD	EXT	TEST
22 H	(R/W)	ADDH	A/D converter data register (H)	-	-	-	-	-	-	ADD9	ADD8
23н	(R/W)	ADDL	A/D converter data register (L)	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
24н	(R/W)	EIC1	External interrupt control register 1	EIR1		SEL1	EIE1	EIRO	INTE	SELO	EIEO
25H	(R/W)	EIC2	External interrupt control register 2	EIR3	-	SEL3	EIE3	EIR2	-	SEL2	EIE2
26 ${ }^{\text {}}$	Vacancy										
27\%	Vacancy										
28H	(R/W)	CNTR1	PWM timer control register 1	PTX1	PTX2	P7M1	P7M2	SC11	SC10	SC21	SC20
29н	(R/W)	CNTR2	PWM timer control register 2	TPE1	TPE2	CK12	-	TIR1	TIR2	TIE1	TIE2
$2 \mathrm{~A}_{\boldsymbol{H}}$	(R/W)	CNTR3	PWM timer control register 3	-	OE2	OE3	CH12	-	-	-	-
2Вн	(W)	COMR1	PWM timer compare register 1	CM17	CM16	CM15	CM14	CM13	CM12	CM11	CM10
2 CH	(W)	COMR2	PWM timer compare register 2	CM27	CM26	CM25	CM24	CM23	CM22	CM21	CM20
2D	(R/W)	SMC	UART serial mode control register	PEN	SBL	MC1	MCO	SMDE	-	UCKE	UOE
2Ен	(R/W)	SRC	UART serial rate control register	-	-	CR	SCS1	SCSO	RC2	RC1	RC0
$2 \mathrm{~F}_{\mathrm{H}}$	(R/W)	SSD	UART serial status and data register	RDRF	ORFE	TDRE	TIE	RIE	PSEL	TD8/P	RD8/RP
30н	$\begin{aligned} & (\mathrm{R}) \\ & (\mathrm{W}) \end{aligned}$	$\begin{aligned} & \hline \text { SIDR } \\ & \text { SODR } \end{aligned}$	UART serial input data register UART serial output data register	$\begin{aligned} & \hline \text { SID7 } \\ & \text { SOD7 } \end{aligned}$	$\begin{aligned} & \hline \text { SID6 } \\ & \text { SOD6 } \end{aligned}$	$\begin{aligned} & \hline \text { SID5 } \\ & \text { SOD5 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SID4 } \\ \text { SOD4 } \end{array}$	$\begin{aligned} & \text { SID3 } \\ & \text { SOD3 } \end{aligned}$	$\begin{aligned} & \hline \text { SID2 } \\ & \text { SOD2 } \end{aligned}$	$\begin{aligned} & \hline \text { SID1 } \\ & \text { SOD1 } \end{aligned}$	$\begin{aligned} & \hline \text { SIDO } \\ & \text { SODO } \end{aligned}$
$\begin{aligned} & 31 \mathrm{H} \\ & \text { to } \\ & 7 \mathrm{BH} \end{aligned}$	Vacancy										
$7 \mathrm{CH}^{\text {}}$	(W)	ILR1	Interrupt level setting register 1	L31	L30	L21	L20	L11	L10	L01	L00
7Dн	(W)	ILR2	Interrupt level settingregister 2	L71	L70	L61	L60	L51	L50	L41	L40
7Ен	(W)	ILR3	Interrupt level setting register 3	LB1	LB0	LA1	LAO	L91	L90	L81	L80
7 FH	Vacancy										

Notes: • Do not use vacancies.

- - represents a vacant bit.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	*
	AV ${ }_{\text {cc }}$	Vss-0.3	Vss +7.0	V	*
A/D converter reference input voltage	AVR	Vss-0.3	Vss +7.0	V	AVR must not exceed $\mathrm{AV} \mathrm{cc}+0.3$.
Input voltage	V_{1}	Vss-0.3	V cc +0.3	V	Except P50 to P53
	V_{12}	Vss-0.3	Vss +7.0	V	P50 to P53
Output voltage	Vo	Vss-0.3	V cc +0.3	V	Except P50 to P53
	Vo2	Vss-0.3	Vss +7.0	V	P50 to P53
"L" level maximum output current	lot	-	20	mA	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	40	mA	Average value (operating current \times operating rate)
"H" level maximum output current	Іон	-	-20	mA	
"H" level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	£ 1 о	-	-50	mA	
"H" level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	Po	-	500	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: Use $A V c c$ and $V c c$ set at the same voltage.
Take care so that AV cc does not exceed V cc, such as when power is turned on.
Precautions:Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

$\left(\mathrm{AV} s \mathrm{~s}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max		
Power supply voltage	Vcc	2.2*	6.0*	V	Normal operation assurance range* MB89635/637
		2.7*	6.0*	V	Normal operation assurance range* MB89PV630/P637/ W637/T635/T637
	AVcc	1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	3.0	AV cc	V	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Figure 1 Operating Voltage vs. Main Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 /$ Fch. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

3. DC Characteristics

$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	P00 to P07, P10 to P17, P22, P23, P31, P34, P37, P41, P43, P51 to P53	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	P51 to P53 with pull-up resistor
	$\mathrm{V}_{\mathbf{H} 2}$	P51 to P53		0.7 Vcc	-	Vss +6.0	V	Without pull-up resistor
	Vıнs	$\begin{aligned} & \text { RST, MOD0, MOD1, } \\ & \text { P30, P32, P33, P35, } \\ & \text { P36, P40, P42,P50, } \\ & \text { P72 to P74 } \end{aligned}$		0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	P50 with pull-up resistor
	VIHS2	P50, P70, P71		0.8 Vcc	-	Vss +6.0	V	Without pull-up resistor
	VIL	$\begin{aligned} & \text { P00 to P07, P10 to P17, } \\ & \text { P22, P23, P31, P34, } \\ & \text { P37, P41, P43 } \end{aligned}$		Vss - 0.3	-	0.3 Vcc	V	
"L" level input voltage	Vııs	$\begin{aligned} & \text { P30, P32, P33, P35, } \\ & \text { P36, P40, P42, } \\ & \text { P50 to P53, } \\ & \text { P70 to P74, } \\ & \hline \text { RST, } \\ & \text { MOD0, MOD1 } \end{aligned}$		Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P50 to P53		Vss - 0.3	-	Vss +6.0	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P43	IOH $=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27 P30 to P37, P40 to P43, P50 to P53, P60 to P67, RST	$\mathrm{loz}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	lL	P00 to P07, P10 to P17, P20 to P23, P30 to P37, P40 to P43, P50 to P53, P70 to P74, MODO, MOD1	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor

(Continued)
(Continued)
$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Pull-up resistance	Rpull	$\begin{aligned} & \text { P00 to P07, P10 to P17, } \\ & \text { P30 to P37, P40 to P43, } \\ & \text { P50 to P53, P72 to P74 } \end{aligned}$	$\mathrm{V}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	With pull-up resistor
Power supply current ${ }^{11}$	Icc1	Vcc	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \mathrm{tinst}^{2}=0.4 \mu \mathrm{~s} \end{aligned}$	-	12	20	mA	
	Icc2		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \\ & \mathrm{tinst}^{2}=6.4 \mu \mathrm{~s} \end{aligned}$	-	1.0	2	mA	MB89635/T635/ 636/637/T637/ PV630
				-	1.5	2.5	mA	MB89P637/W637
	Iccs 1			-	3	7	mA	
	Iccs2			-	0.5	1.5	mA	
	Iccl		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz}, \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \\ & \text { Subclock mode } \end{aligned}$	-	50	100	$\mu \mathrm{A}$	MB89635/T635/ 636/637/T637/ PV630
				-	500	700	$\mu \mathrm{A}$	MB89P637/W637
	Icals		$\begin{aligned} & \text { FcL }=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \\ & \text { Subclock sleep } \\ & \text { mode } \end{aligned}$	-	25	50	$\mu \mathrm{A}$	
	Icct		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \end{aligned}$ - Watch mode - Main clock stop mode at dual-clock system	-	3	15	$\mu \mathrm{A}$	
	Icch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ - Subclock stop mode - Main clock stop mode at singleclock system	-	-	1	$\mu \mathrm{A}$	

(Continued)
(Continued)
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current ${ }^{11}$	IA	AV ${ }_{\text {cc }}$	$\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz},$ when A / D conversion is activated	-	6	-	mA	
	Іан		$\begin{aligned} & \mathrm{FcH}=10 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \text { when A/D } \\ & \text { conversion } \\ & \text { is stopped } \end{aligned}$	-	-	1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{AV}_{\mathrm{cc}}$, $\mathrm{AV}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{cc}}$, and V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: The power supply current is measured at the external clock.
In the case of the MB89PV630, the current consumed by the connected EPROM and ICE is not included.
*2: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\mathrm{RST}}$ "L" pulse width	tzızH	-	48 thcyl	-	ns	

(2) Power-on Reset

Parameter	Symbol	Condition				$0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85
			Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fch	X0, X1	-	1	-	10	MHz	
	FcL	X0A, X1A		-	32.768	-	kHz	
Clock cycle time	thcyl	X0, X1		100	-	1000	ns	
	tıCyL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0		20	-	-	ns	External clock
	PwLh Pwll	X0A		-	15.2	-	$\mu \mathrm{S}$	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcc } \end{aligned}$	X0		-	-	10	ns	External clock

X0 and X1 Timing and Conditions

Main Clock Conditions

XOA and X1A Timing and Conditions

Subclock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{cH}}, 8 / \mathrm{F}_{\mathrm{cH}}, 16 / \mathrm{F}_{\mathrm{cH}}, 64 / \mathrm{F}_{\mathrm{cH}}$	$\mu \mathrm{s}$	$\left(4 / \mathrm{F}_{\mathrm{cH}}\right)$ tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$
		$\mu \mathrm{s}$	tinst $=61.036 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{cL}}=32.768 \mathrm{kHz}$	

Note: When operating at 10 MHz , the cycle varies with the set execution time.

(5) Clock Output Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks	
				Min.	Max.			
Clock time		tcyc	CLK	-	$1 / 2$ tinst *	-	$\mu \mathrm{s}$	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl	CLK		$1 / 4$ tinst *	$\mu \mathrm{~s}$			

*: For information on tinst, see "(4) Instruction Cycle."

CLK

(6) Bus Read Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavRL	$\overline{\mathrm{RD}}, \mathrm{A} 15$ to 08, AD7 to 0	-	1/4 tinst ${ }^{*}-64$ ns	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		$1 / 2$ tinst $^{*}-20 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
Valid address \rightarrow data read time	tavdv	AD7 to 0, A15 to 08		1/2 tinst ${ }^{*}$	200	$\mu \mathrm{S}$	No wait
$\overline{\mathrm{RD}} \downarrow \rightarrow$ data read time	tridv	RD, AD7to 0		$1 / 2$ tinst $^{*}-80 \mathrm{~ns}$	120	$\mu \mathrm{s}$	No wait
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox	AD7 to 0, $\overline{\mathrm{RD}}$		0	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trнLH	RD, ALE		$1 / 4$ tinst $^{*}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address loss time	trhax	$\overline{\mathrm{RD},} \mathrm{A} 15$ to 08		1/4 tinst ${ }^{*}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trich	$\overline{\mathrm{RD}}$ ClK		$1 / 4$ tinst $^{*}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
CLK $\downarrow \rightarrow \overline{\mathrm{RD}} \uparrow$ time	tclre			0	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow \mathrm{BUFC} \downarrow$ time	trlbl	RD, BUFC		-5	-	ns	
BUFC $\uparrow \rightarrow$ valid address time	tbhav	A15 to 08, AD7 to 0, BUFC		5	-	ns	

* : For information on tinst, see "(4) Instruction Cycle."

(7) Bus Write Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address \rightarrow ALE \downarrow time	tavLL	AD7 to 0, ALE A15 to 08	-	1/4 tinst ${ }^{*}-64 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\text { ALE } \downarrow \text { time } \rightarrow \text { address loss }$ time	tllax	AD7 to 0, ALE A15 to 08		5	-	ns	
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	WR, ALE		1/4 tinst ${ }^{* 1}-60 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\text { WR }}$ pulse width	twlwh	$\overline{\mathrm{WR}}$			-	$\mu \mathrm{s}$	
Write data \rightarrow WR \uparrow time	tovwh	AD7 to 0, WR		1/2 tinst ${ }^{* 1}-60 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address loss time	twhax	$\overline{\text { WR, }}$ A15 to 08		1/4 tinst ${ }^{* 1}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhdx	AD7 to 0, $\overline{\mathrm{WR}}$		$1 / 4$ tinst ${ }^{* 1}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twнLH	$\overline{\text { WR, ALE }}$		1/4 tinst ${ }^{* 1}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twLCH			$1 / 4$ tinst ${ }^{* 1}-40 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
CLK $\downarrow \rightarrow \overline{\mathrm{WR}} \uparrow$ time	tclwh			0	-	ns	
ALE pulse width	tLHLL	ALE		$1 / 4$ tinst $^{* 1}-35 \mathrm{~ns}$	-	$\mu \mathrm{s}$	
ALE $\downarrow \rightarrow$ CLK \uparrow time	tıLCH	ALE,CLK		$1 / 4$ tinst ${ }^{* 1}-30 \mathrm{~ns}$	-	$\mu \mathrm{s}$	

*1: For information on tinst, see "(4) Instruction Cycle."
*2: This characteristics are also applicable to the bus read timing.

(8) Ready Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY valid \rightarrow CLK \uparrow time	trven	RDY, CLK	-	60	-	ns	*
CLK $\uparrow \rightarrow$ RDY loss time	tchrx			0	-	ns	*

*:This characteristics are also applicable to the read cycle.

(9) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	$\begin{aligned} & \text { SCK1, UCK1, } \\ & \text { UCK2 } \end{aligned}$	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time UCK1 $\downarrow \rightarrow$ UO1 time UCK2 $\downarrow \rightarrow$ UO2 time	tsıov	SCK1, SO1 UCK1, UO1 UCK2, UO2		-200	200	ns	
$\begin{aligned} & \text { Valid SI1 } \rightarrow \text { SCK1 } \uparrow \\ & \text { Valid U11 } \rightarrow \text { UCK1 } \uparrow \\ & \text { Valid UI2 } \rightarrow \text { UCK2 } \uparrow \end{aligned}$	tivs	SI1, SCK1 UI1, UCK1 UI2, UCK2		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time UCK1 $\uparrow \rightarrow$ valid UI1 hold time UCK2 $\uparrow \rightarrow$ valid UI2 hold time	tshix	SCK1, SI1 UCK1, UI1 UCK2, UI2		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tswSL	$\begin{aligned} & \text { SCK1, UCK1, } \\ & \text { UCK2 } \end{aligned}$	External shift clock mode	1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh	SCK1, UCK1, UCK2		1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time UCK1 $\downarrow \rightarrow$ UO1 time UCK2 $\downarrow \rightarrow$ UO2 time	tsıov	SCK1, SO1 UCK1, UO1		0	200	ns	
Valid SI1 \rightarrow SCK1 \uparrow Valid UI1 \rightarrow UCK1 \uparrow Valid UI2 \rightarrow UCK2 \uparrow	tivs	SI1, SCK1 UI1, UCK1 UI2, UCK2		1/2 tinst*	-	$\mu \mathrm{S}$	
SCK1 $\downarrow \rightarrow$ valid SI1 hold time UCK1 $\downarrow \rightarrow$ valid UI1 hold time UCK2 $\downarrow \rightarrow$ valid UI2 hold time	tshix	SCK1, SI1 UCK1, UI1 UCK2, UI2		1/2 tinst*	-	$\mu \mathrm{S}$	

* : For information on tinst, see "(4) Instruction Cycle."

Internal Shift Clock Mode

External Shift Clock Mode

(10) Peripheral Input Timing

$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{Ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width 1	tııн1	PWC, INT0 to INT3,EC	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	tHHL1		2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tıLIH2	ADST	2^{8} tinst*	-	$\mu \mathrm{s}$	A/D mode
Peripheral input "L" pulse width 2	thill2		2^{8} tinst*	-	$\mu \mathrm{S}$	A/D mode
Peripheral input "H" pulse width 3	tııнз	ADST	2^{8} tinst**	-	$\mu \mathrm{s}$	Sense mode
Peripheral input "L" pulse width 3	thelı3		2^{8} tinst*	-	$\mu \mathrm{s}$	Sense mode

* : For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	-	10	bit	At AV cc $=\mathrm{V}$ cc
Linearity error			-	-	± 2.0	LSB	
Differential linearity error			-	-	± 1.5	LSB	
Total error			-	-	± 3.0	LSB	
Zero transition voltage	Vот	ANO to AN7	AVss -1.5 LSB	AVss +0.5 LSB	AV $\mathrm{Sss}^{\text {+ } 2.5} \mathrm{LSB}$	mV	
Full-scale transition voltage	Vfst		AVR-3.5 LSB	AVR - 1.5 LSB	AVR + 0.5 LSB	mV	
Interchannel disparity	-	-	-	-	4	LSB	
A/D mode conversion time			-	13.2	-	$\mu \mathrm{s}$	At 10 MHz oscillation
Analog port input current	Iain	ANO to	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-	AN7	0.0	-	AVR	V	
Reference voltage		AVR	0.0	-	AVcc	V	
Reference voltage supply current	IR		-	200	-	$\mu \mathrm{A}$	$\mathrm{AVR}=5.0 \mathrm{~V}$

Precautions: - The smaller the | AVR-AVss |, the greater the error would become relatively.

- The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. $10 \mathrm{k} \Omega$ If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time $=6 \mu \mathrm{~s}$ at 10 MHz oscillation.)

Analog Input Circuit Model

6. A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.

- Linearity error

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111110" \leftrightarrow "11 11111111") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise

(Continued)
(Continued)

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

Vin vs. Vcc

(2) "H" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

Viнs: Threshold when input voltage in hysteresis characteristics is set to "H" level
VIIs: Threshold when input voltage in hysteresis characteristics is set to "L" level
(5) Power Supply Current (External Clock)

(Continued)
(Continued)

(6) Pull-up Resistance

MB89630 Series

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) $)$ $((\times)$
Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)	
	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
$\#$ \#:	Number of bytes
Operation:	Operation of an instruction
TL, TH, AH:	A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:
	- "-" indicates no change.
	- dH is the 8 upper bits of operation description data.
	- AL and AH must become the contents of AL and AH immediately before the instruction
is executed.	

Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(A)$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-		47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	+ + --	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ + --	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A})$)	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (EP) }\end{array}\right)$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ +	08 to 0F
MOV dir,\#d8	4	3	(dir) \leftarrow d8	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	((EP)) \leftarrow d8	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) \leftarrow d8	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-		D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$($ ext $) \leftarrow(\mathrm{AH}),($ ext +1$) \leftarrow(A L)$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(A) \leftarrow$ d16	AL	AH	dH	+	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(\mathrm{AL}) \leftarrow((\mathrm{IX})+$ off +1$)$	AL	AH	dH	+ +	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A})),(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{)}+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP})),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A)) \leftarrow (T$)$	-	-	-	----	82
MOVW @A,T	4	1	$($ ($)$) $\leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	-	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL		10
SETB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 1$	-	-	-		A8 to AF
CLRB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A, T	3	1	(A) $\leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	(A) $\leftarrow(\mathrm{A})+((\mathrm{X})+$ off $)+\mathrm{C}$	-	-	-	+ +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((E P))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) + off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{EP}))-\mathrm{C}$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ +	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	(A) $\leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{T})$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	- +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-\left(\begin{array}{l}(E P)\end{array}\right)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	_	_	_	+ + R -	54
XOR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ dir $)$	-	-	-	$++\mathrm{R}-$	55
XOR A, @EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ (EP) $)$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	(A) $\leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+$ off $)$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	64
AND A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{dir})$	-	-	-	+ + R -	65

(Continued)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+$ off $)$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	_	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee($ dir $)$	-	-	-	$++\mathrm{R}-$	75
OR A, @EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	$++\mathrm{R}-$	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+$ off $)$	-	-	-	$++\mathrm{R}-$	76
OR A,Ri	3		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) -d 8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	_	_	_	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	_	_	_	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	_	_	- + - -	B0 to B7
BBS dir: b,rel	5	3	If (dir: b$)=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	_	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	-	----	41
POPW IX	4	1		-	-	-	----	51
NOP	1	1		-	-	-	----	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1		-	--	91			
CLRI	1	1		-	-	-	----	80
SETI	1	1		-	-	-	----	90

－INSTRUCTION MAP

4	$z_{0}^{0} 0^{0}$	z_{i}^{2}	$\begin{aligned} & z_{0}^{\frac{x}{4}} \\ & 0^{2} \end{aligned}$													
ш	$\stackrel{\text { ® }}{\stackrel{\circledR}{0}}$	$\sum_{0_{0}^{c}}^{\substack{0 \\ 0}}$			亮亳					$z^{\text {㤩 }}$	~	$\begin{aligned} & \text { ※ } \\ & \frac{7}{\text { § }} \end{aligned}$	$\begin{gathered} \text { \# } \\ \frac{7}{7} \\ \frac{1}{3} \end{gathered}$	等	$\begin{aligned} & \text { 윤 } \\ & \frac{7}{4} \end{aligned}$	亲
－	${\underset{U}{u}}^{\text {º }}$	$z_{z_{0}^{20}}^{00}$	${\underset{u}{u}}_{{\underset{u}{0}}^{x}}$	${\underset{u ̛ u}{0}}^{\text {in }}$	㫫							弟		華		促
0	${\underset{\dddot{Z}}{2}}^{\widetilde{\alpha}}$	${\underset{\underline{3}}{3}}_{\text {分 }}$	${\underset{\underline{Z}}{\underline{z}}}_{\underline{x}}$	${\underset{\underline{0}}{\underline{u}}}_{\text {in }}^{\text {un }}$	\sum_{0}^{2}						$\mathrm{c}_{\text {¢ }}^{\text {¢ }}$	－¢		¢ ¢ ¢	－¢	\bigcirc
∞											0					
«							${\underset{\sim}{0}}_{\substack{\frac{i!}{i} \\ \hline}}$	${\underset{\sim}{0}}^{\frac{\text { in }}{\frac{1}{0}}}$			${\underset{\sim}{w}}^{\frac{\tilde{T}}{\frac{i}{0}}}$					
σ	需	㗊	完 ${ }_{\text {® }}^{\text {® }}$		${ }_{0}^{0}$									(in		
∞	$\overline{\widetilde{y}}$	$\begin{aligned} & \text { U } \\ & \underset{U}{2} \end{aligned}$			宕							$\begin{gathered} \begin{array}{l} \text { 爵 } \\ \Sigma_{2}^{c} \end{array} \end{gathered}$			$\begin{gathered} \text { 䧺 } \\ \text { 号 } \end{gathered}$	－
N	$\sum_{0_{2}^{2}}^{\substack{\alpha \\ \hline}}$			${ }_{\text {sex }}^{2}$				gic		$\underset{\text { ¢ }}{\substack{\stackrel{8}{<} \\ \hline}}$	${ }_{\text {¢ }}^{\substack{\text { ¢ }}}$			¢		${ }_{\substack{\text { ¢ }}}^{\substack{\text { ¢ }}}$
\bullet								菏	${\underset{\sim}{c}}_{\substack{\text { 足 } \\ \hline}}$	$\sum_{\sum_{<}^{0}}^{\stackrel{r}{x}}$		${\underset{\sim}{c}}_{\substack{\frac{0}{4} \\ 4}}^{\circ}$		${\underset{\sim}{c}}_{\substack{\text { 足 } \\ 4}}$		\sum^{0}
\sim	${ }_{2}^{2}$	${\underset{0}{3}}_{\text {z}_{0}^{x}}^{x}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$					皆								
－								完		${ }_{\frac{8}{8}}^{\substack{\text { d }}}$						
∞	$\underset{\text { w }}{\text { 区 }}$	궁	菏			菏			毞		萢	范	荷花	\|o	䍚	芴
\sim	$\underset{\text { w }}{\text { ¢ }}$		苋	$$	槀		$\begin{aligned} & \text { 무 } \\ & \text { 莫遂 } \end{aligned}$		0°	$\begin{aligned} & \text { 采 } \\ & \text { 完 } \end{aligned}$	花	$0^{\frac{\pi}{4}}$	$0^{\frac{x_{4}^{4}}{4}}$	㑕	$0_{0}^{\frac{8}{4}}$	－${ }_{\text {囟 }}$
－	$\stackrel{y}{3}_{0}^{0}$	$\sum_{3_{0}^{2}}$	$\sum_{\sum_{0}^{0}}^{\alpha}$	$\sum_{\sum_{0}^{n}}^{\alpha}$	$\sum_{\sum_{0}^{0}}^{\frac{0}{4}{ }^{\frac{0}{4}}}$	$\sum_{\sum_{0}^{0}}^{\frac{n}{4}}$			$\sum_{3}^{\frac{0}{5}}$	$\sum_{\overline{3}}^{\frac{0}{4}}$	$\sum_{0}^{\frac{\pi}{4}}$	$\sum_{3}^{\frac{0}{3}}$	$\sum_{j_{5}^{0}}^{\frac{0}{4}}$	${\underset{亏}{5}}_{\frac{0}{4}}^{\frac{88}{4}}$	$\sum_{5}^{\frac{0}{4}}$	$\sum_{\overline{3}}^{\stackrel{0}{x}}$
－	요			$$												
$\mathrm{I} /$	－	\ulcorner	\sim	∞	＋	\sim	\bullet	\wedge	∞	の	＜	■	0	\bigcirc	ш	ᄂ

MASK OPTIONS

No.	Part number	MB89635 MB89636 MB89637	MB89P637 MB89W637	$\begin{gathered} \hline \text { MB89PV630 } \\ \text { MB8996635 } \\ \text { MB89T637 } \end{gathered}$
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
1	Pull-up resistors $\left[\begin{array}{l}\text { P00 to P07, P10 to P17, } \\ \text { P30 to P37, P40 to P43, } \\ \text { P50 to P53, P72 to P74 }\end{array}\right.$	Selectable by pin	Can be set per pin*	Fixed to without pull-up resistor
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to with power-on reset
3	Selection of the main clock oscillation stabilization time (at 10 MHz) Approx. $2^{18} / \mathrm{F}_{\text {сн }}$ (Approx. 26.2 ms) Approx. $2^{17 / F c h ~(A p p r o x . ~} 13.1 \mathrm{~ms}$) Approx. $2^{14 / F}$ сн (Approx. 1.6 ms) Approx. $2^{4} /$ Fch (Approx. 0 ms) FCH: Main clock frequency	Selectable	Setting possible	Fixed to $2^{18 / F C H}$ (Approx. 26.2 ms)
4	Reset pin output Reset output provided No reset output	Selectable	Setting possible	Fixed to with reset output
5	Single/dual-clock system Single clock Dual clock	Selectable	Setting possible	MB89PV630-101 Single-clock system MB89T635-101 Single-clock system MB89T637-101 Single-clock system
				MB89PV630-102 Dual-clock systems MB89T635-102 Dual-clock systems MB89T637-101 Dual-clock systems

* : Pull-up resistors cannot be set for P50 to P53.

ORDERING INFORMATION

Part number	Package	Remarks
MB89635P-SH MB89636P-SH MB89637P-SH MB89P637-SH MB89T635P-SH	64-pin Plastic SH-DIP (DIP-64P-M01)	
MB89635PF MB89636PF MB89637PF MB89P637PF MB89T635PF	64-pin Plastic QFP (FPT-64P-M06)	
MB89635PFM MB89636PFM MB89637PFM MB89T635PFM	64-pin Plastic QFP (FPT-64P-M09)	
MB89W637C-SH	64-pin Ceramic SH-DIP (DIP-64C-A06)	
MB89PV630C-SH	64-pin Ceramic MDIP (MDP-64C-P02)	
MB89PV630CF	64-pin Ceramic MQFP (MQP-64C-P01)	

PACKAGE DIMENSIONS

64-pin Plastic SH-DIP
 (DIP-64P-M01)

MAX

64-pin Plastic QFP
 (FPT-64P-M06)

Dimensions in mm (inches)

To Top / Lineup / Index MB89630 Series

64-pin Plastic QFP
 (FPT-64P-M09)

© 1994 FUJITSU LIMITED F64018S-1C-2
Dimensions in mm (inches)
64-pin Ceramic SH-DIP
(DIP-64C-A06)

64-pin Ceramic MDIP

(MDP-64C-P02)

64-pin Ceramic MQFP

(MQP-64C-P01)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, \#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

[^0]: *1: DIP-64P-M01, DIP-64C-A06
 *4: FPT-64P-M06
 *2: MDP-64C-P02
 *5: MQP-M64C-P01
 *3: FPT-64P-M09

[^1]: *1: DIP-64P-M01, DIP-64C-A06
 *2: MDP-64C-P02
 *3: FPT-64P-M09

