2 GHz Ultralow Distortion Differential RF/IF Amplifier

Preliminary Technical Data

FEATURES

$-\mathbf{3 d B}$ bandwidth of 2.0 GHz ($\mathrm{Av}=10 \mathrm{~dB}$)
Slew rate 11 V/ns
Single resistor gain adjust $\mathbf{0} \mathbf{d B} \leq A v \leq 24 \mathrm{~dB}$
Single resistor and capacitor distortion adjust
Input resistance $3 \mathrm{k} \Omega$, independent of gain
Differential or single-ended input
Low noise input stage $\mathbf{2 . 6} \mathbf{n V} / \sqrt{ } \mathrm{Hz}$ RTI @ $A_{v}=10 \mathrm{~dB}$
Low distortion
19 MHz: -87dBc HD2, -90dBc HD3
71 MHz: -84dBc HD2, -84dBc HD3
180 MHz : $\mathbf{8 1} \mathrm{dBc}$ HD2, -80 dBc HD3
OIP3 of $\mathbf{4 1}$ dBm to $180 \mathbf{~ M H z ~ @ ~} 2 \mathrm{~V}$ p-p out
Fast settling and overdrive recovery
Single-supply operation: 3 V to 5.0 V
Low power dissipation 37 mA @ 5 V
Power down capability 4 mA @ 5 V
Fabricated on the XFCB3 process

APPLICATIONS

Differential ADC driver
Single-ended to differential conversion
RF/IF gain blocks
SAW filter interfacing

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Figure 2. IP3 and Third Harmonic Distortion vs. Frequency

GENERAL DESCRIPTION

The AD8352 is a high performance differential amplifier for RF and IF applications to 500 MHz . It achieves 80 db SFDR at frequencies up to 180 MHz making it an ideal driver for high speed 14 - and 16-bit A/D converters.

Unlike other wideband differential amplifiers, the AD8352 has buffers that isolate the gain setting resistor (RG) from the signal inputs. As a result, the AD8352 maintains a constant $3 \mathrm{k} \Omega$ input resistance for gains of 0 dB to 24 dB easing matching and input drive requirements. The AD8352 has a nominal 100Ω differential output resistance. The device is optimized for wide band, low

Rev. PrA

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

TABLE OF CONTENTS

\qquad
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Noise Distortion Specifications 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Applications 9
Gain Distortion and Adjustment 9
Single-Ended Input to Differential Output Operation 10
Loading Schemes 11
Evaluation Board 12
Evaluation Board Schematics 13
Outline Dimensions 15
Ordering Guide 15

REVISION HISTORY

10/05-Revision PrA: Preliminary Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega$ differential, $\mathrm{RG}=100 \Omega\left(\mathrm{~A}_{\mathrm{V}}=10 \mathrm{~dB}\right), f=100 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$; parameters specified differentially, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth	Gain $=6 \mathrm{~dB}, \mathrm{~V}_{\text {out }} \leq 1.0 \mathrm{Vp-p}$		2,200		MHz
	Gain $=12 \mathrm{~dB}$, $\mathrm{V}_{\text {Out }} \leq 1.0 \mathrm{Vp-p}$		1,400		MHz
	Gain $=18 \mathrm{~dB}$, $\mathrm{V}_{\text {OUt }} \leq 1.0 \mathrm{Vp-p}$		1,400		MHz
Bandwidth for 0.2 dB Flatness	$6 \mathrm{~dB} \leq$ gain $\leq 12 \mathrm{~dB}$, $\mathrm{V}_{\text {out }} \leq 1.0 \mathrm{~V}$ p-p		300		MHz
Gain Accuracy	Using 1\% resistor for $\mathrm{RG}, 0 \mathrm{~dB} \leq \mathrm{A}_{\mathrm{v}} \leq 20 \mathrm{~dB}$		TBD		dB
Gain Supply Sensitivity	$V_{s} \pm 5 \%$		TBD		dB/V
Gain Temperature Sensitivity	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		TBD		$\mathrm{mdB} /{ }^{\circ} \mathrm{C}$
Slew Rate	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ step		11		V/ns
	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}$ step		TBD		V/ns
Settling Time	1 V step to 1%		<3		ns
Overdrive Recovery Time	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 0 V step, $\mathrm{V}_{\text {out }} \leq \pm 10 \mathrm{mV}$		<2		ns
Reverse Isolation (S12)			TBD		dB
INPUT/OUTPUT CHARACTERISTICS					
Common Mode Nominal			VCC/2		V
Voltage Adjustment Range			$\begin{aligned} & 1.2 \text { to } \\ & 3.8 \end{aligned}$		V
Maximum Output Voltage Swing	1 dB compressed		6		$\checkmark \mathrm{p}$-p
Output Common-Mode Offset	Referenced to VCC/2		-60		mV
Output Common-Mode Drift	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		TBD		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Differential Offset Voltage			± 20		mV
CMRR			TBD		dB
Output Differential Offset Drift	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		TBD		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Input Bias Current			-5		
Input Resistance			3		$k \Omega$
Input Capacitance Single-Ended			0.9		pF
Output Resistance			100		Ω
Output Capacitance			3		pF
POWER INTERFACE					
Supply Voltage		3	5	5.5	V
ENB Threshold			1.5		V
ENB Input Bias Current	ENB 3 V		100		$\mu \mathrm{A}$
	ENB at 0.6 V		220		$\mu \mathrm{A}$
Quiescent Current	ENB at 3V		37	TBD	mA
	ENB at 0.6 V		4.5		mA

NOISE DISTORTION SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega$ differential, $\mathrm{RG}=100 \Omega\left(\mathrm{~A}_{\mathrm{v}}=10 \mathrm{~dB}\right), \mathrm{T}=25^{\circ} \mathrm{C}$; parameters specified differentially, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
$19 \mathrm{MHz}$ $2^{\text {nd }} / 3^{\text {rd }}$ Harmonic Distortion ${ }^{1}$ Third-Order IMD Output Third-Order Intercept Noise Spectral Density (RTI) 1 dB Compression Point	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}_{1}=9.5 \mathrm{MHz}, \mathrm{f}_{2}=10.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{f}_{1}=9.5 \mathrm{MHz}, \mathrm{f}_{2}=10.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \end{aligned}$		$\begin{aligned} & 87 / 90 \\ & 83 / 84 \\ & 92 / 87 \\ & 84 \\ & 42 \\ & 2.6 \\ & 13 \end{aligned}$		dBc dBc dBc dBc dBm $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ dBm
71 MHz $2^{\text {nd }} / 3^{\text {rd }}$ Harmonic Distortion ${ }^{1}$ Third-Order IMD Output Third-Order Intercept Noise Spectral Density (RTI) 1 dB Compression Point	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}_{1}=69.5 \mathrm{MHz}, \mathrm{f}_{2}=70.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & R_{\mathrm{L}}=200 \Omega, \mathrm{f}_{1}=69.5 \mathrm{MHz}, \mathrm{f}_{2}=70.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & \mathrm{f}_{1}=69.5 \mathrm{MHz}, \mathrm{f}_{2}=70.5 \mathrm{MHz} @ \mathrm{R}_{\mathrm{L}}=200 \Omega \end{aligned}$		$84 / 84$ $83 / 83$ TBD 85 41 2.6 13		dBc dBc dBc dBc dBm $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ dBm
$100 \mathrm{MHz}$ $2^{\text {nd }} / 3^{\text {rd }}$ Harmonic Distortion Third-Order IMD Output Third-Order Intercept Noise Spectral Density (RTI) 1 dB Compression Point	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p-p} \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}_{1}=139.5 \mathrm{MHz}, \mathrm{f}_{2}=140.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{f}_{1}=100 \mathrm{MHz}, \mathrm{f}_{2}=98 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & \mathrm{f}_{1}=100 \mathrm{MHz}, \mathrm{f} 2=98 \mathrm{MHz} \end{aligned}$		$83 / 82$ $80 / 82$ TBD 86 41 2.6 13		dBc dBc dBC dBc dBm $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ dBm
$180 \mathrm{MHz}$ $2^{\text {nd }} / 3^{\text {rd }}$ Harmonic Distortion ${ }^{2}$ Third-Order IMD Output Third-Order Intercept Noise Spectral Density (RTI) 1 dB Compression Point	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}_{1}=239.5 \mathrm{MHz}, \mathrm{f}_{2}=240.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{f}_{1}=239.5 \mathrm{MHz}, \mathrm{f}_{2}=240.5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p composite } \\ & \mathrm{f}_{1}=179 \mathrm{MHz}, \mathrm{f}_{2}=180 \mathrm{MHz} \end{aligned}$	3	$\begin{aligned} & 81 / 82 \\ & 79 / 82 \\ & \text { TBD } \\ & 82 \\ & 40 \\ & 2.6 \\ & 13 \end{aligned}$	5.5	dBc dBc dBC dBc dBm $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ dBm

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage VCC	5.5 V
Internal Power Dissipation	TBD
$\theta_{\mathrm{JA}}{ }^{1}$	TBD
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec$)$	$300^{\circ} \mathrm{C}$

${ }^{1}$ See Applications section for single-ended to differential performance.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RDP	Positive Distortion Adjust.
2	RGP	Positive Gain Adjust.
3	RGN	Negative Gain Adjust.
4	RDN	Negative Distortion Adjust.
5	VIN	Balanced Differential Input. Biased to VCM, typically ac-coupled.
$6,7,9,12$	GND	Ground. Connect to low impedence GND.
8,13	VCC	Positive Supply.
10	VON	Balanced Differential Output. Biased to VCM, typically ac-coupled.
11	VOP	Balanced Differential Output. Biased to VCM, typically ac-coupled.
14	VCM	Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and output.
		Typically decoupled to ground with a 0.1 $\mu \mathrm{FF}$ capacitor. With no reference applied, input and output common
15	ENB	Enable floats to midsupply = VCC/2.
16	VIP	Balanced Differential Input. Biased to VCM, typically ac-coupled.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Gain vs. Frequency for a 200Ω Differential Load ($A_{v}=24,18,12,10$, and $6 d B$)

Figure 5. Harmonic Distortion vs. Frequency for $2 \mathrm{~V} p-p$ into $R_{L}=200 \Omega$
($A_{v}=10 \mathrm{~dB}, 5 \mathrm{~V}$ Supply) $R G=100 \Omega, R D=4.3 \mathrm{k} \Omega, C D=0.3 \mathrm{pF}$

Figure 6. Gain vs. Frequency for a $1 \mathrm{k} \Omega$ Differential Load $\left(A_{v}=24,18,12,10\right.$, and $\left.6 d B\right)$

Figure 7. Harmonic Distortion vs. Frequency for 2 Vp -p into $R_{L}=1 \mathrm{k} \Omega$ $\left(A_{v}=10 \mathrm{~dB}, 5 \mathrm{~V}\right.$ Supply) $R G=160 \Omega, R D=6.8 \mathrm{k} \Omega, C D=0.1 \mathrm{pF}$

Figure 8. Second-Order Harmonic Distortion HD2 vs. Frequency ($A_{v}=10 \mathrm{~dB}, 5 \mathrm{~V}$ Supply)

Figure 9. Third-Order Harmonic Distortion HD3 vs. Frequency
($A_{v}=10 \mathrm{~dB}, 5 \mathrm{~V}$ Supply)

Figure 10. Single Tone Distortion AD8352 Driving AD9445 $\left(A_{v}=10 d B\right)$. See Figure 12.

Figure 11. Two Tone Distortion AD8352 Driving AD9445 ($A_{v}=10 \mathrm{~dB}$) Analog In = 98 MHz and 101 MHz. See Figure 12.

Figure 12. External Circuit Configuration for Distortion Tests. See Figure 10 and Figure 11.

APPLICATIONS

GAIN DISTORTION AND ADJUSTMENT

Broadband selection of RG, CD, and RD for the AD8352 is optimized at frequencies of 180 MHz . These selections are listed at a 200Ω load in Table 5 and a $1 \mathrm{k} \Omega$ load in Table 6. Figure 13 through Figure 16 show the plots for the RG and CD selections at the 200Ω and $1 \mathrm{k} \Omega$ loads, respectively.

Table 5. Broadband Selection of RG, CD, and RD: 200Ω Load

Gain	RG	CD	RD
3 dB	390Ω	0 pF	$6.8 \mathrm{k} \Omega$
6 dB	210Ω	0.1 pF	$4.3 \mathrm{k} \Omega$
9 dB	120Ω	0.2 pF	$4.3 \mathrm{k} \Omega$
12 dB	82Ω	0.4 pF	$4.3 \mathrm{k} \Omega$
15 dB	51Ω	0.7 pF	$4.3 \mathrm{k} \Omega$
18 dB	30Ω	1 pF	$4.3 \mathrm{k} \Omega$

Table 6. Broadband Selection of RG, CD, and RD: $1 \mathrm{k} \Omega$ Load

Gain	RG	CD	RD
3 dB	680Ω	0 pF	$6.8 \mathrm{k} \Omega$
6 dB	330Ω	0 pF	$6.8 \mathrm{k} \Omega$
9 dB	190Ω	0.1 pF	$6.8 \mathrm{k} \Omega$
12 dB	120Ω	0.25 pF	$6.8 \mathrm{k} \Omega$
15 dB	75Ω	0.5 pF	$6.8 \mathrm{k} \Omega$
18 dB	51Ω	0.7 pF	$6.8 \mathrm{k} \Omega$

Figure 13. $R G$ vs. Gain, $R_{L}=200 \Omega$

Figure 14. CD vs. Gain, $R_{L}=200 \Omega$

Figure 15. $R G$ vs. Gain, $R_{L}=1 \mathrm{k} \Omega$

Figure 16. $C D$ vs. Gain, $R_{L}=1 \mathrm{k} \Omega$

SINGLE-ENDED INPUT TO DIFFERENTIAL OUTPUT OPERATION

The AD8352 can be configured as a single-ended to differential amplifier. To balance the outputs, when only driving the VIP input, an external resistor (RN) of 200Ω is added between VIP and RGN. Using the gain vs. frequency graph shown in Figure 18, RG can be selected for the desired gain and load. The distortion cancellation selection components, RD and CD , can be determined for the gain and load required (see Table 7 and Table 8). This configuration provides -3 dB bandwidths similar to differential drives see Figure 4 and Figure 6.

The distortion results (Figure 19 to Figure 22) were measured using a gain of 12 dB . Though not shown, the gains specified in Table 7 and Table 8 yield similar distortion results.

Figure 17. Single Ended Schematic

Figure 18. Gain vs. RG

Figure 19. AD8352 Single-Ended Second-Order Harmonic Distortion 200Ω Load

Figure 20. Single-Ended Third-Order Harmonic Distortion 200 L Load.

Figure 21. Single-Ended Second-Order Harmonic Distortion 1000 ת Load

Figure 22. Single-Ended Third-Order Harmonic Distortion 1000Ω Load

Table 7. Distortion Cancellation Selection Components RD and CD for Required Gain, 200Ω Load

Gain (dB)	RG $(\mathbf{\Omega})$	$\mathbf{C D}(\mathbf{p F})$	RD $(\mathbf{k} \boldsymbol{\Omega})$
3	4.3 k	0	4.3
6	520	0	4.3
9	200	0.2	4.3
12	100	0.4	4.3
15	62	0.7	4.3
18	43	0.9	4.3

Table 8. Distortion Cancellation Selection Components RD and $C D$ for Required Gain, $1000 \mathrm{k} \Omega$ Load

Gain (dB)	RG $(\mathbf{\Omega})$	$\mathbf{C D}(\mathbf{p F})$	RD $(\mathbf{k} \boldsymbol{\Omega})$
6	3 k	0	4.3
9	430	0	4.3
12	190	0.2	4.3
15	100	0.3	4.3
18	62	0.5	4.3

LOADING SCHEMES

The AD8352 is characterized with two loads representing the most common ADC input resistance. The loads chosen are 200Ω and 1000Ω. These loads are accomplished using a broad band resistive match. The loading can be changed via R8, R9, and R12 giving the flexibility to characterize the AD8352 for the load in any given application. These loads are inherently lossy and thus must be accounted for in overall gain/loss for the evaluation board. Measure the gain of the AD8352 with an oscilloscope using the following procedure:

1. Measure the peak to peak voltage at the input node (C 2 or C3), and
2. Measure the peak to peak voltage at the out put node (C4 or C5), then
3. Compute gain using the formula

Gain $=20 \log V_{\text {out }} / V_{\text {IN }}$
Table 9. Typical Values Used for 200Ω and 1000Ω Loads

Component	$\mathbf{2 0 0} \boldsymbol{\Omega}$ Load	$\mathbf{1 0 0 0} \boldsymbol{\Omega}$ Load
R8	86.6	487
R9	57.6	51.1
R12	86.6	487

EVALUATION BOARD

An evaluation board is available for experimentation of various parameters such as gain, common mode level, and input and output network configurations can be modified through minor resistor changes. The schematic and evaluation board artwork are presented in Figure 23, Figure 24, and Figure 25.
Table 10. Evaluation Board Circuit Components and Functions

Component	Name	Function	Additional information
Pin 8 to Pin 13	VCC	Supply VCC $=+5 \mathrm{~V}$.	
Pin 6, Pin 7, Pin 9, Pin 12	GND	Connect to low impedance GND.	
Pin 14, C9	VCM, Capacitor	Common Mode Offset Pin. Allows for monitoring or adjustment of the output common-mode voltage. C9 is a bypass capacitor.	$\mathrm{C} 9=0.1 \mu \mathrm{~F}$
RD/CD	Distortion Tuning Components	Distortion Adjustment components. Allows for third-order distortion adjustment HD3.	Typically, both are open above 300 MHz . $\begin{aligned} & C_{D}=0.3 \mathrm{pF}, \mathrm{R}_{\mathrm{D}}=4.3 \mathrm{k} \Omega \\ & \text { (size 0402) } \end{aligned}$
Pin 15, C8	ENB, Capacitor	Enable. Apply positive voltage ($1.3 \mathrm{~V}<\mathrm{ENB}<\mathrm{VCC}$) to activate device. Pull down to disable. Can be bypassed and float high (1.8 V) for on state. C8 is a bypass capacitor.	Floats to 1.8 V to maintain device in power-up mode. $\mathrm{C} 8=0.1 \mu \mathrm{~F}$
$\begin{aligned} & \text { R1,R2, R3, R4, R5, } \\ & \text { R6, T2, C2, C3 } \end{aligned}$	Resistors, Transformer, Capacitors	Input Interface. R1 and R4 ground one side of the differential drive interface for single-ended applications. T2 is a 1-to-1 impedance ratio balun to transform a single-ended input into a balanced differential signal. R2 and R3 provide a differential 50Ω input termination. R5 and R6 can be increased to reduce gain peaking when driving from a high source impedance. The 50Ω termination provides an insertion loss of 6 dB . C2 and C3 provide ac-coupling.	$\begin{aligned} & \mathrm{T} 2=\text { Macom }^{\text {TM }} \text { ETC1-1-13 } \\ & \mathrm{R} 1=\mathrm{open}, \mathrm{R} 2=25 \Omega, \\ & \mathrm{R} 3=25 \Omega, \mathrm{R} 4=0 \Omega, \\ & \mathrm{R} 5=0 \Omega, \mathrm{R} 6=0 \Omega, \\ & \mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{C} 3=0.1 \mu \mathrm{~F} \end{aligned}$
$\begin{aligned} & \text { R7, R8, R9, R10, } \\ & \text { R11, R12, R13, R14, } \\ & \text { R15, T1, C4, C5 } \end{aligned}$	Resistors, Transformer, Capacitors	Output Interface. R10, R13, R14, and R15 ground one side of the differential output interface for single-ended applications. T1 is a 1 -to-1 impedance ratio balun to transform a balanced differential signal to a single-ended signal. R8, R9, and R12 are provided for generic placement of matching components. R7 and R11 allow additional output series resistance when driving capacitive loads. The evaluation board is configured to provide a 150Ω to 50Ω impedance transformation with an insertion loss of 9.9 dB . C4 and C5 provide ac-coupling. R7 and R11 provide additional series resistance when driving capacitive loads.	$\begin{aligned} & \mathrm{T} 2=\mathrm{Macom}^{\text {TM }} \mathrm{ETC1}-1-13 \\ & \mathrm{R} 7=0 \Omega, \mathrm{R} 8=86.6 \Omega, \\ & \mathrm{R} 9=57.6 \Omega, \\ & \mathrm{R} 10=\mathrm{open}, \mathrm{R} 11=0 \Omega \\ & \mathrm{R} 12=86.6 \Omega, \\ & \mathrm{R} 13=0 \Omega, \mathrm{R} 14=0 \Omega, \\ & \mathrm{R} 15=0 \Omega \\ & \mathrm{C} 4=0.1 \mu \mathrm{~F}, \mathrm{C} 5=0.1 \mu \mathrm{~F} \end{aligned}$
RG	Resistor	Gain Setting Resistor. Resistor R_{G} is used to set the gain of the device. Refer to Table 5 and Table 6 when selecting the gain resistor.	$R_{G}=100 \Omega(\text { Size 0402 })$ for a gain of 10 dB
C1, C6, C7	Capacitors	Power Supply Decoupling. The supply decoupling consists of a 100 nF capacitor to ground. C6 and C7 are bypass capacitors.	$\begin{aligned} & C 1=100 \mathrm{nF} \\ & C 6, C 7=0.1 \mu \mathrm{~F} \end{aligned}$
Pin 14	VCM	Common Mode Offset Adjustment. Use Pin 14 to trim common-mode input/output levels. By applying a voltage to Pin 14, the input and output common-mode voltage can be directly adjusted.	Typically decoupled to ground using a $0.1 \mu \mathrm{~F}$ capacitor with ac-coupled input/output ports.

EVALUATION BOARD SCHEMATICS

Figure 23. Preliminary Characterization Board v.A01212A

Figure 24. Component Side Silk Screen

Figure 25. Far Side showing Ground Plane Pull Back around critical features

Preliminary Technical Data

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8352ACPZ-WP 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP, Tube	CP-16-3
AD8352ACPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead LFCSP, 7"Tape and Reel	CP-16-3
AD8352-EVAL		Evaluation Board	

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

NOTES

[^0]: ${ }^{1}$ When using the evaluation board at frequencies below 50 MHz , replace the Output Balun T1 with a transformer such as Mini Circuits ADT1-1WT to obtain low frequency balance required for differential HD2 cancellation.
 ${ }^{2} \mathrm{CD}$ and RD can be optimized for broadband operation below 180 MHz . For operation above $300 \mathrm{MHz}, \mathrm{CD}$ and RD components are not required.

