Preliminary Technical Data

FEATURES

Allows Safe Board Insertion and Removal from a Live Backplane
Controls Supply Voltages from 3.15 V to 13.2V
Precision Current Sense Amplifier
Precision Voltage Input
12-bit ADC for Current and Voltage Readback Charge Pumped Gate Drive for External N-FET Switch
Adjustable Analog Current Limit with Circuit Breaker
Fast Response Limits Peak Fault Current
Automatic Retry or Latch-Off On Current Fault
Programmable hot swap timing via TIMER pin
Active-high and active-low ON/ONB pin options
Convert Start pin
$\mathrm{I}^{2} \mathrm{C}$ Fast Mode compliant interface (400 KHz max)
10-lead MSOP package

APPLICATIONS

Power Monitoring/Power Budgeting
Central office Equipment
Telecommunication and Datacommunication Equipment PC/Servers

GENERAL DESCRIPTION

The ADM1175 is an integrated hotswap controller and current sense amplifier that offers digital current and voltage monitoring via an on-chip 12-bit ADC, communicated through an $\mathrm{I}^{2} \mathrm{C}$ interface.

An internal current sense amplifier senses voltage across the sense resistor in the power path via the VCC and SENSE pins.

The ADM1175 limits the current through this resistor by controlling the gate voltage of an external N -channel FET in the power path, via the GATE pin. The sense voltage (and hence the inrush current) is kept below a preset maximum.

The ADM1175 protects the external FET by limiting the time that it spends with the maximum current running in it. This current limit period is set by the choice of capacitor attached to the TIMER pin. Additionally, the device provides protection from overcurrent events at times after the hot-swap event is complete. In the case of a short-circuit event the current in the sense resistor will exceed an overcurrent trip threshold, and the FET will be switched off immediately by pulling down the GATE pin.

APPLICATIONS DIAGRAM

Figure 2.
A 12-bit ADC can measure the current seen in the sense resistor, and also the supply voltage on the VCC pin.

An industry standard $\mathrm{I}^{2} \mathrm{C}$ interface allows a controller to read current and voltage data from the ADC. Measurements can be initiated by an $\mathrm{I}^{2} \mathrm{C}$ command or via the convert (CONV) pin (useful for synchronizing multiple ADM1175 devices). Alternatively the ADC can run continuously and the user can read the latest conversion data whenever it is required. Up to 4 unique $I^{2} \mathrm{C}$ addresses can be created by the way the ADR pin is connected.

The ADM1175 is packaged in a 10 -lead MSOP package.

TABLE OF CONTENTS

REVISION HISTORY

April 06-Revision L: Preliminary Version

ADM1175-SPECIFICATIONS

$V_{V C C}=3.15 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Typical Values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Units	Conditions
VCC Pin Operating Voltage Range, Vvcc Supply Current, Icc Undervoltage Lockout, Vuvio Undervoltage Lockout Hysteresis, Vuviohyst	3.15	$\begin{aligned} & 1.6 \\ & 2.8 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.2 \\ & 3 \end{aligned}$	V mA V mV	Vvcc Rising
ON/ONB Pin Input Current, Inoon Trip Threshold, Vonth Trip Threshold Hysteresis, Vonhyst Glitch Filter Time	-100	$\begin{aligned} & 0 \\ & 1.3 \\ & 80 \\ & 3 \end{aligned}$	+100	nA V mV $\mu \mathrm{s}$	ON/ONB rising
CONV Pin Input Current, linconv Trip Threshold, V сомvтн Trip Threshold Hysteresis, $\mathrm{V}_{\text {convhyst }}$	-100	$\begin{aligned} & 0 \\ & 1.3 \\ & 80 \end{aligned}$	+100	nA V mV	
SENSE Pin Input Leakage, ISense Overcurrent Fault Timing Threshold, Vостім Overcurrent Limit Threshold, $\mathrm{V}_{\mathrm{LIM}}$ Fast Overcurrent Trip Threshold, Vocfast	$\begin{aligned} & -1 \\ & 85 \\ & 90 \end{aligned}$	100	$\begin{aligned} & +1 \\ & 110 \\ & 115 \end{aligned}$	$\mu \mathrm{A}$ mV mV mV	$\mathrm{V}_{\text {SENSE }}=\mathrm{V}_{\mathrm{Vcc}}$ Voctrim $=\left(\right.$ V Vcc $\left.-\mathrm{V}_{\text {sense }}\right)$, Fault timing starts on the TIMER pin $\mathrm{V}_{\text {LIM }}=\left(\mathrm{V}_{\text {Vcc }}-\mathrm{V}_{\text {SENSE }}\right)$, Closed loop regulation to a current limit Vocfast $=\left(\mathrm{V}_{\text {Vcc }}-\mathrm{V}_{\text {SENSE }}\right)$, Gate pulldown current turned on
GATE Pin Drive Voltage, $\mathrm{V}_{\text {Gate }}$ Drive Voltage, $\mathrm{V}_{\text {gate }}$ Drive Voltage, $\mathrm{V}_{\text {Gate }}$ Pullup Current Pulldown Current Pulldown Current	$\begin{aligned} & 5 \\ & 6 \\ & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 7 \\ & 12 \\ & 2 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 10 \\ & 14 \end{aligned}$	V V V $\mu \mathrm{A}$ mA mA	$\begin{aligned} & \mathrm{V}_{\text {Gate }}-\mathrm{V}_{\mathrm{VCC}}, \mathrm{~V}_{\mathrm{VCC}}=3.15 \mathrm{~V} \\ & \mathrm{~V}_{\text {Gate }}-\mathrm{V}_{\mathrm{VCC}}, \mathrm{~V}_{\mathrm{VCC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {Gate }}-\mathrm{V}_{\mathrm{VCC}}, \mathrm{~V}_{\mathrm{VCC}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {GAte }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {Gate }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{VCC}}>\mathrm{UVLO} \\ & \mathrm{~V}_{\text {GATE }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{VCC}}<\mathrm{UVLO} \end{aligned}$
TIMER Pin Pull-Up Current (Power On Reset), $I_{\text {tmeruppor }}$ Pull-Up Current (Fault Mode), Itimerupfault Pull-Down Current (Retry Mode), Itmerdneetry Pull-Down Current, $I_{\text {timerdn }}$ Trip Threshold High, $\mathrm{V}_{\text {TIMERH }}$ Trip Threshold Low, $\mathrm{V}_{\text {TIMERL }}$	$\begin{aligned} & -4 \\ & -48 \\ & \\ & \\ & 1.235 \\ & 0.18 \end{aligned}$	$\begin{aligned} & -5 \\ & -60 \\ & 2 \\ & 100 \\ & 1.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & -6 \\ & -72 \\ & 2.5 \\ & \\ & 1.365 \\ & 0.22 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ V V	Initial Cycle, $\mathrm{V}_{\text {TIMER }}=1 \mathrm{~V}$ During Current Fault, $\mathrm{V}_{\text {TIMER }}=1 \mathrm{~V}$ After current fault and during a cool-down period on a retry device, $\mathrm{V}_{\text {TIMER }}=1 \mathrm{~V}$ Normal Operation, $\mathrm{V}_{\text {TIMER }}=1 \mathrm{~V}$ TIMER rising TIMER falling
ADR Pin Set address to 00, $\mathrm{V}_{\text {ADrlowv }}$ Set address to 01, Radrlowz Set address to $10, \mathrm{I}_{\text {ADRHIGHz }}$ Set address to $11, V_{\text {ADRHIGHV }}$ Input current for 11 decode, I IdRLow Input current for 00 decode, $\mathrm{I}_{\text {ADRHIGH }}$	$\begin{aligned} & 0 \\ & 135 \\ & -1 \\ & 2 \\ & -40 \end{aligned}$	150 3 -22	$\begin{aligned} & 0.8 \\ & 165 \\ & +1 \\ & \\ & 5.5 \\ & 10 \end{aligned}$	V $\mathrm{k} \Omega$ $\mu \mathrm{A}$ V $\mu \mathrm{A}$ $\mu \mathrm{A}$	Low state Resistor to ground state, load pin with specified resistance for 01 decode Open state, maximum load allowed on ADR pin for 10 decode High state $\mathrm{V}_{\text {ADR }}=2.0 \mathrm{~V}$ to 5.5 V $\mathrm{V}_{\mathrm{ADR}}=0 \mathrm{~V}$ to 0.8 V
MONITORING ACCURACY ${ }^{1}$ Current Sense Absolute Accuracy	$\begin{aligned} & -2.3 \\ & -2.5 \end{aligned}$		$\begin{aligned} & +2.2 \\ & +2.5 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & V_{\text {SENSE }}=75 \mathrm{mV} \\ & V_{\text {SENSE }}=50 \mathrm{mV} \end{aligned}$

Parameter	Min	Typ	Max	Units	Conditions
	-2.8		+2.8	\%	$V_{\text {SENSE }}=25 \mathrm{mV}$
	-3.5		+3.5	\%	$V_{\text {SENSE }}=12.5 \mathrm{mV}$, @ $25^{\circ} \mathrm{C}$
Current Sense Accuracy, Tc		± 0.01		\%/ ${ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {sense }}$ for ADC full-scale		105		mV	
Voltage Sense Accuracy	-1.5	0	+1.5	\%	$\mathrm{V}_{\text {Vcc }}=3.0 \mathrm{~V}$ to 5.5V(VRANGE $=1$)
	-1.5	0	+1.5	\%	V Vcce $=10.8 \mathrm{~V}$ to 13.2V(VRANGE $=0)$
$V_{\text {cc }}$ for ADC full-scale, low range		6.656		V	VRANGE $=1$
Vcc for ADC full-scale, high range		26.628^{2}		V	VRANGE $=0$
$1^{2} C$ Timing ${ }^{3}$					
Low level input voltage, $\mathrm{V}_{\text {IL }}$			0.99	V	
High level input voltage, $\mathrm{V}_{\mathbf{I}}$	2.31			V	
Low level output voltage on SDA, VoL			0.4	V	$\mathrm{loL}=3 \mathrm{~mA}$
Output fall time on SDA from $\mathrm{V}_{\text {Iнmin }}$ to $\mathrm{V}_{\text {ILMAX }}$	$20+0.1 C_{B}$		250	ns	$C_{B}=$ bus capacitance from SDA to GND
Maximum width of spikes suppressed by input filtering on SDA and SCL pins	50		250	ns	
Input current, l , on SDA/SCL when not driving out a logic low	-10		+10	$\mu \mathrm{A}$	
Input capacitance on SDA/SCL		5		pF	
SCL clock frequency, fscl			400	kHz	
LOW period of the SCL clock	600			ns	
HIGH period of the SCL clock	1300			ns	
Setup time for a repeated START condition, tsu;STA	600			ns	
SDA output data hold time, $\mathrm{t}_{\text {do; } \mathrm{DAT}}$	100			ns	
Set-up time for a stop condition, tsu ;so	600			ns	
Bus free time between a STOP and a START condition, tbuF	1300			ns	
Capacitive load for each bus line			400	pF	

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Vcc Pin	20 V
SENSE Pin	20 V
TIMER Pin	-0.3 V to +6 V
ON/ONB Pin	-0.3 V to +20 V
CONV Pin	-0.3 V to +6 V
GATE Pin	30 V
SDA, SCL Pins	-0.3 V to +6 V
ADR Pin	-0.3 V to +6 V
Power Dissipation	TBD
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature Range	
(Soldering 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

PIN FUNCTIONAL DESCRIPTIONS
Table 3.

Pin No.	Name	Description
1	VCC	Positive supply input pin. The operating supply voltage range is between 3.15 V to 13.2 V . An undervoltage lockout (UVLO) circuit resets the ADM1175 when a low supply voltage is detected.
2	SENSE	Current sense input pin. A sense resistor between the VCC and SENSE pins sets the analog current limit. The hotswap operation of the ADM1175 controls the external FET gate to maintain the ($\mathrm{V}_{\text {vcc }}-\mathrm{V}_{\text {SENSE }}$) voltage at 100 mV or below.
3	ON/ONB	Undervoltage or overvoltage input pin. This pin is active high on the ADM1175-1 and ADM1175-2 and activelow on the ADM1175-3 and ADM1175-4. An internal ON comparator has a trip threshold of 1.3 V and the output of this comparator is used as an enable for the hotswap operation. For the ON pin variants, with an external resistor divider from VCC to GND, this pin can be used to enable the hotswap operation one a specific voltage on VCC, giving an undervoltage function. Similarly, for the ONB pin variants, an external resistor divider can be used to create an overvoltage function, where the divider sets a voltage on VCC at which the hotswap operation will be switched off, pulling the gate to ground.
4	GND	Chip Ground Pin
5	TIMER	Timer pin. An external capacitor $C_{\text {TIMER }}$ sets a $270 \mathrm{~ms} / \mu \mathrm{F}$ initial timing cycle delay and a $21.7 \mathrm{~ms} / \mu \mathrm{F}$ fault delay. The GATE pin turns off whenever the TIMER pin is pulled beyond the upper threshold. An overvoltage detection with an external zener can be used to force this pin high.
6	SCL	$I^{2} \mathrm{C}$ Clock Pin. Open-drain output requires an external resistive pull-up.
7	SDA	$1^{2} \mathrm{C}$ Data I/O Pin. Open-drain output requires an external resistive pull-up.
8	ADR	1^{2} C Address Pin. This pin can be tied low, tied high, left floating or tied low through a resistor to set four different $I^{2} \mathrm{C}$ addresses.
9	CONV	Convert Start Pin. A high level on this pin enables an ADC conversion. The state of an internal control register, which is set through the $I^{2} \mathrm{C}$ interface, configures the part to convert current only, voltage only, or both channels.
10	GATE	GATE Output Pin. This pin is the high side gate drive of an external N -channel FET. This pin is driven by the FET drive controller which utilises a charge pump to provide a $12 \mu \mathrm{~A}$ pull-up current to charge the FET gate pin. The FET drive controller regulates to a maximum load current (100 mV through the sense resistor) by modulating the GATE pin.

OVERVIEW OF THE HOTSWAP FUNCTION

When circuit boards are inserted into a live backplane, discharged supply bypass capacitors would draw large transient currents from the backplane power bus as they charge. Such transient currents can cause permanent damage to connector pins, and dips on the backplane supply which could reset other boards in the system. The ADM1175 is designed to turn a circuit board's supply voltage on and off in a controlled manner, allowing the circuit board to be safely inserted into or removed from a live backplane. The ADM1175 can reside either on the backplane or on the circuit board itself.

The ADM1175 controls the "inrush" current to a fixed maximum level by modulating the gate of an external N channel FET placed between the live supply rail and the load. This "hotswap" function protects the card connectors and the FET itself from damage and also limits any problems which could be caused by the high current loads on the live supply rail.

The ADM1175 holds the GATE pin down (and thus the FET is held off) until a number of conditions are met. An undervoltage lockout circuit ensures that the device is being provided with an adequate input supply voltage. Once this has been successfully detected, the device goes through an initial timing cycle to provide a delay before it will attempt to hotswap. This delay ensures that the board is fully seated in the backplane before the board is powered up.

Once the initial timing cycle is complete, the hotswap function is switched on under control of the ON/ONB pin. When asserted (high for the ADM1175-1 and ADM1175-2, low for the ADM1175-3 and ADM1175-4) the hotswap operation starts.

The ADM1175 charges up the gate of the FET to turn on the load. It will continue to charge up the GATE pin until the linear current limit (set to $100 \mathrm{mV} / \mathrm{R}_{\text {Sense }}$) is reached. For some combinations of low load capacitance and high current limit, this limit may not be reached before the load is fully charged up. If current limit is reached, the ADM1175 will regulate the GATE pin to keep the current at this limit. For currents above the overcurrent fault timing threshold, nominally $100 \mathrm{mV} /$ $\mathrm{R}_{\text {SENSE }}$, the current fault is timed by sourcing a current out to the TIMER pin. If the load becomes fully charged before the fault current limit time is reached (when the TIMER pin reaches 1.3 V), the current will drop below the overcurrent fault timing threshold, the ADM1175 will then charge the GATE pin higher to fully enhance the FET for lowest Ron, and the TIMER pin will be pulled down again.

If the fault current limit time is reached before the load drops below the current limit, a fault has been detected, and the hotswap operation is aborted by pulling down on the GATE pin to turn off the FET. The ADM1175-2 and ADM1175-4 are at this point latched off and will only attempt to hotswap again when the ON/ONB pin is de-asserted then asserted again. The

ADM1175-1 and ADM1175-3 will retry the hotswap operation indefinitely, keeping the FET in SOA by using the TIMER pin to time a cool-down period in between hotswap attempts. The current and voltage threshold combinations on the TIMER pin set the retry duty cycle to 3.8%.

The ADM1175 is designed to operate over a range of supplies from 3.15 V to 13.2 V .

UNDERVOLTAGE LOCKOUT

An internal undervoltage lockout (UVLO) circuit resets the ADM1175 if the VCC supply is too low for normal operation. The UVLO has a low-to-high threshold of 2.8 V , with 25 mV hysteresis. Above 2.8 V supply voltage, the ADM1175 will start the initial timing cycle.

ON/ONB FUNCTION

The ADM1175-1 and ADM1175-2 have an active-high ON pin. The ON pin is the input to a comparator which has a low-tohigh threshold of 1.3 V , an 80 mV hysteresis and a glitch filter of $3 \mu \mathrm{~s}$. A low input on the ON pin turns off the hotswap operation by pulling the GATE pin to ground, turning off the external FET. The TIMER pin is also reset by turning on a pulldown current on this pin. A low-to-high transition on the ON pin starts the hotswap operation. A $10 \mathrm{k} \Omega$ pull-up resistor connecting the ON pin to the supply is recommended.

Alternatively, an external resistor divider at the ON pin can be used to program an undervoltage lockout value higher than the internal UVLO circuit, thereby setting a voltage level at the VCC supply where the hotswap operation is to start. An RC filter can be added at the ON pin to increase the delay time at card insertion if the initial timing cycle delay is insufficient.

The ADM1175-3 and ADM1175-4 have an active-low ONB pin. This pin operates exactly as described above for the ON pin but the polarity is reversed. This allows the use of this pin as an overvoltage detector which can use the external FET as a circuit breaker for overvoltage conditions on the monitored supply.

TIMER FUNCTION

The TIMER pin handles several timing functions with an external capacitor, Ctimer. There are two comparator thresholds: $\mathrm{V}_{\text {timerh }}(0.2 \mathrm{~V})$ and $\mathrm{V}_{\text {timerd }}(1.3 \mathrm{~V})$. The four timing current sources are a $5 \mu \mathrm{~A}$ and a $60 \mu \mathrm{~A}$ pull-up, and a $2 \mu \mathrm{~A}$ and a $100 \mu \mathrm{~A}$ pull-down. The $100 \mu \mathrm{~A}$ is a non-ideal current source approximating a $7 \mathrm{k} \Omega$ resistor below 0.4 V .

These current and voltage levels, together with the value of Ctimer that the the the chooses, determine the initial timing cycle time, the fault current limit time, and the hotswap retry duty cycle.

GATE AND TIMER FUNCTIONS DURING A HOTSWAP

During hot insertion of a board onto a live supply rail at VCC, the abrupt application of supply voltage charges the external FET drain/gate capacitance, which could cause an unwanted gate voltage spike. An internal circuit holds GATE low before the internal circuitry wakes up. This reduces the FET current surges substantially at insertion. The GATE pin is also held low during the initial timing cycle, and until the ON pin has been taken high to start the hotswap operation.

During hotswap operation the GATE pin is first pulled up by a $12 \mu \mathrm{~A}$ current source. If the current through the sense resistor reaches the overcurrent fault timing threshold, Voctim, then a pull-up current of $60 \mu \mathrm{~A}$ on the TIMER pin is turned on, and this pin starts charging up. At a slightly higher voltage in the sense resistor, the error amplifier servos the GATE pin to maintain a constant current to the load by controlling the voltage across the sense resistor to the linear current limit, V $\mathrm{V}_{\text {LIM. }}$

A normal hotswap will complete when the board supply capacitors near full charge and the current through the sense resistor drops, to eventually reach the level of the board load current. As soon as the current drops below the overcurrent fault timing threshold, the current into the TIMER pin will switch from being a $60 \mu \mathrm{~A}$ pull-up to a $100 \mu \mathrm{~A}$ pull-down. The ADM1175 will then drive the GATE voltage as high as it can to fully enhance the FET and reduce Ron losses to a minimum.

A hotswap will fail if the load current fails to drop below the overcurrent fault timing threshold, Vостім, before the TIMER pin has charged up to 1.3 V . In this case the GATE pin is then pulled down with a 2 mA current sink. The GATE pull-down will stay on until a hotswap retry starts, which can be forced by de-asserting then re-asserting the ON/ONB pin, or the device will retry automatically after a cool-down period, on the ADM1175-1 and ADM1175-3.

The ADM1175 also features a method of protection from sudden load current surges, such as a low impedance fault, when the current seen across the sense resistor may go well beyond the linear current limit. If the fast overcurrent trip threshold, V ocfast, is exceeded, the 2 mA GATE pull-down is turned on immediately. This pulls the GATE voltage down quickly to enable the ADM1175 to limit the length of the current spike that gets through, and also to bring the current through the sense resistor back into linear regulation as quickly as possible. This protects the backplane supply from sustained overcurrent conditions, which may otherwise have caused problems with the backplane supply level dropping too low.

CALCULATING CURRENT LIMITS AND FAULT CURRENT LIMIT TIME

The nominal linear current limit is determined by a sense resistor connected between the VCC and SENSE pins as given by the equation below:

$$
\begin{equation*}
I_{\text {LIMIT(NOM) }}=V_{\text {LIM(NOM) })} / R_{\text {SENSE }}=100 \mathrm{mV} / R_{\text {SENSE }} \tag{1}
\end{equation*}
$$

The minimum linear fault current is given by Equation 2:

$$
\begin{equation*}
I_{\text {LIMIT(MIN) }}=V_{\text {LIM(MIN) }} / R_{\text {SENSE(MAX) }}=90 \mathrm{mV} / R_{\text {SENSE(MAX })} \tag{2}
\end{equation*}
$$

The maximum linear fault current is given by Equation 3:

$$
\begin{equation*}
I_{\text {LIMIT(MAX) }}=V_{\text {LIM(MAX) }} / R_{\text {SENSE(MIN) }}=110 \mathrm{mV} / R_{\text {SENSE(MIN) }} \tag{3}
\end{equation*}
$$

The power rating of the sense resistor should be rated at the maximum linear fault current level.

The minimum overcurrent fault timing threshold current is given by

$$
\begin{equation*}
I_{\text {OCTIM(MIN) }}=V_{\text {OCTIM(MIN) }} / R_{\text {SENSE(MAX) }}=85 \mathrm{mV} / R_{\text {SENSE(MAX) }} \tag{4}
\end{equation*}
$$

The maximum fast overcurrent trip threshold current is given by

$$
\mathrm{Iocfast(MAX)}=\mathrm{V}_{\text {OCfast(Max) }} / \mathrm{R}_{\text {SENSE(MIN) }}=115 \mathrm{mV} / \mathrm{R}_{\text {Sense(Min) }}(5
$$

The fault current limit time is the time that a device will spend timing an overcurrent fault, and is given by

$$
\begin{equation*}
t_{\text {FAULT }} \sim=21.7 \times C_{\text {TIMER }} \mathrm{ms} / \mu \mathrm{F} \tag{6}
\end{equation*}
$$

INITIAL TIMING CYCLE

When VCC is first connected to the backplane supply, there is an internal supply (time-point (1) in Figure 4) in the ADM1175 which needs to charge up. A very short time later (significantly less than 1 ms) the internal supply will be fully up and, since the undervoltage lockout voltage has been exceeded at VCC, the device will come out of reset. During this first short reset period the GATE pin is held down with a 25 mA pulldown current, and the TIMER pin is pulled down with a $100 \mu \mathrm{~A}$ current sink.

The ADM1175 then goes through an initial timing cycle. At point (2) the TIMER pin is pulled high with $5 \mu \mathrm{~A}$. At time point (3), the TIMER reaches the $V_{\text {Timerl }}$ threshold and the first portion of the initial cycle ends. The $100 \mu \mathrm{~A}$ current source then pulls down the TIMER pin until it reaches 0.2 V at time point (4). The initial cycle delay (time point 2 to time point 4) is related to Ctimer by equation:

$$
\begin{equation*}
t_{\text {INITIAL }} \sim=270 \times C_{\text {TIMER }} \mathrm{ms} / \mu \mathrm{F} \tag{7}
\end{equation*}
$$

When the initial timing cycle terminates, the device is ready to start a hotswap operation (assuming ON/ONB pin is asserted). In the example shown in Figure 4, the ON pin was asserted at the same time as VCC was applied, so the hotswap operation starts immediately after time-point (4). At this point the FET
gate is charged up with a $12 \mu \mathrm{~A}$ current source. At timepoint (5) the threshold voltage of the FET is reached and the load current begins to flow. The FET is controlled to keep the sense voltage at 100 mV (this corresponds to a maximum load current level defined by the value of $\mathrm{R}_{\text {SENSE }}$). At timepoint (6) $\mathrm{V}_{\text {GATE }}$ and $\mathrm{V}_{\text {out }}$ have reached their full potential and the load current has settled to its nominal level. Figure 5 illustrates the situation where the ON pin is asserted after $\mathrm{V}_{\mathrm{VCC}}$ is applied.

Figure 5. Start-up (ON asserts after power is applied)

HOTSWAP RETRY CYCLE ON ADM1175-1/-3

With the ADM1175-1 and ADM1175-3 the device will turn off the FET after an overcurrent fault, and will then use the TIMER pin to time a delay before automatically retrying to hotswap.

As with all ADM1175 devices, on overcurrent fault is timed by charging the TIMER cap with a $60 \mu \mathrm{~A}$ pull-up current, and when the TIMER pin reaches 1.3 V the fault current limit time has been reached and the GATE pin is pulled down. On the ADM1175-1 and ADM1175-3, the TIMER pin is then pulled down with a $2 \mu \mathrm{~A}$ current sink. When the TIMER pin reaches 0.2 V , it will automatically restart the hotswap operation.

The cool down period is related to CTIMER by equation:

$$
\begin{equation*}
t_{\text {COOL }} \sim=550 \times C_{\text {TIMER }} \mathrm{ms} / \mu \mathrm{F} \tag{8}
\end{equation*}
$$

The retry duty cycle is thus given by

$$
\begin{equation*}
t_{\text {FAULT }} /\left(t_{\text {COOL }}+t_{\text {FAULT }}\right) \times 100 \%=3.8 \% \tag{9}
\end{equation*}
$$

VOLTAGE AND CURRENT READBACK

In addition to providing hot swap functionality, the ADM1175 also contains the components to allow voltage and current readback over an $\mathrm{I}^{2} \mathrm{C}$ bus. The voltage output of the current sense amplifier and the voltage on the VCC pin are fed into a 12-bit ADC via a multiplexer. The device can be instructed to convert voltage and/or current at any time during operation via an $\mathrm{I}^{2} \mathrm{C}$ command or an assertion on the convert start (CONV) pin. When all conversions are complete the voltage and/or current values can be read out to 12-bit accuracy in two or three bytes.

SERIAL BUS INTERFACE

Control of the ADM1175 is carried out via the Inter-IC Bus $\left(\mathrm{I}^{2} \mathrm{C}\right)$. This interface is compatible with fastmode $\mathrm{I}^{2} \mathrm{C}(400 \mathrm{kHz}$ $\max)$. The ADM1175 is connected to this bus as a slave device, under the control of a master device.

IDENTIFYING THE ADM1175 ON THE I²C BUS

The ADM1175 has a 7-bit serial bus slave address. When the device is powered up, it will do so with a default serial bus address. The five MSBs of the address are set to 11010, the two LSBs are determined by the state of the ADR pin. There are four different configurations available on the ADR pin which correspond to four different $\mathrm{I}^{2} \mathrm{C}$ addresses for the two LSBs. These are explained in Table 4 below. This scheme allows four ADM1175 devices to operation on a single $\mathrm{I}^{2} \mathrm{C}$ bus.
Table 4. Setting $I^{2} \mathrm{C}$ Addresses via the ADR Pin

ADR Configuration	Address
Low state	$0 \times D 0$
Resistor to GND	$0 \times \mathrm{D} 2$
Floating (unconnected)	$0 \times \mathrm{D} 4$
High state	$0 \times \mathrm{D} 6$

GENERAL I^{2} C TIMING

Figure 6 and Figure 7 show timing diagrams for general read and write operations using the $I^{2} \mathrm{C}$. The $\mathrm{I}^{2} \mathrm{C}$ specification defines specific conditions for different types of read and write operation, which are discussed later. The general $\mathrm{I}^{2} \mathrm{C}$ protocol operates as follows:

1. The master initiates data transfer by establishing a START condition, defined as a high to low transition on the serial
data line SDA while the serial clock line SCL remains high. This indicates that a data stream will follow. All slave peripherals connected to the serial bus respond to the START condition, and shift in the next 8 bits, consisting of a 7-bit slave address (MSB first) plus a R/W bit, which determines the direction of the data transfer, i.e. whether data will be written to or read from the slave device ($0=$ write, 1 = read).

The peripheral whose address corresponds to the transmitted address responds by pulling the data line low during the low period before the ninth clock pulse, known as the acknowledge bit, and holding it low during the high period of this clock pulse. All other devices on the bus now remain idle while the selected device waits for data to be read from or written to it. If the R / W bit is a 0 , the master will write to the slave device. If the R/W bit is a 1 , the master will read from the slave device.
2. Data is sent over the serial bus in sequences of nine clock pulses, eight bits of data followed by an acknowledge bit from the slave device. Data transitions on the data line must occur during the low period of the clock signal and remain stable during the high period, as a low to high transition when the clock is high may be interpreted as a STOP signal.

If the operation is a write operation, the first data byte after the slave address is a command byte. This tells the slave device what to expect next. It may be an instruction such as telling the slave device to expect a block write, or it may simply be a register address that tells the slave where subsequent data is to be written.

Since data can flow in only one direction as defined by the R / W bit, it is not possible to send a command to a slave device during a read operation. Before doing a read operation, it may first be necessary to do a write operation to tell the slave what sort of read operation to expect and/or the address from which data is to be read.
3. When all data bytes have been read or written, stop conditions are established. In WRITE mode, the master will pull the data line high during the $10^{\text {th }}$ clock pulse to assert a STOP condition. In READ mode, the master device will release the SDA line during the low period before the ninth clock pulse, but the slave device will not pull it low. This is known as No Acknowledge. The master will then take the data line low during the low period before the $10^{\text {th }}$ clock pulse, then high during the $10^{\text {th }}$ clock pulse to assert a STOP condition.

Figure 6. General $I^{2} C$ Write Timing Diagram

Figure 7. General $1^{2} C$ Read Timing Diagram

Figure 8. Serial Bus Timing Diagram

WRITE AND READ OPERATIONS

The $I^{2} \mathrm{C}$ specification defines several protocols for different types of read and write operations. The ones used in the ADM1175 are discussed below. The following abbreviations are used in the diagrams:
Table 5. ${ }^{2}{ }^{2} \mathrm{C}$ abbreviations

S	START
P	STOP
R	READ
W	WRITE
A	ACKNOWLEDGE
N	NO ACKNOWLEDGE

QUICK COMMAND

This operation allows the master check if the slave is present on the bus. This entails the following:

1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the write bit (low).
3. The addressed slave device asserts ACK on SDA.

Figure 9. Quick Command

WRITE COMMAND BYTE

In this operation the master device sends a command byte to the slave device, as follows:

1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the write bit (low).
3. The addressed slave device asserts ACK on SDA.
4. The master sends the command byte. The command byte is identified by an MSB $=0$. (An MSB $=1$ indicates an Extended Register Write. See next section.)
5. The slave asserts ACK on SDA.
6. The master asserts a STOP condition on SDA to end the transaction.

Figure 10. Command Byte Write
The seven LSBs of the command byte are used to configure and control the ADM1175. Details of the function of each bit are provided in Table 6.

Table 6. Command Byte Operations

Bit	Default	Name	Function
CO	0	V_CONT	Set to convert voltage continuously. If readback is attempted before the first conversion is complete, the ADM1175 will ACK and return all zeros in the returned data.
C1	0	V_ONCE	Set to convert voltage once. Self-clears. ${ }^{2} \mathrm{C}$ w will NACK an attempted read until ADC conversion is complete.
C2	0	I_CONT	Set to convert voltage continuously. If readback is attempted before the first conversion is complete, the ADM1175 will ACK and return all zeros in the returned data.
C3	0	I_ONCE	Set to convert current once. Self-clears. $1^{2} \mathrm{C}$ will NACK an attempted read until ADC conversion is complete.
C4	0	VRANGE	Selects different internal attenuation resistor networks for voltage readback. A " 0 " in $C 4$ selects a $14: 1$ voltage divider. A " 1 " in C4 selects a 7:2 voltage divider. With an ADC full-scale of 1.902 V , the voltage at the VCC pin for an ADC full-scale result is 26.63 V for VRANGE $=0$ and 6.66 V for $\mathrm{VRANGE}=1$.
C5	0	N/A	Unused
C6	0	STATUS_RD	Status Read. When this bit is set the data byte read back from the ADM1175 will be the STATUS byte. This contains the status of the device alerts. See Table 14 for full details of the status byte.

WRITE EXTENDED BYTE

In this operation the master device writes to one of the three extended registers of the slave device, as follows:

1. The master device asserts a start condition on SDA.
2. The master sends the 7 -bit slave address followed by the write bit (low).
3. The addressed slave device asserts ACK on SDA.
4. The master sends the register address byte. The MSB of this byte is set to 1 to indicate an extended register write. The two LSBs indicate which of the three extended registers will be written to (see Table 7). All other bits should be set to 0 .
5. The slave asserts ACK on SDA.
6. The master sends the command byte. The command byte is identified by an MSB $=0$. (An MSB $=1$ indicates an Extended Register Write. See next section.)
7. The slave asserts ACK on SDA.

Table 8. ALERT_EN Register Operations
\(\left.\left.$$
\begin{array}{l|l|l|l}\hline \text { Bit } & \text { Default } & \text { Name } & \text { Function } \\
\hline 0 & 0 & \text { EN_ADC_OC1 } & \begin{array}{l}\text { Enabled if a single ADC conversion on the I channel has exceeded the threshold set in the ALERT_TH } \\
\text { register }\end{array} \\
1 & 0 & 1 & \text { EN_ADC_OC4 } \\
\text { Enabled if four consecutive ADC conversions on the I channel have exceeded the threshold set in the } \\
\text { ALERT_TH register }\end{array}
$$\right] \begin{array}{l}Enabled if the hotswap has either latched off, or entered a cool down cycle, because of an overcurrent

event\end{array}\right]\)| Enable an ALERT if the HS operation is turned off by a transition which de-asserts the ON/ONB pin, or by |
| :--- |
| an operation which writes the SWOFF bit high. |
| Clears the ON_ALERT, HS_ALERT and ADC_ALERT status bits in the STATUS register. These may |
| immediately reset if the source of the alert has not been cleared, or disabled with the other bits in this |
| register. This bit self-clears to 0 after the STATUS register bits have been cleared. |

Table 9. ALERT_TH Register Operations

Bit	Default	Function
7:0	FF	The ALERT_TH register sets the current level at which an alert will occur. Defaults to ADC full-scale. ALERT_TH 8-bit number corresponds to the top 8-bits of the current channel data.

Table 10. CONTROL Register Operations

Bit	Default	Name	Function
0	0	SWOFF	Force hotswap off. Equivalent to de-asserting the ON/ONB pin.

READ VOLTAGE AND/OR CURRENT DATA BYTES

The ADM1175 can be set up to provide information in three different ways (see Write Command Byte section above). Depending on how the device is configured the following data can be read out of the device after a conversion (or conversions):

1. Voltage and Current Readback.

The ADM1175 will digitize both voltage and current. Three bytes will be read out of the device in the following format:
Table 111.

Byte	Contents	B7	B6	B5	B4	B3	B2	B1	B0
1	Voltage	V11	V10	V9	V8	V7	V6	V5	V4
2	MSBs	Current	I11	I10	19	18	17	16	I5
	MSBs	14							
3	LSBs	V3	V2	V1	V0	I3	12	11	10

2. Voltage Readback.

The ADM1175 will digitize voltage only. Two bytes will be read out of the device in the following format:

Table 12.

Byte	Contents	B7	B6	B5	B4	B3	B2	B1	B0
1	Voltage MSBs	V11	V10	V9	V8	V7	V6	V5	V4
2	Voltage LSBs	V3	V2	V1	V0	0	0	0	0

3. Current Readback.

The ADM1175 will digitize current only. Two bytes will be read out of the device in the following format:

Table 13.

Byte	Contents	B7	B6	B5	B4	B3	B2	B1	B0
1	Current MSBs	111	110	19	18	17	16	15	14
2	Current LSBs	13	12	11	10	0	0	0	0

The following series of events occur when the master receives three bytes (voltage and current data) from the slave device:

1. The master device asserts a START condition on SDA.
2. The master sends the 7-bit slave address followed by the read bit (high).
3. The addressed slave device asserts ACK on SDA.
4. The master receives the first data byte.
5. The master asserts ACK on SDA.
6. The master receives the second data byte.
7. The master asserts ACK on SDA.
8. The master receives the third data byte.
9. The master asserts NO ACK on SDA.
10. The master asserts a STOP condition on SDA and the transaction ends.

For the cases where the master is reading voltage only or current only, only two data bytes will be read and events 7 and 8 above will not be required.

Figure 12. Three Byte Read fromADM1175

Read Status Register

A single register of status data can also be read from the ADM1175.

1. The master device asserts a START condition on SDA.
2. The master sends the 7-bit slave address followed by the read bit (high).
3. The addressed slave device asserts ACK on SDA.
4. The master receives the status byte.
5. The master asserts ACK on SDA.

Figure 14. Status Read fromADM1175
Table 14 shows the ADM1175 status registers in detail. Note that bits 1,3 and 5 are cleared by writing to bit 4 of the ALERT_EN register (CLEAR).

Table 14. Status Byte Operations

Bit	Name	Function
0	ADC_OC	An ADC based overcurrent comparison has been detected on the last 3 conversions
1	ADC_ALERT	An ADC based overcurrent trip has happened, which has caused the ALERT. Cleared by writing to bit 4 of the ALERT_EN register. The hotswap is off due to an analog overcurrent event. On parts which latch off, this will be the same as the HS_ALERT status bit (if EN_HS_ALERT=1). On the retry parts this will indicate the current state-a 0 could indicate that the data was read during a period when the device is retrying, or that it has successfully hotswapped by retrying after at least one overcurrent timeout. The hotswapper has failed since the last time this was reset. Cleared by writing to bit 4 of the ALERT_EN register. The state of the ON/ONB pin. Set to 1 if the input pin is de-asserted. Can also be set to 1 by writing to the SWOFF bit of the CONTROL register.
3	HS_OC_ALERT	OFF_STATUS
4	OFF_ALERT	An alert has been caused either by the ON/ONB pin or the SWOFF bit. Cleared by writing to bit 4 of the ALERT_EN register.

KELVIN SENSE RESISTOR CONNECTION

When using a low-value sense resistor for high current measurement the problem of parasitic series resistance can arise. The lead resistance can be a substantial fraction of the rated resistance making the total resistance a function of lead length. This problem can be avoided by using a Kelvin sense connection. This type of connection separates the current path through the resistor and the voltage drop across the resistor. Figure 15 below shows the correct way to connect the sense resistor between the VCC and SENSE pins of the ADM1175.

Figure 15. Kelvin Sense Connections

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Hotswap Retry Option	ON/ONB Pin	Brand	Temperature Range	Package Description	Package Outline
ADM1175-1ARMZ-R7	Automatic Retry Version	ON	M5P	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{MSOP-10}$	$\mathrm{RM}-10$
ADM1175-2ARMZ-R7	Latched Off Version	ON	M5R	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MSOP-10	RM-10
ADM1175-3ARMZ-R7	Automatic Retry Version	ONB	M5S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MSOP-10	RM-10
ADM1175-4ARMZ-R7	Latched Off Version	ONB	M5T	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MSOP-10	RM-10

[^0]: ${ }^{1}$ Monitoring accuracy is a measure of the error in a code that is read back for a particular voltage/current. This is a combination of amplifier error, reference error and ADC error.
 ${ }^{2}$ The maximum operating voltage is limited to $\mathrm{V}_{\mathrm{vcc}}=13.2 \mathrm{~V}$ which corresponds to an ADC code of 508.
 ${ }^{3}$ The following conditions apply to all timing specifications: $\mathrm{V}_{\text {BUS }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All timings refer to $\mathrm{V}_{\text {IHMIN }}$ and $\mathrm{V}_{\text {ILMAX }}$.

