16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90640A Series

MB90641A/P641A

- DESCRIPTION

MB90640A series includes 16-bit microcontrollers optimally suitable for process control in a wide variety of industrial and OA equipment. The series uses the $\mathrm{F}^{2} \mathrm{MC}^{\star}-16 \mathrm{~L}$ CPU which is based on the $\mathrm{F}^{2} \mathrm{MC}-16$ but with enhanced high-level language and task switching instructions and additional addressing modes.
The internal peripheral resources consist of a 2-channel serial port incorporating a UART function (and supporting I/O expansion serial mode), 8/16-bit 2-channel PPG, 5 -channel 16 -bit reload timer, 8 -channel chip select function, and 8-channel DTP/external interrupts.
Also, multiplexed or non-multiplexed operation can be selected for the address/data bus.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

F^{2} MC-16L CPU

- Minimum instruction execution time: $58.8 \mathrm{~ns} / 4.25 \mathrm{MHz}$ oscillation (Uses PLL clock multiplication), maximum multiplier $=4$
- Instruction set optimized for controller applications Upward object code compatibility with $\mathrm{F}^{2} \mathrm{MC}$-16 (H) Wide range of data types (bit/byte/word/long word) Improved instruction cycles provide increased speed Additional addressing modes: 23 modes

PACKAGE

100-pin Plastic LQFP

(FPT-100P-M05)

> 100-pin Plastic QFP

(FPT-100P-M06)

High code efficiency
Access methods (bank access/linear pointer)
Enhanced multiplication and division instructions (signed instructions added)
High precision operations are enhanced by use of a 32-bit accumulator
Extended intelligent I/O service (access area extended to 64 Kbytes)
Maximum memory space: 16 Mbytes

- Enhanced high level language (C)/multitasking support instructions

Use of a system stack pointer
Enhanced pointer indirect instructions
Barrel shift instructions
Stack check function

- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function (does not use instructions)

Internal peripherals

- RAM: 2 Kbytes
- General purpose ports Data bus, multiplexed mode: 56 ports max. Non-multiplexed mode: 48 ports max. Single-chip mode: $\quad 75$ ports max.
- UART0, 1 (SCI): 2 channels

For either asynchronous or clocked serial transfer (I/O expansion serial)

- 8/16-bit PPG (programmable pulse generator): 2 channels
- 16-bit reload timer: 5 channels
- Chip select function: 8 channels
- DTP/external interrupts: 8 channels
- Timebase timer/watchdog timer
- PLL clock multiplier function
- CPU intermittent operation function
- Various standby modes
- Packages: LQFP-100 and QFP-100
- CMOS technology

PRODUCT LINEUP

Part number Item	MB90641A MB90P641A
Classification	Mask ROM One-time PROM
ROM size	64 Kbytes 64 Kbytes
RAM size	2 Kbytes 2 Kbytes
CPU functions	The number of instructions: 340 Instruction bit length: $8 / 16$ bits Instruction length: 1 to 7 bytes Data bit length: $1 / 4 / 8 / 16 / 32$ bits Minimum execution time: 58.8 ns at 4.25 MHz (PLL multiplier = 4) Interrupt processing time: 941 ns at 17 MHz (minimum)
Ports	8/16-bit data bus, multiplexed mode: 56 ports (max) 8-bit non-multiplexed mode: 48 ports (max) Single-chip mode: 75 ports (max)
Packages	$\begin{aligned} & \text { FPT-100P-M05 } \\ & \text { FPT-100P-M06 } \end{aligned}$
UART0, 1 (SCI)	Two internal UARTs Full-duplex, double-buffered Selectable clock synchronous or asynchronous operation Built-in dedicated baud rate generator
8/16-bit PPG	2×8-bit PPG outputs (1 channel PPG output in 16-bit mode)
16-bit reload timer	16-bit reload timer operation (selectable toggle output, one-shot output) (Selectable count clock: $0.125 \mu \mathrm{~s}, 0.5 \mu \mathrm{~s}$, or $2.0 \mu \mathrm{~s}$ for a 16 MHz machine cycle) Selectable event count function, 5 internal channels
Chip select function	8 outputs
DTP/external interrupts	8 inputs External interrupt mode (Interrupts can be generated from four different types of request signal)
PLL function	Selectable multiplier: 1/2/3/4 (Set a multiplier that does not exceed the assured operation frequency range.)
External bus terminal control circuit	Multiplex and non-multiplex between the adress pin and the data pin is selectable.

PIN ASSIGNMENT

(Top view)

(FPT-100P-M05)

(FPT-100P-M06)

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 80, \\ & 81 \end{aligned}$	$\begin{aligned} & 82, \\ & 83 \end{aligned}$	$\begin{aligned} & \mathrm{X} 0, \\ & \mathrm{X} 1 \end{aligned}$	A	Crystal oscillator pins
47 to 49	49 to 51	MD0 to MD2	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS}) \end{gathered}$	Input pins for specifying an opration mode. Use these pins by directly connecting Vcc or Vss.
75	77	RST	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	External reset request input pin
50	52	HST	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	Hardware standby input pin
83 to 90	85 to 92	P00 to P07	$\stackrel{\mathrm{J}}{\text { (TTL) }}$	General purpose I/O ports This applies in single-chip mode with an external data bus in 8-bit mode.
		D00 to D07		In non-multiplex mode, the I/O pins for the lower 8 bits of the external data bus.
		AD00 to AD07		In multiplexed mode, the I/O pins for the lower 8 bits of the external address/data bus.
91 to 98	93 to 100	P10 to P17	$\begin{gathered} \mathrm{J} \\ (\mathrm{TTL}) \end{gathered}$	General purpose I/O ports This applies in non-multiplexed mode with an 8-bit external data bus and in single-chip mode.
		P08 to D15		In non-multiplexed mode with a 16-bit external data bus, the I/O pins for the upper 8 bits of the external data bus.
		AD08 to AD15		In multiplexed mode, the I/O pins for the upper 8 bits of the external address/data bus.
$\begin{gathered} 99, \\ 100, \\ 1 \text { to } 6 \end{gathered}$	$\begin{gathered} 1, \\ 2, \\ 3 \text { to } 8 \end{gathered}$	P20, P21, P22 to P27	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O ports This applies in multiplexed mode.
		$\begin{aligned} & \text { A00, } \\ & \text { A01, } \\ & \text { A02 to A07 } \end{aligned}$		In non-multiplexed mode, the output pins for the lower 8 bits of the external address bus.
$\begin{gathered} 7, \\ 8, \\ 10 \text { to } 15 \end{gathered}$	$\begin{gathered} 9, \\ 10, \\ 12 \text { to } 17 \end{gathered}$	P30, P31, P32 to P37	$\begin{gathered} \mathrm{B} \\ \text { (CMOS) } \end{gathered}$	General purpose I/O ports This applies in multiplexed mode.
		$\begin{aligned} & \text { A08, } \\ & \text { A09, } \\ & \text { A10 to A15 } \end{aligned}$		In non-multiplexed mode, the output pins for the upper 8 bits of the external address bus.
$\begin{array}{\|l\|} \hline 16 \text { to } 20, \\ 22 \text { to } 24 \end{array}$	$\begin{aligned} & 18 \text { to } 22, \\ & 24 \text { to } 26 \end{aligned}$	$\begin{aligned} & \text { P40 to P44, } \\ & \text { P45 to P47 } \end{aligned}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O ports This applies when the upper address control register specifies port operation.
		$\begin{aligned} & \text { A16 to A20, } \\ & \text { A21 to A23 } \end{aligned}$		Output pins for A16 to A23 of the external address bus This applies when the upper address control register specifies address operation.

[^0](Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
70	72	P50	$\begin{gathered} \mathrm{I} \\ \text { (CMOS) } \end{gathered}$	General purpose I/O port This applies when CLK output is disabled.
		CLK		CLK output pin This applies when CLK output is enabled.
71	73	P51	$\begin{gathered} \mathrm{K} \\ \text { (TTL) } \end{gathered}$	General purpose I/O port This applies when the external ready function is disabled.
		RDY		Ready input pin This applies when the external ready function is enabled.
72	74	P52	$\begin{gathered} \mathrm{I} \\ \text { (CMOS) } \end{gathered}$	General purpose I/O port This applies when the hold function is disabled.
		HAR		Hold acknowledge output pin This applies when the hold function is enabled.
73	75	P53	$\begin{gathered} \mathrm{K} \\ \text { (TTL) } \end{gathered}$	General purpose I/O port This applies when the hold function is disabled.
		HRQ		Hold request input pin This applies when the hold function is enabled.
74	76	P54	$\begin{gathered} \text { I } \\ \text { (CMOS) } \end{gathered}$	General purpose I/O port This applies in 8-bit external bus mode or when output is disabled for the WRH pin.
		WRH		Write strobe output pin for the upper 8 bits of the data bus This applies in 16-bit external bus mode and when output is enabled for the WRH pin.
76	78	P55	$\begin{gathered} \text { I } \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O port This applies when output is disabled for the WRL pin.
		WRL		Write strobe output pin for the lower 8 bits of the data bus This applies when output is enabled for the WRL pin.
77	79	P56	$\begin{gathered} \text { I } \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port This port is available in the single-chip mode.
		RD		Read strobe output pin for the data bus
78	80	P57	$\begin{gathered} \text { I } \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port This port is available in the single-chip mode.
		ALE		Address latch enable output pin
$\begin{array}{\|l\|} \hline 36 \text { to } 39, \\ 41 \text { to } 44 \end{array}$	$\begin{aligned} & 38 \text { to } 41, \\ & 43 \text { to } 46 \end{aligned}$	P60 to P67	C	Open-drain output ports

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 26, \\ & 27 \end{aligned}$	$\begin{aligned} & 28, \\ & 29 \end{aligned}$	$\begin{aligned} & \hline \text { P71, } \\ & \text { P72 } \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O ports This applies in all cases.
		INT1, INT2		External interrupt request input pins As the inputs operate continuously when external interrupts are enabled, output to the pins from other functions must be stopped unless done intentionally.
28	30	P73	$\stackrel{H}{(C M O S / H)}$	General purpose I/O ports This applies when output is disabled for reload timers.
		INT3		External interrupt request input pins As the inputs operate continuously when external interrupts are enabled, output to the pins from other functions must be stopped unless done intentionally.
		TIM4		I/O pins for reload timers Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is enabled.
$29,$	$\begin{aligned} & 31, \\ & 32 \end{aligned}$	$\begin{aligned} & \text { P74, } \\ & \text { P75 } \end{aligned}$	$\stackrel{H}{(C M O S / H)}$	General purpose I/O ports This applies when the waveform outputs for PPG timers 0 , 1 are disabled.
		INT4, INT5		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.
		$\begin{aligned} & \text { PPG0, } \\ & \text { PPG1 } \end{aligned}$		Output pins for PPG timers This applies when the waveform outputs for PPG timers 0 , 1 are enabled.
31	33	P76	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies in all cases.
		INT6		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 45, \\ & 46 \end{aligned}$	$\begin{aligned} & 47, \\ & 48 \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 80, \\ & \text { P81, } \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O ports This applies when output is disabled for reload timers.
		$\begin{aligned} & \hline \text { INT7, } \\ & \text { INTO } \end{aligned}$		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.
		$\begin{aligned} & \text { TIM0, } \\ & \text { TIM1 } \end{aligned}$		I/O pins for reload timers Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is enabled.
$\begin{aligned} & 51, \\ & 5 \end{aligned}$	$\begin{aligned} & 53, \\ & 54 \end{aligned}$	$\begin{aligned} & \text { P82, } \\ & \text { P83 } \end{aligned}$	$\underset{(\mathrm{CMOS} / \mathrm{H})}{ }$	General purpose I/O ports This applies when output is disabled for reload timers.
		$\begin{aligned} & \text { TIM2, } \\ & \text { TIM3 } \end{aligned}$		I/O pins for reload timers Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is enabled.
53	55	P84	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{D}}$	General purpose I/O port This applies in all cases.
		SIN0		Serial data input pin for UARTO As the input operates continuously when UARTO is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
54	56	P85	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{D}}$	General purpose I/O port This applies when serial data output is disabled for UARTO.
		SOTO		Serial data output pin for UARTO This applies when serial data output is enabled for UARTO.
55	57	P86	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies when the UARTO clock output is disabled.
		SCKO		Clock I/O pin for UARTO This applies when the UARTO clock output is enabled. As the input operates continuously when UARTO is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
56	58	P90	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies in all cases.
		SIN1		Serial data input pin for UART1 As the input operates continuously when UART1 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06
(Continued)

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
57	59	P91	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies when serial data output is disabled for UART1.
		SOT1		Serial data output pin for UART1 This applies when serial data output is enabled for UART1.
58	60	P92	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies when the UART1 clock output is disabled.
		SCK1		Clock I/O pin for UART1 This applies when the UART1 clock output is enabled. As the input operates continuously when UART1 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
59 to 61	61 to 63	P93 to P95	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{D}}$	General purpose I/O port
25	27	C	-	Capacitor pin for stabilizing power supply Connect about $0.1 \mu \mathrm{~F}$ ceramic capacitor outside ROM. MB90P641 doesn't need to be connected the capacitor. It isn't problem even the capacitor is connected to MB90P641A.
62 to 69	64 to 71	PA0 to PA7	$\begin{gathered} \mathrm{I} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O ports This applies for pins with chip select output disabled by the chip select control register.
		CS0 to CS7		Output pins for the chip select function This applies for pins with chip select output enabled by the chip select control register.
$\begin{aligned} & 21, \\ & 32, \\ & 33, \\ & 82 \end{aligned}$	$\begin{aligned} & 23, \\ & 34, \\ & 35, \\ & 84 \end{aligned}$	Vcc	Power supply	Power supply for the digital circuits
$\begin{array}{r} 9, \\ 34, \\ 35, \\ 40, \\ 79 \end{array}$	$\begin{aligned} & 11, \\ & 36, \\ & 37, \\ & 42, \\ & 81 \end{aligned}$	Vss	Power supply	Ground level for the digital circuits

*1: FPT-100P-M05
*2: FPT-100P-M06

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Max. 3 to 34 MHz - Oscillation feedback resistance:approximately $1 \mathrm{M} \Omega$
B		- CMOS level I/O With standby control - Pull-up resistor option
C		- N-channel open-drain output - CMOS level hysteresis input - Pull-up resistor option
D		- CMOS level output - CMOS level hysteresis input With standby control - Pull-up resistor option

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.
(Continued)

Type	Circuit	Remarks
E		- CMOS level input No standby control - Pull-up resistor option
F		- CMOS level hysteresis input No standby control - Pull-up resistor option
G		- CMOS level hysteresis input No standby control - With pull-up resistor
H		- CMOS level output - CMOS level hysteresis input No standby control - Pull-up resistor option
1		- CMOS level output - CMOS level hysteresis input - Pull-up resistor approximately $50 \mathrm{k} \Omega$ - Pin goes to high impedance during stop mode.

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the " L " level or when in the standby state.
(Continued)

Type	Circuit	Remarks
J		- CMOS level output - TTL level input With standby control - Pull-up resistor option
K		- CMOS level output - TTL level input - Pull-up resistor approximately $50 \mathrm{k} \Omega$ - Pin goes to high impedance during stop mode.

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or less than V_{ss} is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ Electrical Characteristics" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidlly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the anaolg power supply (AV Vc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is truned on and off.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resister.

3. Cautions when Using an External Clock

Drive the XO pin only when using an external clock.

- Using an external clock

4. Power Supply Pins

When there are several $V_{c c}$ and $V_{s s}$ pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.
In addition, give a due consideration to the connection in that current supply be connected to Vcc and Vss with the lowest possible impedance.
Finally, it is recommended to connect a ceramic capacitor of about $0.1 \mu \mathrm{~F}$ between Vcc and Vss near this device as a bypass capacitor.

5. Crystal Oscillation Circuit

Noise in the vicinity of the X 0 and X 1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible, and possibly take care not to cross over the other wiring with this wiring.
In addition, because printed circuit board artwork in which the area around the X 0 and X 1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

■ PROGRAMMING TO THE ONE-TIME PROM ON THE MB90P641A

MB90P641A has a function PROM mode function equivalent to MBM27C1000/1000A, so it can be written by general ROM writer using special adapter. But take attention it doesn't corsespond to the elctronic signature (the device identification code) mode.

1. Programming Procedure

Memory map in the PROM mode is as below. Write option data to the option setting erea refering to the 6 PROM option bit map.

Product	Address $^{* 1}$	Address $^{* 2}$	Number of bytes
MB90P641A	10000_{H}	FF0000	64 Kbytes

Note: The 00 bank ROM image is 48 Kbyes. (This is a ROM image for FF4000н to FFFFFFFн. Only when the ROM mirror function selecting resister is enable.)

Porocedure of the programing to the one-time PROM microcomputer is as below.
(1) Set the EPROM programmer for the MBM27C1000/1000A.
(2) Load the program data into the EPROM programmer at address*1 to 1FFFFF. When specify the PROM option, load the option data to $00000_{\text {н t }} 00002 \mathrm{C}_{\text {н t }}$ to refering to "6. PROM Option Bitmap".
(3) Insert the device in the socket adapter, and mount the socket adapter on the EPROM programmer. Pay attention to the orientation of the device and of the socket adapter when doing so.
(4) Program to 00000 н to 1 FFFFн.

Notes: - Because the mask ROM products do not have a PROM mode, they cannot read date from the EPROM programmer.

- Contact the sales department when purchasing an EPROM programmer.

2. Program Mode

In the MB90P641A, all of the bits are set to "1" when the IC is shipped from Fujitsu and after erasure. To input data, program the IC by selectively setting the desired bits to " 0 ". Bits cannot be set to " 1 " electrically.

3. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked one-time PROM with microcontroller program.

4. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked one-time PROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.
5. EPROM Programmer Socket Adapter and Recommended Programmer Manuffacturer

Part no.		MB90P641APF	MB90P641APFV
Package		QFP-100	LQFP-100
Compatible socket adapter Sun Hayato Co., Ltd.	ROM-100QF-32DP -FFMC-16L	ROM-100SQF-32DP -FFMC-16L	
Recommended programmer manufacturer and programmer name	Minato Electronics Inc.	$\mathbf{1 8 9 1}$	Recommended

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
Minato Electronics Inc.: TEL: USA (1)-916-348-6066
JAPAN (81)-45-591-5611

6. PROM Option Bitmap

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00000н	Vacancy	RST Pull-up 1: No 0 : Yes	Vacancy	MD 1 Pull-up 1: No 0 : Yes	MD 1 Pull-down 1: No 0: Yes	MD 0 Pull-up 1: No 0: Yes	MD 0 Pull-down 1: No 0: Yes	Vacancy
00004н	P07 Pull-up 1: No 0: Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0 : Yes	P04 Pull-up 1: No 0: Yes	P03 Pull-up 1: No 0: Yes	P02 Pull-up 1: No 0: Yes	P01 Pull-up 1: No 0: Yes	P00 Pull-up 1: No 0 : Yes
00008н	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
0000CH	P27 Pull-up 1: No 0: Yes	P26 Pull-up 1: No 0: Yes	P25 Pull-up 1: No 0: Yes	P24 Pull-up 1: No 0: Yes	P23 Pull-up 1: No 0: Yes	P22 Pull-up 1: No 0: Yes	P21 Pull-up 1: No 0: Yes	$\begin{aligned} & \hline \text { P20 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
00010н	$\begin{aligned} & \text { P37 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0 : Yes	P34 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P33 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	P32 Pull-up 1: No 0 : Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0 : Yes
00014H	$\begin{aligned} & \text { P47 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P46 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P45 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	P44 Pull-up 1: No 0: Yes	P43 Pull-up 1: No 0: Yes	P42 Pull-up 1: No 0 : Yes	P41 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P40 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$
0001CH	P57 Pull-up 1: No 0: Yes	P56 Pull-up 1: No 0 : Yes	P55 Pull-up 1: No 0 : Yes	P54 Pull-up 1: No 0: Yes	P53 Pull-up 1: No 0: Yes	P52 Pull-up 1: No 0: Yes	P51 Pull-up 1: No 0: Yes	P50 Pull-up 1: No 0 : Yes
00020н	Vacancy	P76 Pull-up 1: No 0: Yes	P75 Pull-up 1: No 0 : Yes	P74 Pull-up 1: No 0: Yes	P73 Pull-up 1: No 0: Yes	P72 Pull-up 1: No 0 : Yes	P71 Pull-up 1: No 0: Yes	Vacancy
00024	Vacancy	P86 Pull-up 1: No 0: Yes	P85 Pull-up 1: No 0: Yes	P84 Pull-up 1: No 0: Yes	P83 Pull-up 1: No 0: Yes	P82 Pull-up 1: No 0: Yes	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes
00028н	Vacancy	Vacancy	P95 Pull-up 1: No 0 : Yes	P94 Pull-up 1: No 0: Yes	P93 Pull-up 1: No 0: Yes	P92 Pull-up 1: No 0: Yes	P91 Pull-up 1: No 0: Yes	P90 Pull-up 1: No 0 : Yes
0002CH	PA7 Pull-up 1: No 0 : Yes	PA6 Pull-up 1: No 0: Yes	PA5 Pull-up 1: No 0 : Yes	PA4 Pull-up 1: No 0 : Yes	PA3 Pull-up 1: No 0: Yes	PA2 Pull-up 1: No 0: Yes	PA1 Pull-up 1: No 0 : Yes	$\begin{array}{\|l} \hline \text { PAO } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0: Yes } \end{array}$

Note: Write data " 1 " to the vacant bit and the adress other than above.

BLOCK DIAGRAM

MEMORY MAP

Note: When disable output upper address A23 to A16 of MB90640A series, the maximum acceptable size becomes 64 Kbytes.

F²MC-16L CPU PROGRAMMING MODEL

- Dedicated registers

- General-purpose registers

- Processor status (PS)

I/O MAP

Address	Name	Register	Read/ write ${ }^{* 4, * 5}$	Resource name	Initial value
000000н	PDR0	Port 0 data register	R/W*	Port 0*8	XXXXXXXXв
000001н	PDR1	Port 1 data register	R/W*	Port 1^{7}	XXXXXXXXв
000002н	PDR2	Port 2 data register	R/W*	Port 2*6	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W*	Port 3 ${ }^{6}$	XXXXXXXXв
000004H	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXв
000005н	PDR5	Port 5 data register	R/W	Port 5*8	XXXXXXXX
000006н	PDR6	Port 6 data register	R/W	Port 6	11111111 в
000007н	PDR7	Port 7 data register	R/W	Port 7	$-X X X X X X X$ в
000008н	PDR8	Port 8 data register	R/W	Port 8	$-X X X X X X X$ в
000009н	PDR9	Port 9 data register	R/W	Port 9	$--X X X X X X$ в
00000Ан	PDRA	Port A data register	R/W	Port A ${ }^{\text {8 }}$	XXXXXXX-в
$\begin{aligned} & 00000 \mathrm{BH}_{\mathrm{H}} \\ & \text { to } 0 \mathrm{FH} \end{aligned}$	-	Vacancy	*3	-	-
000010н	DDR0	Port 0 direction register	R/W*	Port 0*8	0000000 в
000011н	DDR1	Port 1 direction register	R/W*	Port 1^{47}	00000000 в
000012н	DDR2	Port 2 direction register	R/W*	Port ${ }^{* 6}$	00000000 в
000013н	DDR3	Port 3 direction register	R/W*	Port 3*6	00000000 в
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000 в
000015 ${ }_{\text {H }}$	DDR5	Port 5 direction register	R/W	Port 5*8	00000000 в
000016н	DDR6	Port 6 direction register	R/W	Port 6	11111111 в
000017H	DDR7	Port 7 direction register	R/W	Port 7	-000000-в
000018H	DDR8	Port 8 direction register	R/W	Port 8	-0000000 в
000019н	DDR9	Port 9 direction register	R/W	Port 9	--000000 в
00001 Ан	DDRA	Port A direction register	R/W	Port A* ${ }^{\text {8 }}$	00000000 в
$\begin{aligned} & 00001 \mathrm{BH} \\ & \text { to } 1 \mathrm{FH} \end{aligned}$	-	Vacancy	*3	-	-
000020н	SMR0	Serial mode register 0	R/W!	UARTO (SCI)	00000000 в
000021H	SCR0	Serial control register 0	R/W!		00000100 в
000022н	$\begin{aligned} & \text { SIDR0/ } \\ & \text { SODRO } \end{aligned}$	Input data register 0/ output data register 0	R/W		XXXXXXXXв
000023н	SSR0	Serial status register 0	R/W!		00001-00в
000024H	SMR1	Serial mode register 1	R/W!	UART1 (SCI)	00000000 в
000025H	SCR1	Serial control register 1	R/W!		00000100 в
000026н	$\begin{aligned} & \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	Input data register 1/ output data register 1	R/W		XXXXXXXX ${ }_{\text {в }}$
000027H	SSR1	Serial status register 1	R/W!		00001-00в

(Continued)

Address	Name	Register	Read/ write ${ }^{\star 4, * 5}$	Resource name	Initial value
000028н	ENIR	Interrupt/DTP enable register	R/W	DTP/external interrupt	00000000 в
000029н	EIRR	Interrupt/DTP request register	R/W		XXXXXXXX в
00002Ан	ELVR	Interrupt level setting register	R/W		00000000 в
00002Вн					00000000 в
$\begin{aligned} & 00002 \mathrm{C}_{\mathrm{H}} \\ & \text { to 2FH} \end{aligned}$	-	Vacancy	*3	-	-
000030н	PPGC0	PPGO operation mode control register	R/W	8/16-bit PPG0	$0-000001$ в
000031н	PPGC1	PPG1 operation mode control register	R/W	8/16-bit PPG1	00000001 в
$\begin{array}{r} \text { 000032н, } \\ 33 \mathrm{H} \end{array}$	-	Vacancy	*3	-	-
000034 ${ }^{\text {H }}$	PRLLO/ PRLH0	PPG0 reload register	R/W	8/16-bit PPG0	XXXXXXXXв
000035 ${ }^{\text {H }}$					XXXXXXXXв
000036н	PRLL1/ PRLH1	PPG1 reload register	R/W	8/16-bit PPG1	XXXXXXXX
000037 ${ }^{\text {H }}$					XXXXXXXXв
000038н	TMCSR0	Timer control status register	R/W!	16-bit reload timer 0	00000000 в
000039н					----0000в
00003Ан	TMRO/ TMRLR0	16-bit timer register/ 16-bit reload register	R/W		XXXXXXXXв
00003Вн					XXXXXXXX
00003CH	TMCSR1	Timer control status register	R/W!	16-bit reload timer 1	00000000 в
00003D					----0000в
00003Eн	TMR1/ TMRLR1	16-bit timer register/ 16-bit reload register	R/W		XXXXXXXXв
00003FH					XXXXXXXXв
$\begin{aligned} & 000040 \mathrm{H} \\ & \text { to } 47 \mathrm{H} \end{aligned}$	-	Vacancy	*3	-	-
000048н	CSCR0	Chip select control register 0	R/W	Chip select function	----0000 в
000049н	CSCR1	Chip select control register 1	R/W		----0000 в
00004Ан	CSCR2	Chip select control register 2	R/W		----0000 в
00004Bн	CSCR3	Chip select control register 3	R/W		----0000 в
00004CH	CSCR4	Chip select control register 4	R/W		----0000 в
00004D	CSCR5	Chip select control register 5	R/W		----0000 в
00004Eн	CSCR6	Chip select control register 6	R/W		----0000 в
00004FH	CSCR7	Chip select control register 7	R/W		----0000 в
000050H	-	Vacancy	*3	-	-
000051H	CDCR0	UARTO (SCI) machine clock division control register	W	UARTO (SCI)	----1111 в

Address	Name	Register	Read/ write ${ }^{* 4, * 5}$	Resource name	Initial value
000052н	-	Vacancy	*3	-	-
000053н	CDCR1	UART1 (SCI) machine clock division control register	W	UART1 (SCI)	----1111 в
$\begin{array}{r} 000054 \mathrm{H} \\ \text { to } 57 \mathrm{H} \end{array}$	-	Vacancy	*3	-	-
000058н	TMCSR2	Timer control status register	R/W!	16-bit reload timer 2	00000000 в
000059н					----0000в
00005Ан	TMR2/ TMRLR2	16-bit timer register/ 16-bit reload register	R/W		XXXXXXXXв
00005Вн					XXXXXXXX
00005CH	TMCSR3	Timer control status register	R/W!	16-bit reload timer 3	00000000 в
00005D					----0000в
00005Eн	TMR3/ TMRLR3	16-bit timer register/ 16-bit reload register	R/W		XXXXXXXXв
00005FH					XXXXXXXX
000060н	TMCSR4	Timer control status register	R/W!	16-bit reload timer 4	00000000 в
000061н					----0000в
000062н	TMR4/ TMRLR4	16-bit timer register/ 16-bit reload register	R/W		XXXXXXXXв
000063н					XXXXXXXX
000064н	TPCR	Timer pin control register	R/W	16-bit reload timer	00010000 в
000065 ${ }^{\text {H }}$					00110010 в
000066н					----0100в
$\begin{aligned} & \text { 000067н } \\ & \text { to } 6 \mathrm{E} \end{aligned}$	-	Vacancy	*3	-	-
00006FH	ROMM	ROM mirror functional selection module	W	ROM mirror function ${ }^{*} 9$	------- *
$\begin{array}{r} 00007 \mathrm{OH}_{\mathrm{H}} \\ \text { to } 8 \mathrm{FH} \end{array}$	-	Vacancy	*3	-	-
$\begin{aligned} & \text { 000090н } \\ & \text { to } 9 \mathrm{E} \end{aligned}$	-	Reserved system area	*1	-	-
00009F\%	DIRR	Delayed interrupt generation/ release register	R/W	Delayed interrupt generation module	-------0 в
0000AOH	LPMCR	Low power consumption mode control register	R/W!	Low power consumption	00011000 в
0000A1н	CKSCR	Clock selection register	R/W!	controller circuits	11111100 в
$\begin{array}{r} \text { 0000А2н } \\ \text { to A4н } \end{array}$	-	Vacancy	*3	-	-
0000A5 ${ }^{\text {H }}$	ARSR	Auto-ready function selection register	W	External bus pin controller circuits	0011--00 в

(Continued)
(Continued)

Address	Name	Register	Read/ write ${ }^{* 4, * 5}$	Resource name	Initial value
0000A6н	HACR	External address output control register	W	External bus pin	00000000 в
0000A7H	ECSR	Bus control signal selection register	W		-00 * 0000 в
0000A8H	WDTC	Watchdog timer control register	R/W!	Watchdog timer	XXXXX111 в
0000A9н	TBTC	Timebase timer control register	R/W!	Timebase timer	1--00100в
$\begin{aligned} & 0000 \mathrm{AAH} \\ & \text { to AFH } \end{aligned}$	-	Vacancy	*3	-	-
0000B0н	ICR00	Interrupt control register 00	R/W!		00000111 в
0000B1н	ICR01	Interrupt control register 01	R/W!		00000111 в
0000B2н	ICR02	Interrupt control register 02	R/W!		00000111 в
0000B3н	ICR03	Interrupt control register 03	R/W!		00000111 в
0000B4н	ICR04	Interrupt control register 04	R/W!		00000111 в
0000B5н	ICR05	Interrupt control register 05	R/W!		00000111 в
0000B6н	ICR06	Interrupt control register 06	R/W!		00000111 в
0000B7н	ICR07	Interrupt control register 07	R/W!	In	00000111 в
0000B8н	ICR08	Interrupt control register 08	R/W!	controller	00000111 в
0000B9н	ICR09	Interrupt control register 09	R/W!		00000111 в
0000ВАн	-	Vacancy	*3		-
0000ВВн	ICR11	Interrupt control register 11	R/W!		00000111 в
0000BCH	-	Vacancy	*3		-
0000BDн	ICR13	Interrupt control register 13	R/W!		00000111 в
0000BEн	ICR14	Interrupt control register 14	R/W!		00000111 в
0000BF\%	ICR15	Interrupt control register 15	R/W!		00000111 в
$\begin{gathered} 0000 \mathrm{COH}_{\mathrm{H}} \\ \text { to } \mathrm{FF}_{\mathrm{H}} \end{gathered}$	(External area) ${ }^{2}$				

Initial values
0 : The initial value for this bit is " 0 ".
1: The initial value for this bit is " 1 ".
*: The initial value for this bit is " 1 " or " 0 ". (Determined by the level of the MD0 to MD2 pins.)
X : The initial value for this bit is undefined.

- : This bit is not used. The initial value is undefined.
*1: Access prohibited.
*2: This is the only external access area in the area below address 0000FF. Access this address as an external I/O area.
*3: Areas marked as "Vacancy" in the I/O map are reserved areas. These areas are accessed by internal access. No access signals are output on the external bus.
*4: The R/W! symbol in the read/write column indicates that some bits are read-only or write-only. See the resource's register list for details.
(Continued)
(Continued)
5: Using a read-modify-write instruction (such as the bit set instruction) to access one of the registers indicated by R/W!, R/W, or W in the read/write column sets the specified bit to the desired value. However, this can cause misoperation if the other register bits include write-only bits. Therefore, do not use read-modify-write instructions to access these registers.
*6: This register is only available when the address/data bus is in multiplex mode and in single-chip mode. Access to the register is prohibited in non-multiplex mode.
*7: This register is only available when the external data bus is in 8-bit mode and in single-chip mode. Access to the register is prohibited in 16-bit mode.
*8: All bits of DDR0/PDR0, 6-bit/7-bit of DDR5/PDR5 and 0-bit of DDRA/PDRA are available only in single-chip mode.
*9: The initial value of this register in MB90V640A is " 0 " and that of in MB90P641A, MB90641A is " 1 ".
Note: The initial values listed for write-only bits are the initial values set by a reset. Take attention that they are not the values returned by a read.
Also, LPMCR/CKSCR/WDTC are sometimes initialized and sometimes not initialized, depending on the reset type. The listed initial values are for when these registers are initialized.

■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO INTERRUPT SOURCES

Interrupt source	${ }^{2}{ }^{2} \mathrm{OS}$ support	Interrupt vector			Interrupt control register	
		Number		Address	ICR	Address
Reset	\times	\#08	08н	FFFFDCH	-	-
INT 9 instruction	\times	\#09	09н	FFFFD84	-	-
Exception	\times	\#10	0Ан	FFFFD4 ${ }_{\text {¢ }}$	-	-
DTP/external interrupt \#0	\bigcirc	\#11	OBн	FFFFD0H	ICR00	0000B0н
DTP/external interrupt \#1	\bigcirc	\#13	ODH	FFFFC8 ${ }_{\text {H }}$	ICR01	0000B1н
DTP/external interrupt \#2	\bigcirc	\#15	OFH	FFFFFCOH	ICR02	0000B2н
DTP/external interrupt \#3	\bigcirc	\#17	11н	FFFFB84		0000B3
16-bit reload timer \#2	\bigcirc	\#18	12н	FFFFB4 ${ }_{\text {¢ }}$		
DTP/external interrupt \#4	\bigcirc	\#19	13н	FFFFB0н	ICR04	
16-bit reload timer \#3	\bigcirc	\#20	14н	FFFFACH		
DTP/external interrupt \#5	\bigcirc	\#21	15 H	FFFFA8 ${ }_{\text {H }}$	ICR05	O000B5
16-bit reload timer \#4	\bigcirc	\#22	16н	FFFFFA4		
DTP/external interrupt \#6	\bigcirc	\#23	17 H	FFFFAOH	CR06	0000В
UARTO - send complete	\bigcirc	\#24	18н	FFFF9C ${ }_{\text {¢ }}$		
DTP/external interrupt \#7	\bigcirc	\#25	19н	FFFFF98	ICR07	0000B7
UART1 - send complete	\bigcirc	\#26	1Ан	FFFF94		
8/16-bit PPG \#0	\times	\#27	1Вн	FFFF90 ${ }_{\text {н }}$	R08	000
8/16-bit PPG \#1	\times	\#28	1 CH	FFFF88 ${ }_{\text {H }}$	ICRO8	-000В8н
16-bit reload timer \#0	\bigcirc	\#29	1Dн	FFFF888	ICR09	0000B9
16-bit reload timer \#1	\bigcirc	\#30	1Ен	FFFFF84		
Vacancy	\bigcirc	\#31	1FH	FFFF80 ${ }_{\text {н }}$	ICR10	0000ВАн
Timebase timer interval interrupt	\times	\#34	22н	FFFFF74	ICR11	0000ВВн
Vacancy	-	\#35	23н	FFFF70 ${ }_{\text {H }}$	ICR12	0000BCH
UART1 - receive complete	©	\#37	25	FFFF68 ${ }_{\text {H }}$	ICR13	0000BD
UART0 - receive complete	()	\#39	27	FFFF60 ${ }_{\text {H }}$	ICR14	0000ВВн
Delayed interrupt generation module	\times	\#42	$2 \mathrm{~A}_{\text {н }}$	FFFF54 ${ }_{\text {н }}$	ICR15	0000BFH

: indicates that the interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (no stop request).
(o) : indicates that the interrupt request flag is cleared by the $I^{2} O S$ interrupt clear signal (with stop request).
\times : indicates that the interrupt request flag is not cleared by the $I^{2} O S$ interrupt clear signal.
Note: Do not specify I ${ }^{2}$ OS activation in interrupt control registers that do not support I ${ }^{2}$ OS.

■ PERIPHERAL RESOURCES

1. Parallel Port

The MB90640A series has 75 I/O pins, and 8 open-drain output pins.
Ports 0 to 5 and ports 7 to 9 and A are I/O ports. The ports are inputs when the corresponding direction register bit is " 0 " and outputs when the corresponding bit is " 1 ".

Port 0 is only available in single-chip mode.
Port 1 is only available when in data bus 8 -bit mode of non-multiplex mode or in single-chip mode.
Ports 2 and 3 are only available when the address/data bus is in multiplex mode and single-chip mode.
Port 6 is an open-drain port.
(1) Register Details

- Port data registers

- Port data register

Address : PDR1: 000001н PDR3: 000003н PDR5: 000005 PDR7: 000007н PDR9: 000009н		$\begin{array}{r} \text { bit } 15 \\ \hline \text { PDx7 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { bit } 14 \\ \hline \text { PDx6 } \\ \hline \end{array}$		$\begin{aligned} & \text { bit } 13 \\ & \hline \text { PDx5 } \end{aligned}$		$\begin{aligned} & \text { bit } 12 \\ & \hline \text { PDx4 } \end{aligned}$		$\begin{aligned} & \text { bit } 11 \\ & \hline \text { PDx3 } \end{aligned}$		$\begin{aligned} & \text { bit } 10 \\ & \hline \text { PDx2 } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { bit } 9 \\ \hline \text { PDx1 } \\ \hline \end{array}$	$\frac{\text { bit } 8}{\text { PDx0 }}$	Initial value XXXXXXXX
		R/W R/V			R/W	R/W									
Address :	PDR0: 000000н PDR2: 000002н	bit 7		bit 6	bit 5			bit 4	bit 3		bit 2		bit 1	bit 0	Initial value
	PDR4:000004н PDR6:000006н	PDx7		PDx6		PDx5		PDx4	PDx3		PDx2		PDx1	PDx0	XXXXXXXXв
	PDR8: 000008н PDRA: 00000Ан	R/W		R/W	R/W			R/W	R/W		R/W		R/W	R/W	

R/W : Readable and writable
X : Indeterminate

Note: No register bit is provided for bits 0,7 of port 7 .
No register bit is provided for bit 7 of port 8 .
No register bits are provided for bits 7, 6 of port 9 .
Port 0 is only available in single-chip mode.
Bits 7, 6 of port 5 and bit 0 of port A are only available in single-chip mode.
Port 1 is only available when the external data bus is in 8 -bit mode and single-chip mode.
Ports 2, 3 are only available in multiplex mode and single-chip mode.
Each port pin except port 6 can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.
When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Notes: - If read-modify-write instructions (bit set instruction, etc.) are used to access this register, the bit that is the focus of the instruction is set to the prescribed value, but the contents of the output register corresponding to any other bits for which the input setting has been made are overwritten with the current input value of the corresponding pin. Therefore, when switching a pin that was being used for input over to output, first write the desired value to PDR, and then set the data DDR as output direction.

- Reading and writing an I/O port differs from reading and writing memory as follows:

Input mode
Reads: The read data is the level of the corresponding pin.
Writes: The write data is stored in the output latch. The data is not output to the pin.
Output mode
Reads: The read data is the value stored in the PDR.
Writes: The write data is both stored in the output latch and output to the pin.

- Take attention that the operation of R/W in port 6 is different from that of in other port.

Port 6 (P 67 to P 60) is an general-purpose I/O port with an open-drain output. When port 6 is used as a generalpurpose port, always be sure to set the corresponding bits in DDR6 to "0".
When port 6 is used as an input port, it is necessary set the output port data register value to " 1 " in order to turn off the open-drain output transistor; it is also necessary to connect a pull-up resistor to the external pins.

In addition, depending on the instruction used to read these bits, one of the following two different operations is performed:

- When read by a read-modify-write instruction:

The contents of the output port data register are read. Even if pins are forcibly set to " 0 " externally, the contents of the bits not specified by the instruction do not change.

- When read by any other instruction:

The pin level can be read.
When used as output ports, the pin values can be changed by writing the desired value to the corresponding output port data register.
In addition, the pin which corresponds to the bit of which port 6 direction register is set to " 1 " can be read " 0 ".

- Port direction registers

- Port direction register

Address:	: DDR1 : 000011H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	DDR5: 000015	DDx7	DDx6	DDx5	DDx4	DDx3	DDx2	DDx1	DDx0	00000000в
	DDR9:000019н	R/W								
Address :	: DDRO: 000010н	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	DDR2:000012									
	DDR4:000014	DDx7	7 DDx6	DDx5	DDx4	4 DDx3	DDx2	2 DDx1	1 DDx0	00000000в
	DDRA: 00001А	R/W								

R/W : Readable and writable

Note: No register bit is provided for bits 0,7 of port 7 .
No register bit is provided for bit 7 of port 8.
No register bits are provided for bits 6, 7 of port 9 .
Port 1 is only available in single-chip mode.
Port 1 is only available when the external data bus is in 8 -bit mode and single-chip mode.
Ports 2, 3 are only available in multiplex mode and single-chip mode.
When pins are used as ports, the register bits control the corresponding pins as follows.
0 : Input mode
1: Output mode
Bits are set to "0" by a reset.

- Port 6 direction register

- Port 6 direction register

Address : DDR6:000016	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	DD67	DD66	DD65	DD64	DD63	DD62	DD61	DD60	11111111B
	R/W								

R/W: Readable and writable

Controls each pin of port 6 as follows.
0 : Port input mode
1: Analog input mode
Bits are set to " 1 " by a reset.

(2) Block Diagrams

- I/O port

- Open-drain port

(3) Port Pin Allocation

Ports 1, 4, and 5 on the MB90640A series share pins with the external bus. The pin functions are determined by the bus mode and register settings.

Pin name	Function							
	Non-multiplex mode				Multiplex mode			
	External address control				External address control			
	Enable (address)		Disable (port)		Enable (address)		Disable (port)	
	External bus width							
	8 bits	16 bits						
$\begin{array}{\|l\|} \hline \text { D07 to D00/ } \\ \text { AD07 to AD00 } \end{array}$	D07 to D00				AD07 to AD00			
P17 to P10/ D15 to D08/ AD15 to AD08	Port	D15 to D08	Port	D15 to D08	A15 to A08	AD15 to AD08	A15 to A08	AD15 to AD08
$\begin{aligned} & \text { P27 to P20/ } \\ & \text { A07 to A00 } \end{aligned}$	A07 to A00				Port			
$\begin{aligned} & \text { P37 to P30/ } \\ & \text { A15 to A08 } \end{aligned}$	A15 to A08							
$\begin{aligned} & \text { P47 to P40/ } \\ & \text { A23 to A16 } \end{aligned}$	A23 to A16		Port		A23 to A16		Port	
P57/ALE	ALE				ALE			
RD	RD				RD			
P55/WRL	WRL				WRL			
P54/WRH	Port	WRH	Port	WRH	Port	WRH	Port	WRH
P53/HRQ	HRQ				HRQ			
P52/HAK	HAK				HAK			
P51/RDY	RDY				RDY			
P50/CLK	CLK				CLK			

Notes: • The upper address, WRL, WRH, HAR, HRQ, RDY, and CLK can be set for use as ports by function selection.

- The pins mentioned above can be used as a port in single-chip mode.

2. UARTO, 1 (SCI)

UARTO, 1 are serial I/O ports that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous (I/O expansion serial) data transfer. The ports have the following features.

- Full duplex, double buffered
- Supports CLK asynchronous (start-stop synchronization) and CLK synchronous (I/O expansion serial) data transfer
- Multi-processor mode support
- Built-in dedicated baud rate generator

CLK asynchronous: $62500 \mathrm{bps} / 31250 \mathrm{bps} / 19230 \mathrm{bps} / 9615 \mathrm{bps} / 4808 \mathrm{bps} / 2404 \mathrm{bps} / 1202 \mathrm{bps}$
CLK synchronous: $2 \mathrm{Mbps} / 1 \mathrm{Mbps} / 500 \mathrm{kbps} / 250 \mathrm{kbps}$

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support

(1) Register Configuration

- Serial mode register 0,1

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : SMR0: $00002 \mathrm{SH}_{\mathrm{H}}$	MD1	MD0	CS2	CS1	CSO	-	SCKE	SOE	00000-00в
	R/W	R/W	W	W	W	-	R/W	R/W	

- Serial control register 0,1

Address : SCR0: 000021н	bit 15	14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value 00000100в
	PEN	P	SBL	CL	A/D	REC	RXE	TXE	
	R/W	W	R/W	R/W	R/W	R/W	R/W	R/W	

- Input data register 0, 1/output data register 0,1

Address : SIDR0 (read) / SODRO (write)
$: 000022 \mathrm{H}$
SIDR1 (read) /
SODR1 (write)
$: 000026 \mathrm{H}$

Initial value XXXXXXXX

- Serial status register 0,1

Address : SSR0: 000023H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value00001-00в
	PE	ORE	FRE	RDRF	TDRE	-	RIE	TIE	
	R	R	R	R	R	-	R/W	R/W	

- Machine clock division control register for UARTO, 1 (SCI)

Address : CDCRO: 000051н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	-	-	-	-	DIV3	DIV2	DIV1	DIV0	--1111в
	-	-	-	-	W	W	W	W	

R/W: Readable and writable
R : Read only
W: Write only
\bar{x} : Unused
X : Indeterminate

(2) Block Diagram

3. 8/16-bit PPG

8/16-bit PPG contains the 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.
The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

- 8-bit PPG output in 2-channel independent operation mode: Two independent PPG output channels are available.
- 16-bit PPG output operation mode: One 16-bit PPG output channel is available.
- 8+8-bit PPG output operation mode: Variable-period 8 -bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.
- PPG output operation: Outputs pulse waveforms with variable period and duty ratio.

Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

- PPG0 operation mode control register

Address: PPGC0: 000030H

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PEN0 | - | POE0 | PIE0 | PUF0 | PCM1 | PCM0 | Reserved | -. |
| R/W | - | R/W | R/W | R/W | R/W | R/W | - | |

Initial value $0-000001$ в

- PPG1 operation mode control register

Address: PPGC1: 000031H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value 00000001в
	PEN1	PCS1	POE1	PIE1	PUF1	MD1	MDO	eserved	
	R/W	-							

- PPGO, PPG1 reload register H

- PPG0, PPG1 reload register L

Initial value XXXXXXXXв

[^1]
(2) Block Diagram

- 8/16-bit PPG (channel 0)

- 8/16-bit PPG (channel 1)

4. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timers consists of a 16-bit down-counter, a 16-bit reload register, input pin (TIN), output pin (TOT), and a control register. The input clock can be selected from one external clock and three types of internal clock. The output (TOT) outputs a toggle waveform in reload mode and a rectangular waveform during counting in one-shot mode. The input (TIN) functions as the event input in event count mode and as the trigger input or gate input in internal clock mode.
Input and output of timer pin TIM0 to TIM4 are set by way of the timer pin control register.
This product has five internal 16 -bit reload timer channels.

(1) Register Configuration

- Timer control status register upper

Address :TMCSR0: 000039н
TMCSR1: 00003D н TMCSR2: 000059н TMCSR3: 00005D TMCSR4: 000061н

Initial value
----0000в

- Timer control status register lower

Address :TMCSR0: 000038H
TMCSR1: 00003Сн TMCSR2: 000058 TMCSR3: 00005CH TMCSR4: 000060н

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1
bit 0							
--MODO OUTE OUTL RELD INTE UF CNTE TRG - R/W R/W R/W R/W R/W R/W R/W R/W							

- 16-bit timer register upper/16-bit reload register upper

Address : TMRO/TMRLRO: 00003B н TMR1/TMRLR1: 00003Fн TMR2/TMRLR2: 00005В TMR3/TMRLR3: 00005FH TMR4/TMRLR4: 000063н

Initial value ХХХХХХХХв

- 16-bit timer register lower/16-bit reload register lower

Address : TMRO/TMRLRO: 00003A TMR1/TMRLR1: 00003Ен TMR2/TMRLR2: 00005Ан TMR3/TMRLR3: 00005Ен TMR4/TMRLR4: 000062н

Initial value ХХХХХХХХв

> R/W : Readable and writable $\overline{\mathrm{X}}:$: Unused Indeterminate

- Timer pin control register upper

Address:TPCR: 000066H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value----0100в
	-	-	-	-	OTE4	CSC4	CSB4	CSA4	
	-	-	-	-	R/W	R/W	R/W	R/W	

- Timer pin control register middle

Address :TPCR: 000065	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	OTE3	CSC3	CSB3	CSA3	OTE2	CSC2	CSB2	CSA2	00110010в
	R/W								

- Timer pin control register lower

Address:TPCR:000064н	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	OTE1	CSC1	CSB1	CSA1	OTEO	CSC0	CSB0	CSAO	00010000 ${ }_{\text {B }}$
	R/W								

R/W : Readable and writable
\bar{x} : Unused
X : Indeterminate

(2) Block Diagram

Note: Timer channel and direction (I/O) can be selected for each pin.

5. Chip Select Function

This module generates chip select signals to simplify connection of memory or I/O devices.
The module has 8 chip select output pins. The hardware outputs the chip select signals from the pins when it detects access of an address in the areas specified in the pin registers.

(1) Register Configuration

- Chip select control register 1, 3, 5, 7

- Chip select control register 0, 2, 4, 6

Address : CSCRO: 000048H CSCR2: 00004А CSCR4:00004C CSCR6:00004Ен

Initial value
----0000B

R/W : Readable and writable

- : Unused

(2)
 Block Diagram

6. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU to activate the extended intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for extended intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on " H ", " L " levels can be selected, giving a total of four types.

(1) Register Configuration

- Interrupt/DTP enable register

Address :ENIR: 000028H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value 00000000в
	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	
	R/W								

- Interrupt/DTP source register

Address :EIRR: 000029н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	XXXXXXXX
	R/W								

- Request level setting register upper

Address :ELVR: 00002Вн	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value 00000000в
	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	
	R/W								

- Request level setting register lower

Address :ELVR: 00002Ан	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value$00000000 \text { в }$
	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LAO	
	R/W								

R/W : Readable and writable
X : Indeterminate

(2) Block Diagram

7. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU can be generated and cleared by software using this module.

(1) Register Configuration

- Delayed interrupt generation/release register

R/W : Readable and writable

- : Unused
(2) Block Diagram

8. ROM Mirror Functional Selection Module

ROM mirror function selecting module can be refered to the upper 48 Kbytes of FF bank which is wired ROM at 00 bank by selecting the resister setting.
(1) Register Configuration

- ROM mirror functional selection module

W: Write only
-: Unused

* : "1" or "0" (determined owing to the MD0 to MD2 pin level)

Notes: • The initial value of MB90V640A is " 0 " and that of MB90P641A, MB90641A is " 1 ".

- Not to access to this register while address 04000 н to 00FFFFH are in operation.
(2) Block Diagram

9. Watchdog Timer and Timebase Timer

The watchdog timer consists of a 2-bit watchdog counter, a control register, and a watchdog reset controller. The watchdog counter uses the carry-up signal from the 18-bit timebase timer as its clock source.
In addition to the 18 -bit timer, the timebase timer contains an interval interrupt control circuit. The timebase timer uses the main clock, regardless of the value of the MCS bit in the CKSCR register.

(1) Register Configuration

- Watchdog timer control register

Address : WDTC: 0000A8H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	PONR	STBR	WRST	ERST	SRST	WTE	WT1	WT0	XXXXX111в
	R	R	R	R	R	W	W	W	

- Timebase timer control register

Address : TBTC: 0000A9н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	Reserved	-	-	TBIE	TBOF	TBR	TBC1	TBC0	1--00100в
	-	-	-	R/W	R/W	W	R/W	R/W	

R/W : Readable and writable
R : Read only
W:Write only

- : Unused

X : Indeterminate

(2)
 Block Diagram

10. Low-power Control Circuits (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, and Clock Multiplier Function)

The following operation modes are available: PLL clock mode, PLL sleep mode, timer mode, main clock mode, main sleep mode, stop mode, and hardware standby mode. Operation modes other than PLL clock mode are classified as low-power consumption modes.

In main clock mode and main sleep mode, the device operates on the main clock only (OSC oscillator clock). The PLL clock (VCO oscillator clock) is stopped in these modes and the main clock divided by 2 is used as the operating clock.
In PLL sleep mode and main sleep mode, the CPU's operating clock only is stopped and other elements continue to operate.
In timer mode, only the timebase timer operates.
Stop mode and hardware standby mode stop the oscillator. These modes maintain existing data with minimum power consumption.
The CPU intermittent operation function provides an intermittent clock to the CPU when register, internal memory, internal resource, or external bus access is performed. This function reduces power consumption by lowering the CPU execution speed while still providing a high-speed clock to internal resources.
The PLL clock multiplier ratio can be set to $1,2,3,4$ by the CS1, CS0 bits.
The WS1, WS0 bits set the delay time to wait for the main clock oscillation to stabilize when recovering from stop mode or hardware standby mode.
(1) Register Configuration

- Low-power consumption mode control register

Address: LPMCR: 0000A0н	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	STP	SLP	SPL	RST	Reserved	CG1	CG0	Reserved	00011000B
	W	W	R/W	W	-	R/W	R/W	-	

- Clock select register

Address : CKSCR: 0000A1н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	Reserved	MCM	WS1	WS0	Reserved	MCS	CS1	CS0	11111100B
	-	R	R/W	R/W	-	R/W	R/W	R/W	

R/W : Readable and writable
R : Read only
W: Write only
(2) Block Diagram

- State transition diagram for clock selection

(1) MCS bit cleared
(2) PLL clock oscillation stabilization delay complete and CS1/0 $=00$
(3) PLL clock oscillation stabilization delay complete and CS1/0 $=01$
(4) PLL clock oscillation stabilization delay complete and CS1/0 $=10$
(5) PLL clock oscillation stabilization delay complete and CS1/0 $=11$
(6) MCS bit set (including a hardware standby or watchdog reset)
(7) PLL clock and main clock synchronized timing

11. Interrupt Controller

The interrupt control registers are located in the interrupt controller. An interrupt control register is provided for each I/O with an interrupt function. The registers have the following three functions.

- Set the interrupt level of the corresponding peripheral.
- Select whether to treat interrupts from the corresponding peripheral as standard interrupts or activate the extended intelligent I/O service.
- Select the extended intelligent I/O service channel.
(1) Register Configuration
- Interrupt control register 01, 03, 05, 07, 09, 11, 13, 15

Address : ICR01: 0000B1H
ICR03: 0000В3Н ICR05: 0000B5 ICR07: 0000B7H ICR09: 0000B9 ICR11:0000BB ICR13: 0000BDн ICR15:0000BFн

Initial value

00000111в

- Interrupt control register 00, 02, 04, 06, 08, 10, 12, 14

Address : ICR00: 0000BOH
ICR02: 0000B2н ICR04: 0000B4 ICR06: 0000B6н ICR08: 0000B8 ICR14:0000ВЕн

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
ICS3	ICS2	$\begin{gathered} \hline \text { ICS1 } \\ \text { or } \\ \text { S1 } \end{gathered}$	$\begin{gathered} \text { ICSO } \\ \text { or } \\ \text { S0 } \end{gathered}$	ISE	IL2	IL1	ILO	00000111в
W	W	R/W	R/W	R/W	R/W	R/W	R/W	

R/W: Readable and writable
W:Write only

Note: Do not access these registers using read-modify-write instructions as this can cause misoperation.
(2) Block Diagram

12. External Bus Terminal Control Circuit

This circuit controls the external bus terminals intended to extend outwardly the CPU's address/data bus.

(1) Register Configuration

- Register for selection of AUTO ready function

Address : ARSR: 0000A5H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	IOR1	IORO	HMR1	HMRO	-	-	LMR1	LMRO	0011--00 ${ }_{\text {B }}$
	w	w	W	w	-	-	W	W	

- Register for control of external address output

Address : HACR: 0000A6H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	E23	E22	E21	E20	E19	E18	E17	E16	00000000в
	W	W	W	W	W	W	W	W	

- Register for selection of bus control signal

Address : ECSR: 0000A7H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	-	LMBS	WRE	HMBS	IOBS	HDE	RYE	CKE	-00*0000 в $^{\text {仡 }}$
	-	W	W	W	W	W	W	W	

W: Write only
-: Unused
X : Indeterminate
*: "1" or "0" (determined owing to the MD0 to MD2 pin level)

(2) Block Diagram

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	$\mathrm{V}_{\text {ss }}+6.0$	V	
Input voltage*1	V_{1}	Vss - 0.3	V cc +0.3	V	
Output voltage*1	Vo	Vss -0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level maximum output current*2	loL	-	15	mA	
"L" level average output current*3	lolav	-	4	mA	
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current*4	Elolav	-	50	mA	
"H" level maximum output current*2	Іон	-	-15	mA	
"H" level average output current*3	lohav	-	-4	mA	
"H" level total maximum output current	Σ lon	-	-100	mA	
"H" level total average output current*4	इlohav	-	-50	mA	
Power consumption	Po	-	+150	mW	MB90641A
		-	+400	mW	MB90P641A
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Vı and Vo must not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$.
*2: The maximum output current must not be exceeded at any individual pin.
*3: The average output current is the operating current running through an appropriate pin \times the operating rate.
*4: The average total output current is the operating current running through all the appropriate pins \times the operating rate.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	4.5	5.5	V	For normal operation
	Vcc	3.5	5.5	V	To maintain statuses in stop mode
"H" level input voltage	V_{H}	2.2	V cc +0.3	V	TTL level input pins
	V ${ }_{\text {нс }}$	0.7 Vcc	$\mathrm{V} c \mathrm{c}+0.3$	V	CMOS level input pins
	V ${ }_{\text {HS }}$	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	Hysteresis input pins*
	Vıнм	V cc - 0.3	V cc +0.3	V	MD input pin
"L" level input voltage	VIL	Vss - 0.3	0.8	V	TTL level input pins
	VILC	Vss -0.3	0.3 Vcc	V	CMOS level input pins
	VILs	Vss -0.3	0.2 Vcc	V	Hysteresis input pins*
	VILM	Vss -0.3	Vss +0.3	V	MD input pin
Smoothing capacitor	Cs	0.1	1.0	$\mu \mathrm{F}$	Use the ceramic capacitor or the capacitor which has the similar frequency characteristic as ceramic capacitor. When attach the smoothing capacitor to Vcc, use the capacitor whose capacitance is larger than Cs.
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

* : Target pins are P60 to P67, P71 to P76, P80 to P86, P90 to P95, HST, and RST. (When used as general purpose pins)
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

$\left(\mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}\right.$ to 5.5 V , $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level output voltage	Vон	Other than P60 to P67	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage	Vol	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	IIL	Other than P60 to P67	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Open-drain output leakage current	leak	P60 to P67	-	-	0.1	5	$\mu \mathrm{A}$	
Pull-up resistance	Rup	-	-	15	50	100	$\mathrm{k} \Omega$	
Pull-down resistance	Rodow	-	-	15	50	200	$k \Omega$	
Power supply current*	Icc	$\mathrm{Vcc}=5.0 \mathrm{~V}$	Internal 16 MHz operation Normal operation	-	50 15	70 20	mA	MB90V640A/ P641A MB90641A
				-	15	20	mA	MB90641A
	Icos		Internal 16 MHz operation	-	25	30	mA	MB90V640A/ P641A
				-	5	10	mA	MB90641A
	IcCH		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Stop mode	-	0.1	10	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline \text { MB90V640A/ } \\ \text { P641A } \end{array}$
				-	5	20	$\mu \mathrm{A}$	MB90641A
Input capacitance	Cin	Other than Vcc, Vss, C	-	-	10	-	pF	

*: Because the current values are tentative values, they are subject to change without notice due to our efforts to improve the characteristics of these devices.

4. AC Characteristics

(1) Clock Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Source oscillation frequency	Fc	$\mathrm{X0} 0 \mathrm{X1}$	-	3	17	MHz	
Source oscillation cycle time	tc	X0, X1	-	58.8	333	ns	
Frequency variation ratio* (when locked)	Δf	-	-	-	5	\%	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{PwL} \end{aligned}$	X0	-	10	-	ns	The duty ratio should be in the range 30 to 70%
Input clock rise time and fall time	$\begin{aligned} & \mathrm{tcr} \\ & \mathrm{tcf} \\ & \text { tof } \end{aligned}$	X0	-	-	5	ns	
Internal operating clock frequency	fcp	-	-	1.5	17	MHz	
Internal operating clock cycle time	tcp	-	-	58.8	666	ns	

* : The frequency variation ratio is the maximum variation from the specified central frequency when the multiplier PLL is locked. The value is expressed as a proportion.

$$
\Delta f=\frac{|\alpha|}{f_{0}} \times 100(\%)
$$

Central frequency

- Clock timing

- PLL operation assurance range

Relationship between the internal operating clock frequency and supply voltage

Relationship between the oscillation frequency and internal operating clock frequency

The AC characteristics are for the following measurement reference voltages.

(2) Clock Output Timing
$\left(\mathrm{Vcc}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Cycle time	tcyc	CLK	-	tcp	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl			tcp/2-20	tcp/2 + 20	ns	

tcp: See " (1) Clock Timing."

(3) Recommended Resonator Manufacturers

- Sample application of piezoelectric resonator (FAR family)

FAR part number (built-in capacitor type)	Frequency $(\mathbf{M H z})$	Dumping resistor	Initial deviation of FAR frequency $\left(\mathbf{T}_{\mathrm{A}}=\mathbf{+ 2 5}^{\circ} \mathbf{C}\right)$	Temperature characteristics of FAR frequency $\left(\mathbf{T}_{\mathrm{A}}=\mathbf{- 2 \mathbf { 0 } ^ { \circ } \mathbf { C } \text { to } \mathbf { + 6 0 } ^ { \circ } \mathbf { C })}\right.$	Loading capacitors ${ }^{\star 2}$
FAR-C4CC-02000-L20	2.00	$1 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CA-04000-M01	4.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	Built-in
FAR-C4CB-08000-M02	8.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-10000-M02	10.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-16000-M02	16.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	

Inquiry: FUJITSU LIMITED

- Sample application of ceramic resonator

Resonator manufacturer*	Resonator	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	C_{1} (pF)	$\mathrm{C}_{2}(\mathrm{pF})$	R
Kyocera Corporation	KBR-2.0MS	2.00	150	150	Not required
	PBRC2.00A		150	150	Not required
	KBR-4.0MSA	4.00	33	33	680Ω
	KBR-4.OMKS		Built-in	Built-in	680Ω
	PBRC4.00A		33	33	680Ω
	PBRC4.00B		Built-in	Built-in	680Ω
	KBR-6.0MSA	6.00	33	33	Not required
	K̇BR-6.0̄MKS		Built-in	Built-in	Not required
	PBRC6.00A		33	33	Not required
			Built-in	Built-in	Not required
	KBR-8.0M	8.00	33	33	560Ω
	PBRC8.00A		33	33	Not required
	PBCRC8.00 ${ }^{\text {B }}$		Built-in	Built-in	Not required
	KBR-10.0M	10.00	33	33	330Ω
	PBRC10.00B		Built-in	Built-in	680Ω
	KBR-12.0M	12.00	33	33	330Ω
	PBRC12.00B		Built-in	Built-in	680Ω

(Continued)

Resonator manufacturer	Resonator	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	R
Murata Mfg. Co., Ltd.	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG040		Built-in	Built-in	Not required
	CSA4.00MG040	4.00	100	100	Not required
	CST4.00MGW040		Built-in	Built-in	Not required
	CSA6.00MG	6.00	30	30	Not required
	CST6.00MGW		Built-in	Built-in	Not required
	CSA8.00MTZ	8.00	30	30	Not required
	CSTB.00MTW		Built-in	Built-in	Not required
	CSA10.00MTZ	10.00	30	30	Not required
	CST10.00MTW		Built-in	Built-in	Not required
	CSA12.00MTZ	12.00	30	30	Not required
	CST12.00MTW		Built-in	Built-in	Not required
	CSA16.00MXZ040	16.00	15	15	Not required
	CST16.00MXWOC3		Built-in	Built-in	Not required
	CSA20.00MXZ040	20.00	10	10	Not required
	CSA24.00MXZ040	24.00	5	5	Not required
	CSA32.00MXZ040	32.00	5	5	Not required

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

- AVX Limited

European Sales Headquarters: TEL 44-1252-770000

- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233
(4) Reset and Hardware Standby Inputs

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstl	RST	-	16 tcp	-	ns	
Hardware standby input time	thstl	HST	-	16 tcp	-	ns	

[^2]

- Conditions for measurement of AC reference

Cı: Load capacity during testing
For CLK and ALE, CL = 30 pF
For address and data buses (AD15 to AD00), RD and WR, CL = 80 pF
(5) Power on Supply Specifications (Power-on Reset)
$\left(\mathrm{Vcc}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Power supply rise time	tr	Vcc	-	0.05	30	ms	
Power supply cut-off time	toff	Vcc	-	50	-	ms	For repetition of the operation

*: Vcc should be lower than 0.2 V before power supply rise.
Notes: • The above values are the values required for a power-on reset.

- When HST = "L", this standard must be followed to turn on power supply for power-on reset whether or not necessary.
- The device has built-in registers which are initialized only by power-on reset. For possible initialization of these registers, turn on power supply according to this standard.

(6) Bus Timing (Read)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
ALE pulse width	tıHLL	ALE	-	tcp/2-20	-	ns	
Valid address \rightarrow ALE \downarrow time	tavil	Address	-	tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ address valid time	tllax	Address	-	tcp/2-15	-	ns	
Valid address \rightarrow RD \downarrow time	tavrL	Address	-	tcp - 15	-	ns	
Valid address \rightarrow valid data input	tavdv	Address/ data	-	-	5 tcp/2-60	ns	
RD pulse width	trlrh	RD	-	3 tcp/2-20	-	ns	
RD $\downarrow \rightarrow$ valid data input	trlov	Data	-	-	3 ttp/2-60	ns	
$\mathrm{RD} \uparrow \rightarrow$ data hold time	tRHDX	Data	-	0	-	ns	
RD $\uparrow \rightarrow$ ALE \uparrow time	$\mathrm{trH}_{\text {L }}$	RD, ALE	-	tcp/2-15	-	ns	
$\mathrm{RD} \uparrow \rightarrow$ address valid time	trHax	Address, RD	-	tcp/2-10	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	Address, CLK	-	tcp/2-20	-	ns	
RD $\downarrow \rightarrow$ CLK \uparrow time	trich	RD, CLK	-	tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ RD \downarrow time	tLlri	ALE, RD	-	tcp/2-15	-	ns	

tcp: See " (1) Clock Timing."

(7) Bus Timing (Write)

Parameter							
	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Valid address \rightarrow WR \downarrow time	tavwL	Address	-	tcp - 15	-	ns	
WR pulse width	twLwh	WRL, WRH	-	3 ttp/2-20	-	ns	
Valid data output $\rightarrow \mathrm{WR} \uparrow$ time	tovw	Data	-	3 tcp/2-20	-	ns	
WR $\uparrow \rightarrow$ data hold time	twhox	Data	-	20	-	ns	Multiplex mode
				30	-	ns	Non-multiplex mode
WR $\uparrow \rightarrow$ address valid time	twhax	Address	-	tcp/2-10	-	ns	
WR $\uparrow \rightarrow$ ALE \uparrow time	twHLH	WRL, WRH, ALE		tcp/2-15	-	ns	
WR $\downarrow \rightarrow$ CLK \uparrow time	twlch	WRL, WRH, CLK		tcp/2-20	-	ns	

tcp: See " (1) Clock Timing."

(8) Ready Input Timing

					ss $=0$	$\mathrm{A}_{\text {A }}$	
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RDY setup time	tRYHS	RDY	V cc $=5.0 \mathrm{~V} \pm 10 \%$	45	-	ns	
RDY hold time	tRYHH		-	0	-	ns	

Note: Use the auto-ready function if the setup time at fall of the RDY is too short.

(9) Hold Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Pin floating \rightarrow HAK \downarrow time	txhal	HAK	-	30	tcp	ns	
HAK $\uparrow \rightarrow$ pin valid time	thatv	HAK	-	tcp	2 tcp	ns	

tcp: See " (1) Clock Timing."
Note: After reading HRQ, more than one cycle is required before changing HAK.

(10) I/O Extended Serial Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0, SCK1	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for the internal shift clock mode output pin.	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCKO, SCK1 SOTO, SOT1		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK0, SCK1 } \\ & \text { SIN0, SIN1 } \end{aligned}$		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0, SCK1 } \\ & \text { SIN0, SIN1 } \end{aligned}$		60	-	ns	
Serial clock "H" pulse width	tsHSL	SCK0, SCK1	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for the external shift clock mode output pin.	4 tcp	-	ns	
Serial clock "L" pulse width	tslsh	SCK0, SCK1		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	$\begin{aligned} & \text { SCKO, SCK1 } \\ & \text { SOTO. SOT1 } \end{aligned}$		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivsH	$\begin{aligned} & \text { SCKO, SCK1 } \\ & \text { SIN0, SIN1 } \end{aligned}$		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCKO, SCK1 } \\ & \text { SIN0. SIN1 } \end{aligned}$		60	-	ns	

Notes: - These are the AC characteristics for CLK synchronous mode.

- $\mathrm{C}_{\llcorner }$is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).
- The values in the upper table are targets.
- Internal shift clock mode

- External shift clock mode

SCK

SOT

SIN

(11) Timer Input Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttiwn ttiwl	TIM0 to TIM4	-	4 tcp	-	ns	

tcp: See " (1) Clock Timing."

(12) Timer Output Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
					Min.		

(13) Trigger Input Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttrgi	INT0 to INT7	-	5 tcp	-	ns	

tcp: See " (1) Clock Timing."

(14) Chip Select Output Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Chip select enabled \rightarrow Valid data input time	tsvov	$\begin{aligned} & \text { CS0 to CS7 } \\ & \text { D15 to D00 } \end{aligned}$	-	-	5 tcp/2-60	ns	
RD $\uparrow \rightarrow$ Chip select enabled time	trHsv	$\begin{aligned} & \text { CS0 to CS7 } \\ & \text { RD } \end{aligned}$	-	tcp/2-10	-	ns	
$\mathrm{WR} \uparrow \rightarrow$ Chip select enabled time	twhsv	$\begin{aligned} & \text { CS0 to CS7 } \\ & \text { WR } \end{aligned}$	-	tcp/2-10	-	ns	
Enabled chip select \rightarrow CLK \uparrow time	tsvch	$\begin{aligned} & \text { CS0 to CS7 } \\ & \text { CLK } \end{aligned}$	-	tcp/2-20	-	ns	

[^3]

EXAMPLES CHARACTERISTICS

1. MB90641A

(1) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(2) "L" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

$\mathrm{V}_{\text {IHs }}$: Thershold when input voltage in hysteresis characteristics is set to " H " level
Vils: Thershold when input voltage in hysteresis characteristics is set to "L" level
(5) Power Supply Current (fcp = Internal Frequency)

2. MB90P641A

(1) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(2) "L" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

$\mathrm{V}_{\text {IHS }}$: Thershold when input voltage in hysteresis characteristics is set to "H" level
VILs : Thershold when input voltage in hysteresis characteristics is set to "L" level
(5) Power Supply Current (fcp = internal frequency)

(6) Pull-up Resistance

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
\#	Indicates the number of bytes.
\sim	Indicates the number of cycles. m : When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
B	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the " \sim " column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers " 0 ". X : Extends with a sign before transferring. - : Transfers nothing.
AH	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 н to AH. X : Transfers 00 н or FF н to AH by signing and extending AL.
1	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction. - : No change. S: Set by execution of instruction. R : Reset by execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL:AH
$\begin{aligned} & \mathrm{AH} \\ & \mathrm{AL} \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FF\%)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)
(Continued)

Symbol	
rel	Branch specification relative to PC
ear	Effective addressing (codes 00 to 07) eam
Effective addressing (codes 08 to 1F)	
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
$\begin{aligned} & \hline 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & 07 \\ & \hline \end{aligned}$	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	$\begin{gathered} \hline \text { RLO } \\ \text { (RLO) } \\ \text { RL1 } \\ \text { (RL1) } \\ \text { RL2 } \\ \text { (RL2) } \\ \text { RL3 } \\ \text { (RL3) } \end{gathered}$	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	-
$\begin{aligned} & 08 \\ & 09 \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~B} \end{aligned}$	@RW0@RW1@RW2@RW3			Register indirect	0
$\begin{aligned} & 0 \mathrm{OC} \\ & 0 \mathrm{D} \\ & 0 \mathrm{E} \\ & 0 \mathrm{~F} \end{aligned}$	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	0
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8			Register indirect with 8-bit displacement	1
$\begin{aligned} & 18 \\ & 19 \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & @ R W 0 \text { + disp16 } \\ & \text { @RW1 + disp16 } \\ & \text { @RW2 + disp16 } \\ & \text { @RW3 + disp16 } \end{aligned}$			Register indirect with 16-bit displacement	2
1 C 1 D 1 E 1 F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16			Register indirect with index Register indirect with index PC indirect with 16 -bit displacement Direct address	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$

Note: The number of bytes in the address extension is indicated by the " + " symbol in the "\#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	$\begin{array}{c}\text { (a) } \\$\end{array}	$\begin{array}{c}\text { Number of execution cycles } \\ \text { for each type of addressing }\end{array}$
addressing			

Note: "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: - When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z		-	-	-			-	-	-
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	-	-	-	*	*	-	-	-
MOV	A, Ri		2	1	0	byte $($ A $) \leftarrow($ Ri)	Z		-	-	-	*	*	-	-	-
MOV	A, ear	2	2		0	byte (A) \leftarrow (ear)	Z	*	-	-	-	*	*	-	-	-
MOV	A, eam	2+	$3+$ (a)	0	(b)	byte (A) $\leftarrow($ eam $)$	Z	*	-	-	-	*	*	-	-	-
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z	*	-	-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	Z	*	-	-	-	*	*	-	-	-
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLL})+$ disp8 $)$	Z	*	-	-	-	*	*	-	-	-
MOVN	A, \#imm4	1	1	0	0	byte $(\mathrm{A}) \leftarrow \mathrm{imm} 4$	Z	*	-	-	-	R	*	-	-	-
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	X		-	-	-	*		-	-	-
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	X	*	-	-	-			-	-	
MOVX	A, Ri	2	2	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$	X	*	-	-	-		*	-	-	-
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	X		-	-	-			-	-	-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte (A) $\leftarrow($ eam)	X		-	-	-			-	-	-
MOVX	A, io	2	(a)	0	(b)	byte (A) \leftarrow (io)	X	*	-	-	-		*	-	-	-
MOVX	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	X	*	-	-	-	*	*	-	-	-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte (A) $\leftarrow(($ RWi) $)$ disp8)	X	*	-	-	-		*	-	-	-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow(($ RLi $)+$ disp8)	X	*	-	-	-		*	-	-	-
MOV	dir, A	2	3	0	(b)	byte ((ir) $\leftarrow(A)$	-		-	-	-	*		-	-	
MOV	addr16, A	3	4	0	(b)	byte (addr16) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	Ri, A	1	2	1	0	byte (Ri) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
MOV	eam, A	2+	$3+$ (a)	0	(b)	byte (eam) \leftarrow (A$)$	-	-	-	-	-	*	*	-	-	-
MOV	io, A	2	3	0	(b)	byte (io) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	@RLi+disp8, A	3	10	2	(b)	byte $((\mathrm{RLi})+$ disp 8$) \leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)	-	-	-	-	-			-	-	
MOV	Ri, eam	2+	4+ (a)		(b)	byte $($ Ri) $\leftarrow($ eam $)$	-	-	-	-	-			-	-	
MOV	ear, Ri	2	4	2	(b)	byte (ear) $\leftarrow($ Ri)	-	-	-	-	-			-	-	
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-	-	-	-	-	,		-	-	-
MOV	Ri, \#imm8	2	2	1	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	,		-	-	-
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	-	0	byte (ear) \leftarrow imm8	-		-	-	-	*	*	-	-	-
MOV	eam, \#imm8	$3+$	4+ (a)	0	(b)	byte (eam) \leftarrow imm8	-		-	-	-	-	-	-	-	-
MOV /MOV	@AL, AH @A, T	2	3	0	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-	-		-	*	*		-	-
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z			-	-	-	-	-	-	-
XCH	A, eam	2+	5+ (a)	0	$2 \times$ (b)	byte (A) $\leftrightarrow($ eam	Z	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	7	4	0	byte (Ri) $\leftrightarrow($ ear $)$	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	V	C	RMW
MOVW A, di	2	3	0	(c)	word (A) \leftarrow (dir)	-		-		-			-	-	
MOVW A, addr	3	4	0	(c)	word $($ A $) \leftarrow$ (addr16)	-		-	-	-			-	-	
MOVW A, SP	1	1	0	(word $(A) \leftarrow(S P)$	-		-	-	-			-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow(\mathrm{RWi})$	-		-	-	-	*		-	-	-
MOVW A, ea	2	2	1	0	word $(A) \leftarrow$ (ear)	-		-	-	-	*	*	-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-	*	-	-	-	*	*	-	-	-
MOVW A, io	2	+	0	(c)	word $(A) \leftarrow$ (io)	-	*	-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{A})$)	-	-	-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	(word $(A) \leftarrow$ imm 16	-		-	-	-	*	*	-	-	
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow(($ RWi) + disp8)	-		-	-	-	*		-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(A) \leftarrow(($ RLi $)+$ disp8)	-		-	-	-	*		-	-	-
MOVW dir, A	2	3	0	(c)	word (dir) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOVW addr16,	3	4	0	(c)	word (addr16) \leftarrow (A)	-	-	-	-	-			-	-	-
MOVW SP, A	1	1	0	(word $(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOVW RWi, A	1	2	1	0	word $(\mathrm{RWWi}) \leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(A)$	-	-	-	-	-			-	-	
MOVW eam, A	$2+$	$3+$ (a)	0	(c)	word $($ eam $) \leftarrow(A)$	-	-	-	-	-			-	-	
MOVW io, A	2	3	0	(c)	word (io) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) + disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) + disp8) ¢ (A)	-	-	-	-	-			-	-	
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)	-	-	-	-	-			-	-	
MOVW RWi, eam	2+	4+ (a)	1	(c)	word $(\mathrm{RWi}) \leftarrow(\mathrm{eam})$	-	-	-	-	-			-	-	
MOVW ear, RWi	2	4	2	0	word (ear) $\leftarrow($ RWi)	-		-	-	-	*		-	-	
MOVW eam, RWi	2+	$5+$ (a)	1	(c)	word (eam) $\leftarrow(\mathrm{RWi})$	-	-	-	-	-	*		-	-	
MOVW RWi, \#imm16	3	2	1	0	word (RWi) \leftarrow imm16	-			-	-	*			-	-
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16	-			-		-				
MOVW ear, \#imm16	4	2	1	(c)	word (ear) \leftarrow imm16	-		-	-					-	
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16	-	-								
MOVW AL, AH /MOVW @A, T	2	3	0	(c)	word $((\mathrm{A})) \leftarrow(\mathrm{AH})$										
XCHW A, ear	2	4	2	0	word $(A) \leftrightarrow($ ear $)$	-		-	-	-				-	-
XCHW A, eam	$2+$	5+ (a)	0	$2 \times$ (c)	word (A) \leftrightarrow (eam)	-		-	-	-	-	-	-	-	
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	
XCHW RWi, eam	2+	9+(a)	2	$2 \times$ (c)	word (RWi) $\leftrightarrow($ eam)	-	-	-	-	-	-	-	-	-	
MOVL A, ear	2	4	2	0	long (A) \leftarrow (ear)		-	-		-					
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-		-		-			-		-
MOVL A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm32	-									
MOVL ear, A	2		2	0	ng (ear) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#		RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RM
D A,\#imm	2	2	0	0	byte $(A) \leftarrow(A)+$ imm8	Z		-	-						
ADD A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)+($ dir $)$	Z	-	-	-	-		*			
ADD A, ear	2	3	1	(b)	byte $(A) \leftarrow(A)+($ ear $)$	Z		-	-	-					-
ADD A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-		*			
ADD ear, A	2	,	2	0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*				-
ADD eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-	*	*	*		
ADDC A	1	2	0	(byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-	*	*	*		-
ADDC A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)+(\mathrm{C})$	Z	-	-	-	-	*	*			-
ADDC A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+(\mathrm{C})$	Z		-	-	-	*	*	*		-
ADDDC A	1	,	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z				-					
SUB A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$-imm8	Z		-	-	-					
SUB A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-($ dir $)$	Z		-	-	-					
SUB A, ear	2	3	1	(byte $(A) \leftarrow(A)-$ (ear)	Z		-	-	-					
SUB A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z		-	-	-					
SUB ear, A	2	(a)	2	0	byte (ear) \leftarrow (ear) - (A)	-	-	-		-	*				
SUB eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(\mathrm{A})$	-	-	-	-	-	*	*	*		
SUBC A	1	(a)	0	(byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z	-	-	-	-	*	*	*		
SUBC A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (ear) - (C)	Z	-	-	-	-	*	*			
SUBC A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ eam $)-(\mathrm{C})$	Z	-	-	-	-		*	*		
SUBDC A	1	3	0)	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decima)	Z	-	-	-	-					
ADDW A	1	2	0	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-						
ADDW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-		-	-	-		*	*		
ADDW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-			*			
ADDW A, \#imm16	3	(a)	0	(word $(A) \leftarrow(A)+$ imm 16	-	-	-	-	-		*			
ADDW ear, A	2	3	2	0	word (ear) $\leftarrow($ ear $)+(\mathrm{A})$	-	-	-	-	-		*			
ADDW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-	-	-	-	-					
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-		*			
ADDCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-		*			
SUBW A	+	(a)	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-	*	*			
SUBW A, ear	2	(a)	1	0	word $(A) \leftarrow(A)-(e a r)$	-	-		-	-	*	*			
SUBW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ - (eam)	-			-						
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-		-		-					
SUBW ear, A	2	3	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-		*			
SUBW eam, A	$2+$	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-		*			
SUBCW A, ear	2	3	1	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	-		*			
SUBCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	-		*		*		
ADDL A, ear	2	6	2	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-					-
ADDL A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-		-	-	-		*			
ADDL A, \#imm32	5	(a)	0	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-	-	*	*			
SUBL A, ear	2	6	2	0	long $(A) \leftarrow(A)-($ ear $)$	-	-	-	-	-	*	*	*	*	
SUBL A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)-$ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-		*	*	*		

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	V	C	RMW
$\begin{aligned} & \hline \text { INC } \\ & \text { INC } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 2 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \end{gathered}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { byte }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-	$-$	-	-	-				-	*
$\begin{aligned} & \text { DEC } \\ & \text { DEC } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{b}) \end{gathered}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { byte (eam }) \leftarrow(\text { eam })-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	*
INCW INCW	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{array}{\|l\|} \hline 2 \\ 0 \end{array}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { word }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$		$-$	-	-	-			*	-	-
$\begin{aligned} & \text { DECW } \\ & \text { DECW } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{c})}{0}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { word }(\text { eam }) \leftarrow(\text { eam })-1 \end{aligned}$		-	-	-	-	*	*	*	-	-
INCL INCL	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 7 \\ 9+(a) \end{gathered}$	4 0	$\begin{gathered} 0 \\ 2 \times(d) \end{gathered}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(e a r)+1 \\ & \text { long }(\text { eam }) \leftarrow(e a m)+1 \end{aligned}$			-	-	-		*	*	-	-
DECL DECL	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	7 $9+(a)$	4	$\underset{2 \times(\mathrm{d})}{0}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(e a r)-1 \\ & \text { long }(\text { eam }) \leftarrow(e a m)-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-		*	*		-
CMP A, ear	2	2	1	0	byte $($ A $) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*			-
CMPW A, ear	2	2	1	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+$ (a)	0	(c)	word $(\mathrm{A}) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*		-
CMPL A, ear	2	6	2	0	word $(\mathrm{A}) \leftarrow($ ear $)$	-	-	-	-	-	*	*	*		-
CMPL A, eam	2+	$7+$ (a)	0	(d)	word $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word (A) \leftarrow imm32	-	-	-	-	-	*	*	*		-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	nic	\#	~	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
DIVU	A	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+$ (a) when the result is zero, $9+$ (a) when an overflow occurs, and $19+(\mathrm{a})$ normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+$ (a) when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+(a)$ when word (eam) is zero, and $13+(a)$ when word (eam) is not zero.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	v	C	RMW
AND	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ and imm8	-		-	-	-			R	-	
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-			R	-	-
AND	ear, A	2	3	2	(byte (ear) \leftarrow (ear) and (A)	-		-	-	-			R	-	-
AND	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)$ and $($ A)	-	-	-	-	-		*	R	-	
OR	A, \#imm 8	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-		-	-	-	*		R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*		R	-	-
OR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
OR	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) or (A)	-	-	-	-	-		*	R	-	
XOR	A, \#imm 8	2	2	0	0	byte $(A) \leftarrow(A)$ xor imm8	-	-	-	-	-			R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-		-	-	-			R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-		-	-	-			R	-	-
XOR	ear, A	+	(a)	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XOR	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-		*	R	-	-
NOT	ea	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-	-	-	-	-			R	-	
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-			R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-	*	*	R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
ANDW	ear, A	2	3	2	(word (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	-
ANDW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) and (A)	-	-	-	-	-	*		R	-	
ORW	A	1	2	0	0	word $(A) \leftarrow(A H)$ or (A)	-	-	-	-	-		*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-		*	R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
ORW	ear, A	2	(2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-		*	R	-	-
ORW	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{c})$	word (eam) \leftarrow (eam) or (A)	-	-	-	-	-			R	-	
XORW		1	2	0	0	word $(A) \leftarrow(A H)$ xor (A)	-	-	-	-	-			R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-			R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XORW	ear, A	2	3	2	0	word (ear) $\leftarrow($ ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	eam, A	2+	5+ (a)	0	$2 \times(\mathrm{c})$	word (eam) $\leftarrow($ eam) xor (A)	-	-	-	-	-	*		R	-	*
NOTW	A	1	2	0	0	word (A) $\leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-		*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	$5+$ (a)	0	$2 \times(\mathrm{c})$	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
ANDL A, ear	2	6	2	0	long $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL A, ear	2	6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	Z	V	C	RMW
NEG A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*		-
NEG ear NEG eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{b}) \end{gathered}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	-
NEGW A	1	2	0	0	word $(A) \leftarrow 0-(A)$	-	-	-	-	-	*	*	*	*	-
NEGW ear	2	(a)	2	(c)	word (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-
NEGW eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*		*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NRML A, R0	2	${ }^{* 1}$	1	0	long (A) \leftarrow Shift until first digit is " $1 "$ byte (R0) \leftarrow Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
RORC A	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ Right rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC eam	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ASR A, R0	2	*1	1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	${ }^{*}$	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word $($ A $) \leftarrow$ Arithmetic right shift (A, 1 bit)	-	-	-	-	*	*	*	-	*	-
LSRW A/SHRW A	1	2	0	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-	*	*	-	*	-
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long (A) \leftarrow Arithmetic right shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when $R 0$ is $0,5+(R 0)$ in all other cases.
*2: 6 when R0 is $0,6+(R 0)$ in all other cases.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 18 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RM
BZ/BEQ re	2	*	0	0	Branch when (Z) = 1	-		-	-	-	-	-	-	-	-
BNZ/BNE rel	2	*1	0	0	Branch when $(Z)=0$	-	-	-	-	-	-	-	-	-	-
BC/BLO rel	2	${ }^{*}$	0	0	Branch when (C) = 1	-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-	-	-	-	-	-	-	-	-
BV rel	2		0	0	Branch when (V) $=1$	-	-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-	-	-	-	-	-	-	-	-	-
BT	2	*1	0	0	Branch when (T) = 1	-	-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	0	Branch when (V) $\operatorname{xor}(\mathrm{N})=1$	-	-	-	-	-	-	-	-	-	-
BGE	2	*1	0	0	Branch when (V) xor (N) = 0	-	-	-	-	-	-	-	-	-	-
BLE	2	*1	0	0		-	-	-	-	-	-	-	-	-	-
BGT rel	2	${ }_{* 1}^{* 1}$	0	0	Branch when (V) xor (N) or or (Z$)=0$	-		-	-	-	-	-	-	-	-
BLS rel	2	${ }^{*}$	0	0	Branch when (C) or $(Z)=1$	-	-	-	-	-	-	-	-	-	-
BHI rel	2	*1	0	0	Branch when (C) or $(Z)=0$	-	-	-	-	-	-	-	-	-	-
BRA rel	2	*1	0	0	Branch unconditionally	-	-	-	-	-	-	-		-	-
JMP @A	1	2	0	0	word $(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	-		-		-	-	-
JMP addr16	3	3	0	0	word $(\mathrm{PC}) \leftarrow$ addr 16	-	-	-	-	-	-	-	-	-	-
JMP @ear	2	(a)	1	0	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	
JMP @eam	$2+$	4+ (a)	0	(c)	word (PC) $\leftarrow($ eam $)$	-	-	-	-	-	-	-	-	-	-
JMPP @ear*3	2	5	-	0	word (PC) $\leftarrow($ ear),,$(\mathrm{PCB}) \leftarrow($ ear +2$)$	-	-	-	-	-	-	-	-	-	-
JMPP @eam*3	$2+$	6+ (a)	0	(d)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam}),(\mathrm{PCB}) \leftarrow(\mathrm{eam}+2)$	-	-	-	-	-	-	-	-	-	-
JMPP addr24	4	4	0	0	word $(P C) \leftarrow$ ad24 0 to 15 , $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23	-	-	-	-	-	-	-	-	-	-
CALL @ear*4	2		1		word (PC) \leftarrow (ear)	-	-	-	-		-				-
CALL @eam*4	$2+$	7+ (a)	0	$2 \times$ (c)	word (PC) $\leftarrow($ eam $)$	-		-	-	-	-	-	-	-	
CALL addr16*5	3	6 7	0	(c)	word (PC) \leftarrow addr16	-	-	-	-	-	-	-	-	-	-
CALLV \#vct4*5	1	10	0	$2 \times$ (c)	Vector call instruction	-	-	-	-	-	-	-	-	-	-
CALLP @ear *6	2	10	2	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow($ ear $) 0$ to 15 $(\mathrm{PCB}) \leftarrow(\mathrm{ear}) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP @eam *6	2+	11+ (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP addr24 *7	4	10	0	$2 \times$ (c)	word (PC) \leftarrow addr0 to 15, (PCB) \leftarrow addr16 to 23	-	-	-	-	-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times(\mathrm{c})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 19 Branch 2 Instructions [19 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	z	V	C	RMW
CBNE A, \#imm8, rel	3	*1	0	0	Branch when byte (A) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE A, \#imm16, rel	4	*1	0	0	Branch when word (A) \neq imm16	-	-	-	-	-	*	*	*	*	-
CBNE ear, \#imm8, rel	4	*2	1	0	Branch when byte (ear) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CBNE eam, \#imm8, rel* ${ }^{*}$	4+	* 3	0	(b)	Branch when byte (eam) \neq imm8	-	-	-	-	-	*	*	*	*	-
CWBNE ear, \#imm16, rel	5	*4	1	0	Branch when word (ear) $\neq \mathrm{imm} 16$	-	-	-	-	-	*	*	*	*	-
CWBNE eam, \#imm16, re**	5+	*3	0	(c)	Branch when word (eam) $=$ imm 16	-	-	-	-	-	*	*	*	*	-
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) =	-	-		-	-	*	*	*	-	-
DBNZ eam, rel	$3+$	* 6	2	$2 \times$ (b)	(ear) - 1, and (ear) $\neq 0$ Branch when byte $($ eam $)=$ (eam) - 1, and $($ eam $) \neq 0$	-	-		-	-	*	*	*	-	*
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) = (ear) -1 , and (ear) $\neq 0$	-	-	-	-	-	*	*	*	-	-
DWBNZ eam, rel	$3+$	* 6	2	$2 \times$ (c)	Branch when word $($ eam $)=$ (eam) - 1 , and $($ eam $) \neq 0$	-	-	-	-	-	*	*	*	-	
INT \#vct8	2	20	0	$8 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT addr16	3	16	0	6x (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INTP addr24	4	17	0	6× (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT9	1	20	0	$8 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
RETI	1	15	0	6× (c)	Return from interrupt	-	-		*	*	*	*	*	*	-
LINK \#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set	-	-	-	-	-	-	-	-	-	-
UNLINK	1	5	0	(c)	new frame pointer, and allocate local pointer area At constant entry, retrieve old frame pointer from stack.	-	-	-	-	-	-	-	-	-	-
RET *7	1	4	0	(c)	Return from subroutine	-	-	-	-	-	-	-	-	-	-
RETP *8	1	6	0	(d)	Return from subroutine	-	-	-	-	-	-	-	-	-	-

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Retrieve (word) from stack
*8: Retrieve (long word) from stack

* 9 : In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(A) \leftarrow((S P)),(S P) \leftarrow(S P)+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word (PS) $\leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ or imm8	-	-	*	*	*	*	*		*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) \leftarrow imm8	-	-		-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte (ILM) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) \leftarrow ear	-	-		-		-		-	-	-
MOVEA RWi, eam	2+	2+ (a)	1	0	word (RWi) \leftarrow eam	-	-		-		-	-	-	-	
MOVEA A, ear	2	(a)	0	0	word (A) \leftarrow ear	-	*		-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+$ (a)	0	0	word (A) \leftarrow eam	-	*	-	-	-	-	-		-	
ADDSP \#imm8	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ ext (imm8)	-	-		-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $(\mathrm{A}) \leftarrow($ brgl)	Z	*		-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte (brg2) $\leftarrow(A)$	-	-		-	-		*	-	-	
NOP	1	1	0	0	No operation	-	-		-		-		-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-		-		-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space	-	-		-		-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-		-		-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-		-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state
DTB, DPR
: 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 21 Bit Manipulation Instructions [21 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	A	1		s	T	N	z	V	c	RMw
MOVB	A, dir:bp	3	5	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir:bp) b	Z		-		-	-	*		-	-	
MOVB	A, addr16:bp	4	5	0	(b)	byte $($ A $) \leftarrow$ (addr16:bp) b	Z	*	-		-	-	*	*	-	-	-
MOVB	A, io:bp	3	4	0	(b)	byte $(A) \leftarrow$ (io:bp) b	Z		-		-	-	*	*	-	-	-
MOVB	dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-		-	-	*	*	-	-	
MOVB	addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-		-	-	*	*	-	-	
MOVB	io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-		-	-	*	*	-	-	
SETB	dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-	-		-	-	-	-	-	-	
SETB	addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-	-		-	-	-	-	-	-	
SETB	io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $b \leftarrow 1$	-	-	-		-	-	-	-	-	-	
CLRB	dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-		-	-	-	-	-	-	
CLRB	addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-	-		-	-	-	-	-	-	
CLRB	io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-		-	-	-	-	-	-	
BBC	dir:bp, rel	4	${ }^{*}$	0	(b)	Branch when (dir:bp) $\mathrm{b}=0$	-	-	-		-	-	-	*	-	-	-
BBC	addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=0$	-	-	-		-	-	-	*	-	-	-
BBC	io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-	-		-	-	-		-	-	-
BBS	dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $\mathrm{b}=1$	-	-	-		-	-	-		-	-	-
BBS	addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $\mathrm{b}=1$	-	-	-		-	-	-	*	-	-	-
BBS	io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=1$	-	-	-		-	-	-		-	-	-
SBBS	addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch when (addr $16: \mathrm{bp}$) $\mathrm{b}=1, \mathrm{bit}=1$	-	-	-		-	-	-	*	-	-	
WBTS	io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-	-		-	-	-	-	-	-	-
WBTC	io:bp	3	*4	0	*5	Wait until (io:bp) $b=0$	-	-	-		-	-	-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	z	v	C	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-	-	-	-	-	-	-	-	-	-
SWAPW/XCHW AL, AH	1	2	0	0	word (AH) $\leftrightarrow(\mathrm{AL})$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 23 String Instructions [10 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH $+\leftarrow$ @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH $+\leftarrow$ @AL + , counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH+ \leftarrow AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n: Loop count
*1: 5 when RW0 is $0,4+7 \times$ (RWO) for count out, and $7 \times n+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RW0 $)$ in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times \mathrm{n}$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RW0 $)+(c) \times($ RWO $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times \mathrm{n}$
*8: $2 \times$ (RW0)
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90640A Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90641APFV	100-pin Plastic LQFP	
MB90P641APFV	(FPT-100P-M05)	
MB90641APF	100-pin Plastic QFP	
MB90P641APF	(FPT-100P-M06)	

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: *1: FPT-100P-M05

[^1]: R/W: Readable and writable
 \bar{X} : Unused
 X : Indeterminate

[^2]: tcp: See " (1) Clock Timing."

[^3]: tcp: See " (1) Clock Timing."

