Production Data, October 2000, Rev 1.1

FEATURES

- Two 12-bit voltage output DACs
- Single supply from 2.7 V to 5.5 V supply operation
- DNL ± 0.5 LSB, INL ± 1.9
- Low power consumption
- 3mW typical in slow mode
- 8mW typical in fast mode
- TMS320, (Q)SPITM, and Microwire ${ }^{T M}$ compatible serial interface
- Programmable settling time 4μ s or 12μ s typical

APPLICATIONS

- Battery powered test instruments
- Digital offset and gain adjustment
- Battery operated/remote industrial controls
- Machine and motion control devices
- Cellular telephones
- Wireless telephone and communication systems
- Speech synthesis
- Arbitrary waveform generation

ORDERING INFORMATION

DEVICE	TEMP. RANGE	PACKAGE
WM2618CD	0° to $70^{\circ} \mathrm{C}$	8-pin SOIC
WM2618ID	-40° to $85^{\circ} \mathrm{C}$	8-pin SOIC

BLOCK DIAGRAM

DESCRIPTION

The WM2618 is a dual 12-bit voltage output, resistor string, digital-to-analogue converter. A power-on-reset function ensures repeatable start-up conditions.

The device has been designed to interface efficiently to industry standard microprocessors and DSPs, including the TMS320 family. The WM2618 is programmed with a 16 -bit serial word. The WM2618 has a simple-to-use single 2.7 V to 5.5 V supply. The digital inputs feature Schmitt triggers for high noise immunity.

The number of clocks from the falling edge of NCS are counted automatically. The device is then updated and disabled from accepting further data inputs.

Excellent performance is delivered with a typical DNL of ± 0.5 LSBs. The settling time of the DAC is programmable to allow the designer to optimise speed versus power dissipation.

The device is available in an 8-pin SOIC package ideal for space-critical applications. Commercial temperature (0° to $70^{\circ} \mathrm{C}$) and Industrial temperature $\left(-40^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ variants are supported.

TYPICAL PERFORMANCE

Production Data datasheets contain final specifications current on publication date.
Supply of products conforms to Wolfson Microelectronics' Terms and Conditions.

PIN CONFIGURATION

PIN DESCRIPTION

PIN NO	NAME	TYPE	DESCRIPTION
1	DIN	Digital input	Serial data input.
2	SCLK	Digital input	Serial clock input.
3	NCS	Digital input	Chip select. This pin is active low.
4	OUTA	Analogue output	DAC A analogue output.
5	AGND	Supply	Analogue ground.
6	REFIN	Analogue input	Voltage reference input.
7	OUTB	Analogue output	DAC B analogue output
8	VDD	Supply	Positive power supply.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible
 to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

CONDITION	MIN	MAX
Supply voltage, VDD to AGND		7 V
Digital input voltage	-0.3 V	VDD +0.3 V
Reference input voltage	-0.3 V	VDD +0.3 V
Operating temperature range, T_{A}	WM2618C	$0^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
Lead temperature $1.6 \mathrm{~mm}(1 / 16$ inch) soldering for 10 seconds	$-65^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply voltage	VDD		2.7			5.5
High-level digital input voltage	V_{IH}		2		V	
Low-level digital input voltage	V_{IL}				V	
Reference voltage to REFIN	$\mathrm{V}_{\mathrm{REF}}$				$\mathrm{VDD}-1.5$	V
Load resistance	R_{L}					$\mathrm{k} \Omega$
Load capacitance	C_{L}				100	
Serial clock rate	fSCLK	T_{A}	WM2618C	0		20
Operating free-air temperature		WM2618I	-40		70	${ }^{\circ} \mathrm{C}$

Note: Reference voltages greater than VDD/2 will cause saturation for large DAC codes.

ELECTRICAL CHARACTERISTICS

Test Conditions:

$R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF} . \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=2.048 \mathrm{~V}$ and $\mathrm{VDD}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=1.024 \mathrm{~V}$ over recommended operating
free-air temperature range (unless noted otherwise)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Static DAC Specifications						
Resolution			12			bits
Integral non-linearity	INL	See Note 1		± 1.9	± 4	LSB
Differential non-linearity	DNL	See Note 2		± 0.5	± 1	LSB
Zero code error	ZCE	See Note 3		3	± 12	mV
Gain error	GE	See Note 4		0.1	± 0.6	\% FSR
D.c. power supply rejection ratio	DC PSRR	See Note 5		0.5		mV/V
Zero code error temperature coefficient		See Note 6		10		ppm $/{ }^{\circ} \mathrm{C}$
Gain error temperature coefficient		See Note 6		10		ppm $/{ }^{\circ} \mathrm{C}$
DAC Output Specifications						
Output voltage range			0		VDD - 0.1	V
Output load regulation		$2 k \Omega$ to $10 k \Omega$ load See Note 7		0.1	0.3	\%
Power Supplies						
Active supply current	IDD	No load, $\mathrm{V}_{\mathrm{IH}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ $\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.048 \mathrm{~V}$ Slow $\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.048 \mathrm{~V}$ Fast See Note 8		$\begin{aligned} & 0.6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power down supply current		No load, all digital inputs OV or VDD		0.01		$\mu \mathrm{A}$
Dynamic DAC Specifications						
Slew rate		$\begin{gathered} \text { AC code } 128 \text { to } 4095,10 \%-90 \% \\ \text { Slow } \\ \text { Fast } \\ \text { See Note } 9 \\ \hline \end{gathered}$	$\begin{aligned} & 0.3 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 3.0 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
Settling time		DAC code 128 to 4095 Slow Fast See Note 10		$\begin{gathered} 12.0 \\ 4.0 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Glitch energy		Code 2047 to 2048		10		nV -s
Reference						
Reference input resistance	$\mathrm{R}_{\text {REFIN }}$			10		$\mathrm{M} \Omega$
Reference input capacitance	CREFIN			5		pF
Reference feedthrough		$\begin{gathered} \mathrm{V}_{\text {REF }}=1 \mathrm{VPP} \text { at } 1 \mathrm{kHz} \\ +1.024 \mathrm{~V} \text { dc, } \mathrm{DAC} \text { code } 0 \\ \hline \end{gathered}$		-60		dB
Reference input bandwidth		$\begin{gathered} \mathrm{V}_{\text {REF }}=0.2 \mathrm{VPP}+1.024 \mathrm{~V} \mathrm{dc} \\ \text { DAC code } 2048 \\ \text { Slow } \\ \text { Fast } \\ \hline \end{gathered}$		$\begin{aligned} & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		MHz MHz
Digital Inputs						
High level input current	$\mathrm{IIH}^{\text {H }}$	Input voltage = VDD			1	$\mu \mathrm{A}$
Low level input current	$1 / 1$	Input voltage = 0V			-1	$\mu \mathrm{A}$
Input capacitance	Cl_{1}			8		pF

Notes:

1. Integral non-linearity (INL) is the maximum deviation of the output from the line between zero and full scale (excluding the effects of zero code and full scale errors).
2. Differential non-linearity (DNL) is the difference between the measured and ideal 1LSB amplitude change of any adjacent two codes. A guarantee of monotonicity means the output voltage changes in the same direction (or remains constant) as a change in digital input code.
3. Zero code error is the voltage output when the DAC input code is zero.
4. Gain error is the deviation from the ideal full scale output excluding the effects of zero code error.
5. Power supply rejection ratio is measured by varying VDD from 4.5 V to 5.5 V and measuring the proportion of this signal imposed on the zero code error and the gain error.
6. Zero code error and Gain error temperature coefficients are normalised to full scale voltage.
7. Output load regulation is the difference between the output voltage at full scale with a $10 \mathrm{k} \Omega$ load and $2 \mathrm{k} \Omega$ load. It is expressed as a percentage of the full scale output voltage with a $10 \mathrm{k} \Omega$ load.
8. $\quad I_{D D}$ is measured while continuously writing code 2048 to the DAC. For $\mathrm{V}_{\mathrm{IH}}<\mathrm{VDD}-0.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}>0.7 \mathrm{~V}$ supply current will increase.
9. Slew rate results are for the lower value of the rising and falling edge slew rates.
10. Settling time is the time taken for the signal to settle to within 0.5 LSB of the final measured value for both rising and falling edges. Limits are ensured by design and characterisation, but are not production tested.

SERIAL INTERFACE

Figure 1 Timing Diagram

Test Conditions:

$R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF} . \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=2.048 \mathrm{~V}$ and $\mathrm{VDD}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=1.024 \mathrm{~V}$ over recommended operating free-air temperature range (unless noted otherwise)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX
tsucss	Setup time NCS low before SCLK low	5		
$t_{\text {Suscs1 }}$	Setup time, falling edge of SCLK to rising edge of NCS, external end of write	10		ns
$t_{\text {SUscs2 }}$	Setup time, rising edge of SCLK to falling edge of NCS, start of next write cycle	5		ns
$t_{\text {wCL }}$	Pulse duration, SCLK high	25		ns
$t_{\text {wCH }}$	Pulse duration, SCLK low	25		ns
$t_{\text {sUDCLK }}$	Setup time, data ready before SCLK falling edge	5		ns
$t_{\text {HDCLK }}$	Hold time, data held valid after SCLK falling edge	5		ns

TYPICAL PERFORMANCE GRAPHS

Figure 2 Integral Non-Linearity

Figure 3 Sink Current VDD = 3V

Figure 5 Source Current VDD $=3 V$

Figure 4 Sink Current VDD = 5V

Figure 6 Source Current VDD $=5 \mathrm{~V}$

DEVICE DESCRIPTION

GENERAL FUNCTION

The device uses a resistor string network buffered with an op amp to convert 12-bit digital data to analogue voltage levels (see Block Diagram). The output voltage is determined by the reference input voltage and the input code according to the following relationship:

Output voltage $=2\left(\mathrm{~V}_{\text {REF }}\right) \frac{\mathrm{CODE}}{4096}$

INPUT			OUTPUT
1111	1111	1111	$2\left(V_{\text {REF }}\right) \frac{4095}{4096}$
	$:$		$:$
1000	0000	0001	$2\left(V_{\text {REF }}\right) \frac{2049}{4096}$
1000	0000	0000	$2\left(V_{\text {REF }}\right) \frac{2048}{4096}=V_{\text {REF }}$
0111	1111	1111	$2\left(V_{\text {REF }}\right) \frac{2047}{4096}$
	$:$		$:$
0000	0000	0001	$2\left(V_{\text {REF }}\right) \frac{1}{4096}$
0000	0000	0000	$0 V$

Table 1 Binary Code Table (0 V to $2 \mathrm{~V}_{\text {REFIN }}$ Output), Gain = 2

POWER ON RESET

An internal power-on-reset circuit resets the DAC registers to all Os on power-up.

BUFFER AMPLIFIER

The output buffer has a near rail-to-rail output with short circuit protection and can reliably drive a $2 \mathrm{k} \Omega$ load with a 100 pF load capacitance.

EXTERNAL REFERENCE

The reference voltage input is buffered which makes the DAC input resistance independent of code. The REFIN input resistance is $10 \mathrm{M} \Omega$ and the REFIN input capacitance is typically 5 pF . The reference voltage determines the DAC full-scale output.

SERIAL INTERFACE

When chip select (NCS) is low, the input data is read into a 16-bit shift register with the input data clocked in most significant bit first. The falling edge of the SCLK input shifts the data into the input register. After 16 bits have been transferred, the next rising edge on SCLK or NCS then transfers the data to the DAC latch. When NCS is high, input data cannot be clocked into the input register (see Table 2).

SERIAL CLOCK AND UPDATE RATE

Figure 1 shows the device timing. The maximum serial rate is:
$f_{S C L K} \max =\frac{1}{t_{\text {wCH min }}+t_{\text {wCL min }}}=20 \mathrm{MHz}$
The digital update rate is limited to an 800 ns period, or 1.25 MHz frequency. However, the DAC settling time to 12 bits limits the update rate for large input step transitions.

SOFTWARE CONFIGURATION OPTIONS

The 16 bits of data can be transferred with the sequence shown in Table 2. D11-D0 contains the 12bit data word. D15-D12 hold the programmable options which are summarized in Table 3.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Program Bits				New DAC value											

Table 2 Serial Word Format

PROGRAM BITS				DEVICE FUNCTION
D15	D14	D13	D12	
1	X	X	X	Write to latch A with serial interface register data and latch B updated with buffer latch data.
0	X	X	0	Write to latch B and double buffer latch.
0	X	X	1	Write to double buffer latch only.
X	0	X	X	12μ s settling time.
X	1	X	X	4 μ s settling time.
X	X	0	X	Powered-up operation.
X	X	1	X	Power down mode.

Table 3 Program Bits D15 to D12 Function

PROGRAMMABLE SETTLING TIME

Settling time is a software selectable 12μ s or 4μ s, typical to within ± 0.5 LSB of final value. This is controlled by the value of D14. A ONE defines a settling time of $4 \mu \mathrm{~s}$, a ZERO defines a settling time of $12 \mu \mathrm{~s}$.

PROGRAMMABLE POWER DOWN

The power down function is controlled by D13. A ZERO configures the device as active, or fully powered up, a ONE configures the device into power down mode. When the power down function is released the device reverts to the DAC code set prior to power down.

FUNCTION OF THE LATCH CONTROL BITS (D15 AND D12) PURPOSE AND USE OF THE DOUBLE BUFFER

Normally only one DAC output can change after a write. The double buffer allows both DAC outputs to change after a single write. This is achieved by the two following steps.

- A double buffer only write is executed to store the new DAC B data without changing the DAC A and B outputs.
- Following the previous step, a write to latch A is executed. This writes the serial interface register (SIR) data to latch A and also writes the double buffer contents to latch B. Thus both DACs receive their new data at the same time and so both DAC outputs begin to change at the same time.
Unless a double buffer only write is issued, the latch B and double buffer contents are identical. Thus, following a write to latch A or B with another write to latch A does not change the latch B contents.

Three data transfer options are possible. All transfers occur immediately after NCS goes high (or on the sixteenth positive SCLK edge, whichever is earlier) and are described in the following sections.

LATCH A WRITE, LATCH B UPDATE (D15 = HIGH, D12 = X)

The serial interface register (SIR) data are written to latch A and the double buffer latch contents are written to latch B . The double buffer contents are unaffected. This program bit condition allows simultaneous output updates of both DACs.

Figure 2 Latch A Write, Latch B Update

LATCH B AND DOUBLE BUFFER WRITE (D15 = LOW, D12 = LOW)

The SIR data are written to both latch B and the double buffer. Latch A is unaffected.

Figure 3 Latch B and Double Buffer Write
DOUBLE BUFFER ONLY WRITE (D15 = LOW, D12 = HIGH)
The SIR data are written to the double buffer only. Latch A and B contents are unaffected.

Figure 4 Double Buffer Only Write
OPERATIONAL EXAMPLES

1. changing the latch A data from zero to full code

Assuming that latch A starts at zero code (e.g., after power up), the latch can be filled with 1 s by writing (bit D15 on the left, D0 on the right)

1X0X 111111111111

to the serial interface. Bit D14 can be zero to select slow mode or one to select fast mode. The other X can be zero or one (don't care).

The latch B contents and DAC B output are not changed by this write unless the double buffer contents are different from the latch B contents. This can only be true if the last write was a double buffer-only write.
2. changing the latch B data from zero to full code

Assuming that latch B starts at zero code (e.g., after power up), the latch can be filled with 1s by writing (bit D15 on the left, D0 on the right).
$0 X 00111111111111$
to the serial interface. Bit D14 can be zero to select slow mode or one to select fast mode. The data (bits D0 to D11) are written to both the double buffer and latch B.

The latch A contents and the DAC A output are not changed by this write.
3. double buffered change of both DAC outputs

Assuming that DACs A and B start at zero code (e.g., after power up), if DAC A is to be driven to mid-scale and DAC B to full-scale, and if the outputs are to begin rising at the same time, this can be achieved as follows:

First,
Od011111111111111
is written (bit D15 on the left, D0 on the right) to the serial interface. This loads the full-scale code into the double buffer but does not change the latch B contents and the DAC B output voltage. The latch A contents and the DAC A output are also unaffected by this write operation.

Changing from fast to slow to fast mode changes the supply current which can glitch the outputs, and so D14 (designated by d in the above data word) should be set to maintain the speed mode set by the previous write.

Next,
1d0X 100000000000
is written (bit D15 on the left, D0 on the right) to the serial interface. The X in bit D 12 can be zero or one (don't care). This writes the mid-scale code (100000000000) to latch A and also copies the full-scale code from the double buffer to latch B. Both DAC outputs thus begin to rise after the second write.

PACKAGE DIMENSIONS

D: 8 PIN SOIC 3.9mm Wide Body

DM009.B

Symbols	Dimensions (mm)		Dimensions (Inches)		
	MIN	MAX	MIN	MAX	
A	1.35	1.75	0.0532	0.0688	
\mathbf{A}_{1}	0.10	0.25	0.0040	0.0098	
B	0.33	0.51	0.0130	0.0200	
C	0.19	0.25	0.0075	0.0098	
D	4.80	5.00	0.1890	0.1968	
e	1.27 BSC		0.050 BSC		
E	3.80	4.00	0.1497	0.1574	
h	0.25	0.50	0.0099	0.0196	
H	5.80	6.20	0.2284	0.2440	
L	0.40	1.27	0.0160	0.0500	
α	0	0°	0°	8°	
JEDEC.95, MS-012					
REF:					

NOTES:
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS (INCHES).
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE
c. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM (0.010IN)
D. MEETS JEDEC. 95 MS-012, VARIATION = AA. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.

