DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4042B
 MSI
 Quadruple D-latch

Product specification
File under Integrated Circuits, IC04

PHILIPS

Quadruple D-latch

DESCRIPTION

The HEF4042B is a 4-bit latch with four data inputs (D_{0} to $\left.\mathrm{D}_{3}\right)$, four buffered latch outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$, four buffered complementary latch outputs ($\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$) and two common enable inputs (E_{0} and E_{1}). Information on D_{0} to D_{3} is transferred to O_{0} to O_{3} while both E_{0} and E_{1} are in the same state, either HIGH or LOW. O_{0} to O_{3} follow D_{0} to D_{3} as long as both E_{0} and E_{1} remain in the same state. When E_{0} and E_{1} are different, D_{0} to D_{3} do not affect O_{0} to \underline{O}_{3} and the information in the latch is stored.
$\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$ are always the complement of O_{0} to O_{3}. The exclusive-OR input structure allows the choice of either polarity for E_{0} and E_{1}. With one enable input HIGH, the other enable input is active HIGH; with one enable input LOW, the other enable input is active LOW.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4042BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4042BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4042BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

PINNING
D_{0} to D_{3}
E_{0} and E_{1}
O_{0} to O_{3}
$\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$
data inputs enable inputs parallel latch outputs
complementary parallel latch outputs

APPLICATION INFORMATION

Some examples of applications for the HEF4042B are:

- Buffer storage
- Holding register

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Fig. 3 Logic diagram.

Fig. 4 Logic diagram (one latch).

FUNCTION TABLE

$E_{\mathbf{0}}$	$E_{\mathbf{1}}$	OUTPUT $\mathbf{O}_{\mathbf{n}}$
L	L	D_{n}
L	H	latched
H	L	latched
H	H	D_{n}

Note

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage) L = LOW state (the less positive voltage).

Quadruple D-latch

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{D} \rightarrow \mathrm{O}, \overline{\mathrm{O}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 95 \\ & 40 \\ & 30 \\ & \hline \end{aligned}$	190 80 55	ns ns ns	$\begin{aligned} & 67 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 28 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 85 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} \hline 175 \\ 75 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 57 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 28 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{E} \rightarrow \mathrm{O}, \overline{\mathrm{O}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 130 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 260 \\ 105 \\ 75 \end{array}$	ns ns ns	$\begin{aligned} 102 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 38 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 27 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 120 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 245 \\ 105 \\ 75 \end{array}$	ns ns ns	$\begin{aligned} & 92 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 38 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
Set-up time $\mathrm{D} \rightarrow \mathrm{E}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	30 10 20 5 20 5		ns ns ns	see also waveforms Figs 5 and 6
Hold time $D \rightarrow E$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	15 -5 15 0 15 0		ns ns ns	
Minimum enable pulse width	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twe	90 45 40 20 30 15		ns ns ns	

	$\mathbf{V}_{\mathbf{D D}}$		TYPICAL FORMULA FOR P (W)

Either E_{0} or E_{1} is held HIGH or LOW while the other enable input is pulsed as the function table shows.

Fig. 5 Waveforms showing propagation delays for D to O, with latch enabled.

Fig. 6 Waveforms showing minimum enable pulse width, set-up time and hold time for E and D. Set-up and hold-times are shown as positive values but may be specified as negative values.

