Linear IC Converter
 cmos
 D/A Converter for Digital Tuning (12-channel, 8-bit, on-chip OP amp., low-voltage)

MB88146A

■ DESCRIPTION

The MB88146A is an 8-bit D/A converter with twelve built-in channels. The 12 analog outputs each have a builtin OP amplifier with large current drive-capability.
The data input/output format is CS (chip select) with serial bus connection available.
A built-in 12-bit I/O expander enables serial \leftrightarrow parallel conversion (8 of the 12 bits can also be used for analog output).
This product can be used for microcontroller port expansion, electronic level adjustment, replacement of semifixed resistance for tuning, etc.

FEATURES

- Ultra low power consumption ($1.2 \mathrm{~mW} /$ chl: typical)
- Ultra compact package
- Built-in 12-channel R-2R type 8-bit D/A converter
- Built-in 12-bit I/O expander (8 bits also function as analog output)
- Built-in analog output amplifier (sink current 1.0 mA maximum, source current 1.0 mA maximum)
- Built-in power-on detection circuit (initialized at detection of VccD power-on)
- MCU interface compatible with 3 V to 5 V systems
- Power divided into MCU interface power supply (VccD) and OP amplifier power supply (VccA), D/A converter power supply (VccD)
- Analog output capability from 0 V to VccA
- Serial data I/O operates to maximum of 2.5 MHz (in cascade connection, up to 2.5 MHz when $\mathrm{VccD}=5 \mathrm{~V}$, up to 1.5 MHz when $\mathrm{VccD}=3 \mathrm{~V}$)
- CMOS process
- Choice of two packages: SDIP-24 pin and SSOP-24 pin.

PACKAGES

24-pin Plastic DIP
(DIP-24P-M02)
(FPT-24P-M03)

PIN ASSIGNMENT

PIN DESCRIPTION

Pin no.	Pin name	Description
1 to 4	AO_{1} to AO_{4}	D/A converter analog output pins (VDD to GND output). (Default: output \#00 setting level)
5 to 12	$\begin{gathered} \mathrm{D}_{11} / \mathrm{AO}_{5} \text { to } \\ \mathrm{D}_{4} / \mathrm{AO}_{12} \end{gathered}$	These pins may be used either as I/O expander parallel input/output ($\mathrm{VccA} /$ GND output $0.5 \mathrm{VccA} / 0.2 \mathrm{VccA}$ input) or D/A converter analog output (Vod to GND output). Pin status is controlled by input data. See "四Data Configuration". (Default: Input mode, Hi-Z state)
13	Vod*	D/A converter reference power pin.
14	VccD* ${ }^{\text {* }}$	MCU interface power supply pin (power supply for I/O expander).
15 to 18	D toD	I/O expander parallel input/output pins. (VccD/GND output: When $\mathrm{VccD} \geqq 4.0 \mathrm{~V}, 0.5 \mathrm{VccD} / 0.2 \mathrm{VccD}$ input, When $\mathrm{VccD}<4.0 \mathrm{~V}, 2 \mathrm{~V} / 0.2 \mathrm{VccD}$ input) Pin status is controlled by input data. See "四Data Configuration." (Default: Input mode, Hi-Z state)
19	CLK*2	Shift clock signal input pin. When $\overline{C S}=$ "L," SI data is loaded into the shift register at the rising edge of the shift clock.
20	SI*2	Data input pin (serial input pin). Used for 16-bit serial data input.
21	SO	Data output pin (serial output pin). The first bit (LSB) data of the 16-bit shift register is output simultaneously with the falling edge of the shift clock. When $\overline{\mathrm{CS}}$ output $=$ " H ," this pin goes to high impedance state.
22	$\overline{\mathrm{CS}}{ }^{*}$	Chip select signal input pin. Input to shift registers is enabled when the $\overline{\mathrm{CS}}$ signal falling edges. Shift register contents can be executed when the $\overline{C S}$ signal rising edges.
23	$\mathrm{V}_{c c} \mathrm{~A}^{* 1}$	Analog unit power supply pin (OP amplifier power supply).
24	GND	Common GND pin.

${ }^{*} 1$: Be sure that $\mathrm{V}_{c c} \mathrm{~A} \geqq \mathrm{~V}_{c c} \mathrm{D}$, and that $\mathrm{V}_{\mathrm{cc}} \mathrm{A} \geqq \mathrm{V}_{\mathrm{dd}}$.
*2: Do not leave this pin in floating state.

MB88146A

BLOCK DIAGRAM

DATA CONFIGURATION

1. Data Configuration

MSB (last)															
D	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Setting data Channel select															

2. Channel Select

D3	D2	D1	D0	Function
0	0	0	0	Don't Care/special function
0	0	0	1	AO1 selected
0	0	1	0	AO $_{2}$ selected
to	to	to	to	to
1	0	1	1	AO 11 selected
1	1	0	0	AO 12 selected
1	1	0	1	I/O expander (serial \rightarrow parallel)
1	1	1	0	I/O expander (parallel \rightarrow serial)
1	1	1	1	Expander status register (ESR)

MB88146A

3. Setting Data

- Don't Care/special function (Channel select = "0000")

DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	Analog output voltage level
\times	0	0	0	0	Don't Care							
to	Don't Care											
\times	1	0	1	1	Don't Care							
0	0	0	0	0	0	0	0	1	1	0	0	GND (all channels)
0	0	0	0	0	0	0	1	1	1	0	0	Vod/256 $\times 1$ (all channels)
0	0	0	0	0	0	1	0	1	1	0	0	VDo/256 $\times 2$ (all channels)
to												
1	1	1	1	1	1	1	0	1	1	0	0	VDo/256 $\times 254$ (all channels)
1	1	1	1	1	1	1	1	1	1	0	0	Vod/256 $\times 255$ (all channels)
\times	1	1	0	1	Hi-Z (I/O expander state)*							
\times	1	1	1	0	Reset (state when power is ON)							
\times	1	1	1	1	Don't Care							

\times : Don't care *: Hi-Z output on all channels of AO_{5} through AO_{12}

- D/A Converter (Channel select = "0001" to " 1100 ")

DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	Analog output voltage level
0	0	0	0	0	0	0	0	0	0	0	0	GND
0	0	0	0	0	0	0	1	0	0	0	0	VDD/256 $\times 1$
0	0	0	0	0	0	1	0	0	0	0	0	VDD/256 $\times 2$
0	0	0	0	0	0	1	1	0	0	0	0	Vod/256 $\times 3$
to												
1	1	1	1	1	1	0	1	0	0	0	0	Vod/256 $\times 253$
1	1	1	1	1	1	1	0	0	0	0	0	VDo/256 $\times 254$
1	1	1	1	1	1	1	1	0	0	0	0	VDD/256 $\times 255$
\times	0	0	0	1	Hi Z (1/O expander state)*							
\times	0	0	1	0	Don't Care							
to	Don't Care											
\times	1	1	1	1	Don't Care							

x : Don't care *: Only AO_{5} through AO_{12} output is valid

- I/O Expander [Channel select = "1101"]: Serial \rightarrow Parallel Conversion

Performs parallel conversion of data bits D4 to DF for output on pins D_{0} to D_{11}.
Note that only those pins designated for output in the ESR (expander status register) are output.
Shift register

- I/O Expander [Channel select $=$ " 1110 "]: Parallel \rightarrow Serial Conversion

Writes data from D_{0} to D_{11} pins to bits D4 to DF in the shift register.
Data is output to the SO pin on the shift clock (CLK) signal (The first 4 bits output data D0 to D3, so the converted output should be read as data bits 5 through 16.).
Note that the data value is " 0 " for pins designated for output in the ESR (expander status register) as well as analog output pins.

Shift register

\Rightarrow| DF | DE | DD | DC | DB | DA | D 9 | D 8 | D | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\Rightarrow

$\begin{array}{lllllllllllll}D_{11} & D_{10} & D_{9} & D_{8} & D_{7} & D_{6} & D_{5} & D_{4} & D_{3} & D_{2} & D_{1} & D_{0} & \text { Parallel I/O pins (output state) }\end{array}$

- Expander Status Register [Channel select = "1111"]

Shift register

\Rightarrow| DF | DE | DD | DC | DB | DA | D9 | D8 | D7 | D6 | D5 | D4 | ESR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow | |
| | D_{11} | D_{10} | D_{9} | D_{8} | D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |

This register sets the status of each pin.

Setting	Pin status
$" 0 "$	- Input standby status (Hi-Z output) - D11 to D4 pins used for analog output should be set to "0."
$" 1 "$	- Output state

Note: After power $\mathrm{V}_{\mathrm{cc}} \mathrm{D}$ is turned on, the state of pins and registers is as follows.

Pin	State
AO_{1} to AO_{4}	"L" output
$\mathrm{D}_{11} / \mathrm{AO}_{5}$ to $\mathrm{D}_{4} / \mathrm{AO}_{12}$	$\mathrm{Hi}-\mathrm{Z}$ state (input state)
D_{3} to D_{0}	$\mathrm{Hi}-\mathrm{Z}$ state (input state)

Register	State
Shift register	Bits DF to D8 are "0," and D7 to D0 are not defined (retain prior state).
D/A register	All reset to "0."
Parallel output register	Not defined (retain prior state).
Expander status register (ESR)	All reset to "0."

- ESR settings have priority in determining pin states. Switching between input standby state and analog output state is enabled even when the ESR value is " 1 ." When the ESR value returns to " 0 ", the pin returns to its previously defined state.
- In input standby state with AO set for Hi-Z output, the AO output setting can be used for transition to AO output state.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating		Unit
			Min.	Max.	
Power supply voltage	VccA	Based on GND$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$	-0.3	+7.0	V
	$V_{c c}$ D		-0.3	V $\mathrm{cc}{ }^{*}$	V
	VDD		-0.3	VccA*	V
Input voltage 1	Vin1	SI, CLK, $\overline{C S}$, SO, Do to D3	-0.3	VccD +0.3	V
Output voltage 1	Vout 1		-0.3	$\mathrm{VccD}+0.3$	V
Input voltage 2	$\mathrm{V}_{\text {in }}$	D_{4} to D_{11}	-0.3	$\mathrm{VccA}+0.3$	V
Output voltage 2	Vout2		-0.3	$\mathrm{VccA}+0.3$	V
Power consumption	PD	-	-	250	mW
Operating temperature	Ta	-	-20	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	-55	+150	${ }^{\circ} \mathrm{C}$

*: VccA $\geqq \mathrm{VccD}, \mathrm{VccA} \geqq$ Vdd
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Power supply voltage	VccA	-	4.5	5.0	5.5	V
	VccD	VccA \# Vcca	2.7	-	VccA	V
	Vdo	$V_{c c} \mathrm{~A} \geqq \mathrm{~V}_{\mathrm{DD}}$	2.0	-	VccA	V
	GND	-	-	0	-	V
Analog output current	IAL	Source current	-	-	1.0	mA
	ІАН	Sink current	-	-	1.0	mA
Oscillation limit output capacity	Col	-	-	-	1.0	$\mu \mathrm{F}$
Operation temperature	Ta	-	-20	-	+85	${ }^{\circ} \mathrm{C}$

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB88146A

ELECTRICAL CHARACTERISTIC

1. DC Characteristics

(1) Digital section

$\left(\mathrm{VccD} \leqq \mathrm{VccA}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	VccD	VccD	-	2.7	5.0	5.5	V
Power supply current	IccD		$\text { CLK = } 1 \mathrm{MHz},$ (Unloaded)	-	0.2	0.5	mA
Standby current	IcoS		$\begin{aligned} & \text { CLK, SI, CS Stop } \\ & V_{\text {in }}=V_{\mathrm{CcD}} \text { or } \\ & \text { GND } \end{aligned}$	-10	-	+10	$\mu \mathrm{A}$
Input leak current	ІІк1	$\begin{aligned} & \text { CLK, SI, } \\ & \text { CS, } \\ & \mathrm{D}_{0} \text { to } \mathrm{D}_{3} \end{aligned}$	$\mathrm{V}_{\text {in }}=0$ to $\mathrm{V}_{\mathrm{cc}} \mathrm{D}$	-10	-	+10	$\mu \mathrm{A}$
" H " level input voltage	$\mathrm{V}_{\mathbf{H} 1}$		$\mathrm{VccD} \geqq 4.0 \mathrm{~V}$	$0.5 \times \mathrm{VccD}$	-	-	V
			$\mathrm{VccD}<4.0 \mathrm{~V}$	2.0	-	-	V
"L" level input voltage	VIL1		-	-	-	$0.2 \times \mathrm{VccD}$	V
High-impedance leak current	lock	SO	$\mathrm{V}_{\text {in }}=0$ to $\mathrm{V}_{\mathrm{cc}} \mathrm{D}$	-10	-	+10	$\mu \mathrm{A}$
"H" level output voltage	Vон1	$\begin{aligned} & \mathrm{SO}, \\ & \mathrm{D}_{0} \text { to } \mathrm{D}_{3} \end{aligned}$	Ioн $=-0.4 \mathrm{~mA}$	VccD-0.4	-	-	V
"L" level output voltage	VoL1		$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.4	V

(2) D/A converter section
$\left(\mathrm{VccA}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	V ${ }_{\text {d }}$	Vod	$\mathrm{V} D \mathrm{D} \leqq \mathrm{VCCA}$	2.0	5.0	5.5	V
Power supply current	IDD		$\mathrm{V}_{\mathrm{DD}} \leqq \mathrm{V}_{\text {cc }} \mathrm{A}$	-	1.2	2.5	mA
Resolution	Res	AO_{1} to AO_{12}	Unload $V_{d D}=V_{c c} A-0.1 \mathrm{~V}$ Digital value: \#06 to \#FF	-	8	-	bits
Monotonic increase	Rem			-	8	-	bits
Nonlinearity error	LE			-1.5	-	+1.5	LSB
Differential linearity error	DLE			-1.0	-	+1.0	LSB

Nonlinearity error:
Deviation (error) in input/output curves with respect to an ideal straight line connecting output voltage at " 06 " and output voltage at "FF."

Differential linearity error:

Deviation (error) in amplification with respect to theoretical increase in amplification per 1-bit increase in digital value.

Note: The value of $\mathrm{V}_{\text {Aон }}$ and V_{d}, and the value of $\mathrm{V}_{\text {Aol }}$ and GND are not necessarily equivalent.

MB88146A

(3) Operational Amplifier/Analog output section
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}} \mathrm{A}=5.0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	Vcca		-	4.5	5.0	5.5	V
Power supply current	Icca	VccA	\#80 setting (Unloaded)	-	1.0	3.7	mA
Input leak current	lıкк2	D_{4} to D_{11}	$\mathrm{V}_{\text {in }}=0$ to VccA	-10	-	+10	$\mu \mathrm{A}$
"H" level digital input voltage	$\mathrm{V}_{\mathbf{H} 2}$		-	$0.5 \times \mathrm{VccA}$	-	-	V
"L" level digital input voltage	VIL2		-	-	-	$0.2 \times \mathrm{VccA}$	V
"H" level digital output voltage	Voh2		$\mathrm{IOH}=-0.4 \mathrm{~mA}$	VccA-0.4	-	-	V
"L" level digital output voltage	Vol2		$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.4	V
Analog output minimum voltage 1	$V_{\text {AOL1 }}$	AO_{1} to AO_{12}	$\begin{aligned} & \mathrm{IAL}=0 \mathrm{~A} \\ & \# 00 \text { setting } \end{aligned}$	GND	-	0.1	V
Analog output minimum voltage 2	$V_{\text {AOL2 }}$		$\mathrm{I}_{\mathrm{AL}}=0.5 \mathrm{~mA}$ \#00 setting	-0.2	GND	0.2	V
Analog output minimum voltage 3	$V_{\text {aolz }}$		$\begin{aligned} & l_{\mathrm{AH}}=0.5 \mathrm{~mA} \\ & \# 00 \text { setting } \end{aligned}$	GND	-	0.2	V
Analog output minimum voltage 4	$V_{\text {AOL4 }}$		$\begin{aligned} & 1 \mathrm{ALL}=1.0 \mathrm{~mA} \\ & \# 00 \text { setting } \end{aligned}$	-0.3	GND	0.3	V
Analog output minimum voltage 5	$V_{\text {aols }}$		$I_{\mathrm{AH}}=1.0 \mathrm{~mA}$ \#00 setting	GND	-	0.3	V
Analog output maximum voltage 1	$\mathrm{V}_{\text {AOH1 }}$	AO_{1} to AO_{12}	$I_{A L}=0 \mathrm{~A}$ \#FF setting	VccA-0.1	-	VccA	V
Analog output maximum voltage 2	$V_{\text {AOH2 }}$		$\mathrm{I}_{\mathrm{AL}}=0.5 \mathrm{~mA}$ \#FF setting	VccA-0.2	-	VccA	V
Analog output maximum voltage 3	Vаонз		$\begin{aligned} & \begin{array}{l} \text { IAH }=0.5 \mathrm{~mA} \\ \text { \#FF setting } \end{array} \\ & \hline \end{aligned}$	VccA-0.2	VccA	VccA +0.2	V
Analog output maximum voltage 4	$V_{\text {AOH4 }}$		$\mathrm{IAL}^{2}=1.0 \mathrm{~mA}$ \#FF setting	VccA-0.3	-	VccA	V
Analog output maximum voltage 5	$V_{\text {AOH5 }}$		$I_{\mathrm{AH}}=1.0 \mathrm{~mA}$ \#FF setting	VccA-0.3	VccA	$\mathrm{VccA}+0.3$	V

Note: IAн: Analog output sink current IAL: Analog output source current

MB88146A

2. AC Characteristics

- For operation at $\mathrm{V}_{\mathrm{cc}} \mathrm{D}=5.0 \mathrm{~V}$

$$
\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{cc}} \mathrm{~A}=5.0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Clock "L" level pulse width	tckL	-	200	-	-	ns
Clock "H" level pulse width	tскн	-	200	-	-	ns
Clock rise time	tcr	-	-	-	200	ns
Clock fall time	tot	-	-	-	200	ns
Serial input setup time	tssu	-	30	-	-	ns
Serial input hold time	tsho	-	60	-	-	ns
Serial output delay time	tsod	See "Load condition 1"	0	80	170	ns
$\overline{\mathrm{CS}}$ input setup time	tcsu	-	100	-	-	ns
$\overline{\mathrm{CS}}$ hold time	tcch	-	200	-	-	ns
$\overline{\mathrm{CS}}$ "H" level hold time	tcs	-	100	-	-	ns
Data output enable time	tso	-	-	-	200	ns
Data output float time	tsoz	-	-	-	200	ns
Parallel input setup time	tpsu	-	30	-	-	ns
Parallel input hold time	tPHD	-	60	-	-	ns
Parallel output delay time	tpod	See "Load condition 1"	-	100	170	ns
Analog output delay time	taod	See "Load condition 2"	-	30	100	$\mu \mathrm{s}$
Power supply rise time	t_{R}	-	-	-	50	ms
Power-on reset non-startup power supply variation	$\Delta V_{\text {R }}$	-	-10	-	10	V/ $\mu \mathrm{s}$

- For operation at $\mathrm{V}_{\mathrm{cc}} \mathrm{D}=3.0 \mathrm{~V}$ *1
$\left(\mathrm{VccD}=3.0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Serial output delay time	tsod	See "Load condition 1"*2	0	120	300	ns
Parallel output delay time	tpod	See "Load condition 2"*3	-	120	300	ns

*1: Items not listed are identical to characteristics for $\mathrm{V}_{\mathrm{cc}} \mathrm{D}=5.0 \mathrm{~V}$.
*2: Cascade connection enabled at 1.5 MHz .
*3: Applied to D0 to D3 operating at VccD.

Load Conditions

- Load condition 1

- Load condition 2

- Input/Output Timing ($\overline{\mathrm{CS}}$ method)

The decision level for CLK, SI, $\overline{C S}, S O$, and D_{0} to D_{3} is 80% and 20% of $V_{c c} D$. The decision level for D_{4} to D_{11} is 80% and 20% of $\mathrm{VccA}^{\mathrm{A}}$, and for AO_{1} to AO_{12} is 90% and 10% of VccA .

- Power Supply Timing

- Power-On Timing

- Power-On Reset Non-Startup Supply Variation

Upper limit, 5.5V

VccD

2.7V, lower limit

MB88146A

3. Analog Output Noise Characteristic

$$
\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{cc}} \mathrm{D}=\mathrm{V}_{\mathrm{cc}} \mathrm{~A}=5.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	Measurement condition	Value			Unit
				Min.	Typ.	Max.	
Digital supply noise reduction ratio	Pskd	$\mathrm{f}_{\text {NoISE }}=1 \mathrm{kHz}$	1	-	-	20	dB
Analog supply noise reduction ratio	Psfa	$\mathrm{f}_{\text {NoISE }}=1 \mathrm{kHz}$	1	-	-	20	dB
D/A supply noise reduction ratio	Psfoa	fnoise $=1 \mathrm{kHz}$	1	-	-	0	dB
Operating noise	$\mathrm{V}_{\mathrm{N} 1}$	- During serial transfer - During analog operation - During Hi-Z commands. See "Operating Noise $\mathrm{V}_{\mathrm{N} 1}$."	2	-30	-	30	mV
I/O expander operating noise 1	$\mathrm{V}^{2} 2$	- Serial \rightarrow parallel conversion See "I/O Expander Operating Noise $1 \mathrm{~V}_{\mathrm{N} 2}$." During digital-only pin operation - During parallel \rightarrow serial conversion - ESR setting During digital input/digital output switching	2	-30	-	30	mV
I/O expander operating noise 2	Vмз	- During serial \rightarrow parallel conversion See "//O Expander Operating Noise 2 Vмз." During digital/analog capable pin operation - ESR setting During digital output/digital output switching	2	-0.1	-	0.1	V

- Measurement condition 1

- Measurement condition 2
$\left.\begin{array}{l}\mathrm{VCCD}=5.0 \mathrm{~V}, \mathrm{VCCA}=5.0 \mathrm{~V}, \mathrm{VDD}=5.0 \mathrm{~V} \\ \begin{array}{l}\text { Pattern } \\ \text { input } \\ \mathrm{CLK}\end{array} \\ \mathrm{SS}\end{array}\right)$

- Analog Output Noise Description

- Output Noise $\mathrm{V}_{\mathrm{N} 1}$

Noise to analog output during serial data transfer, analog operation, Hi-Z commands.

* Hi-Z state $=$ digital input state.
- I/O Expander Operation Noise 1 Vn2

Noise to analog output during parallel \rightarrow serial conversion commands, serial \rightarrow parallel conversion command for digital-only pins, or ESR setting commands for switching between digital input and digital output.

MB88146A

(Continued)

- I/O Expander Operation Noise $2 \mathrm{~V}_{\text {N }}$

Noise to analog output during serial \rightarrow parallel switching commands for digital-only pins, or ESR setting commands for switching between digital output and analog output.

MB88146A

DATA INPUT/OUTPUT TIMING

MB88146A Data Input/Output Timing (Serial Bus Format)

- D/A converter operation, and I/O expander (serial \rightarrow parallel conversion) operation, and ESR writing operation.

Data input is enabled at the falling edge of the $\overline{C S}$ signal. 16-bit data is input, and the shift register command is executed at the rising edge of $\overline{\mathrm{CS}}$.
In D/A converter operation, the analog output selected at the rising edge of $\overline{C S}$ is the conversion result. In serial \rightarrow parallel conversion, the digital output selected at the rising edge of $\overline{C S}$ is the conversion result. In ESR write operation, ESR data is set and pin status determined at the rising edge of $\overline{\mathrm{CS}}$.

- I/O expander (parallel \rightarrow serial conversion) operation

Data input is enabled at the falling edge of the $\overline{C S}$ signal. 16-bit data (parallel \rightarrow serial conversion commands) is input and commands accepted at the rising edge of $\overline{\mathrm{CS}}$. At the falling edge of $\overline{\mathrm{CS}}$, data from the parallel input is loaded into bits D4 to DF of the shift register, and output from the SO pin timed to the falling edge of the CLK signal.

MB88146A

USAGE PRECAUTIONS

1. Preventing Latch-Up

A condition known as "latch-up" may occur when the input or output pins of a CMOS IC device are exposed to voltages higher then $\mathrm{V}_{\mathrm{cc}} \mathrm{D}$ or $\mathrm{V}_{\mathrm{cc}} \mathrm{A}$ or lower than GND voltage, or when voltages are applied to the device in excess of rated values for $V_{c c} \mathrm{D}, \mathrm{V}_{c c} \mathrm{~A}$, or V_{DD} to GND voltages. Latchup produces a rapid increase in power supply current, and may result in thermal destruction of elements. Users should take sufficient precautions to ensure that absolute maximum ratings are not exceeded at any time during use.

2. Power Supply Pins

The power supply should be connected to the $\mathrm{V}_{\mathrm{cc}} \mathrm{D}, \mathrm{V}_{\mathrm{cc}} \mathrm{A}, \mathrm{V}_{\mathrm{dd}}$, and GND terminals of the MB88146A with as low an impedance as possible.
In addition, it is recommended that ceramic capacitors or approximately $0.1 \mu \mathrm{~F}$ be connected as bypass capacitors between the $V_{c c} D, V_{c c} A$, and $V_{d o}$ terminals and the GND terminals.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB88146AP	24-pin Plastic DIP (DIP-24P-M02)	
MB88146APFV	24-pin Plastic SSOP (FPT-24P-M03)	

PACKAGE DIMENSIONS

24-pin Plastic SSOP
(FPT-24P-M03)

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

