4-BIT SINGLE-CHIP MICROCONTROLLER

 FOR INFRARED REMOTE CONTROL TRANSMISSION
DESCRIPTION

The μ PD6P4B is a microcontroller for infrared remote control transmitters which is provided with a one-time PROM as the program memory.

Because users can write programs for the μ PD6P4B, it is ideal for program evaluation and small-scale production of the application systems using the $\mu \mathrm{PD} 62,63,63 \mathrm{~A}$, or 64.

When reading this document, also refer to the μ PD62 Data Sheet (U14208E) and the μ PD63, 63A, 64 Data Sheet (U11371E).

FEATURES

- Program memory (one-time PROM) : 1002×10 bits
- Data memory (RAM) : 32×4 bits
- Built-in carrier generation circuit for infrared remote control
- 9-bit programmable timer : 1 channel
- Command execution time : $16 \mu \mathrm{~s}$ (when operating at $\mathrm{fx}=4 \mathrm{MHz}$: ceramic oscillation)
- Stack level : 1 level (Stack RAM is for data memory RF as well.)
- I/O pins (Kı/O) : 8 units
- Input pins (Kı) : 4 units
- Sense input pin (So) : 1 unit
- $\mathrm{S}_{1} / \overline{\mathrm{LED}} \mathrm{pin}(\mathrm{I} / \mathrm{O})$
: 1 unit (In output mode, this is the remote control transmission display pin.)
- Power supply voltage

$$
\text { : VdD = } 2.2 \text { to } 3.6 \mathrm{~V}(\text { at } \mathrm{fx}=4 \mathrm{MHz})
$$

$V_{D D}=2.7$ to 3.6 V (at $\mathrm{fx}=8 \mathrm{MHz}$)

- Operating ambient temperature
: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
- Oscillator frequency
: fx = 2.4 to 8 MHz
- POC circuit

APPLICATION

Infrared remote control transmitter (for AV and household electric appliances)

[^0]
ORDERING INFORMATION

Part Number	Package
μ PD6P4BGS	20-pin plastic SOP $(300 \mathrm{mil})$
μ PD6P4BMC-5A4	20-pin plastic SSOP $(300 \mathrm{mil})$

PIN CONFIGURATION (TOP VIEW)

20-pin Plastic SOP (300 mil)

- μ PD6P4BGS
$\star \quad$ 20-pin Plastic SSOP (300 mil)
- μ PD6P4BMC-5A4
(1) Normal operating mode

(2) PROM programming mode

Caution Round brackets () indicate the pins not used in the PROM programming mode.
L : Connect each of these pins to GND via a pull-down resistor.

BLOCK DIAGRAM

LIST OF FUNCTIONS

Item	$\mu \mathrm{PD} 6 \mathrm{P} 4 \mathrm{~B}$
ROM capacity	1002×10 bits One-time PROM
RAM capacity	32×4 bits
Stack	1 level (shared with RF of RAM)
I/O pin	Key input (Kı) $: 4$ pins Key I/O $\left(\mathrm{K}_{/}\right)$ $: 8$ pins Key expansion input $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ $: 2$ pins Remote control transmitter display output $(\overline{\mathrm{LED})}$ $: 1$ pin (shared with $\left.\mathrm{S}_{1} \mathrm{pin}\right)$
Number of keys	32 keys 48 keys (when expanded by key expansion input) 96 keys (when expanded by key expansion input and diode)
Clock frequency	Ceramic oscillation $\begin{aligned} & f x=2.4 \text { to } 4 \mathrm{MHz} \\ & f_{\mathrm{x}}=4 \text { to } 8 \mathrm{MHz} \text { Note } \end{aligned}$
Instruction execution time	$16 \mu \mathrm{~s}$ (at fx $=4 \mathrm{MHz}$)
Carrier frequency	$\mathrm{fx}_{\mathrm{K}} / 8, \mathrm{fx}_{\mathrm{x}} / 16, \mathrm{fx}_{\mathrm{x}} / 64, \mathrm{fx}_{\mathrm{x}} / 96, \mathrm{fx}_{\mathrm{x}} / 128, \mathrm{fx}^{\prime} / 192$, no carrier (high level)
Timer	9-bit programmable timer : 1 channel
POC circuit	Provided
Supply voltage	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 3.6 V ($\mathrm{fx}=2.4$ to 4 MHz), $\mathrm{VDD}^{\text {d }}=2.7$ to 3.6 V ($\mathrm{fx}=4$ to 8 MHz)
Operating ambient temperature	- $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ - $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$ (when using POC circuit)
Package	- 20-pin plastic SOP (300 mil) -20-pin plastic SSOP (300 mil)

Note It is necessary to design the application circuit so that the RESET pin goes low at a supply voltage of less than 2.7 V .

TABLE OF CONTENTS

1. PIN FUNCTIONS 6
1.1 Normal Operating Mode 6
1.2 PROM Programming Mode 7
1.3 INPUT/OUTPUT Circuits of Pins 8
1.4 Dealing with Unused Pins 9
1.5 Notes on Using Kı Pin at Reset 9
2. DIFFERENCES AMONG μ PD62, 63, 63A, 64, AND μ PD6P4B 10
2.1 Program Memory (One-time PROM) 11
3. WRITING AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY) 12
3.1 Operating Mode When Writing/Verifying Program Memory 12
3.2 Program Memory Writing Procedure 13
3.3 Program Memory Reading Procedure 14
4. ELECTRICAL SPECIFICATIONS 15
5. CHARACTERISTIC CURVE (REFERENCE VALUES) 21
6. APPLIED CIRCUIT EXAMPLE 23
7. PACKAGE DRAWINGS 24
8. RECOMMENDED SOLDERING CONDITIONS 26
APPENDIX A. DEVELOPMENT TOOLS 27
APPENDIX B. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT 28

1. PIN FUNCTIONS

1.1 Normal Operating Mode

Pin No.	Symbol	Function	Output Format	When Reset
$\begin{aligned} & 1 \\ & 2 \\ & 15-20 \end{aligned}$	$\mathrm{K}_{1 / 00}-\mathrm{K}_{\text {I/07 }}$	These pins refer to the 8-bit I/O ports. I/O switching can be made in 8 -bit units. In INPUT mode, a pull-down resistor is added. In OUTPUT mode, they can be used as the key scan output of the key matrix.	CMOS push-pull ${ }^{\text {Note }} 1$	High-level output
3	So	Refers to the input port. Can also be used as the key return input of the key matrix. In INPUT mode, the availability of the pull-down resistor of the S_{0} and S_{1} ports can be specified by software in terms in 2-bit units. If INPUT mode is canceled by software, this pin is placed in OFF mode and enters the high-impedance state.	-	High-impedance (OFF mode)
4	$\mathrm{S}_{1} / \overline{\mathrm{LED}}$	Refers to the I/O port. In INPUT mode (S_{1}), this pin can also be used as the key return input of the key matrix. The availability of the pull-down resistor of the S_{0} and S_{1} ports can be specified by software in 2-bit units. In OUTPUT mode ($\overline{\text { LED }}$), it becomes the remote control transmission display output (active low). When the remote control carrier is output from the REM output, this pin outputs the low level from the $\overline{\mathrm{LED}}$ output synchronously with the REM signal.	CMOS push-pull	High-level output ($\overline{\text { LED }})$
5	REM	Refers to the infrared remote control transmission output. The output is active high. Carrier frequency: $\mathrm{fx}_{\mathrm{x}} / 8, \mathrm{fx}_{\mathrm{x}} / 64, \mathrm{fx}_{\mathrm{x}} / 96$, high-level, $\mathrm{fx} / 16, \mathrm{fx}_{\mathrm{x}} / 128, \mathrm{fx}_{\mathrm{x}} / 192$ (usable on software)	CMOS push-pull	Low-level output
6	VDD	Refers to the power supply.	-	-
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	Xout Xin	These pins are connected to system clock ceramic resonators.	-	Low level (oscillation stopped)
9	GND	Refers to the ground.	-	-
10	RESET	Normally, this pin is a system reset input. By inputting a low level, the CPU can be reset. When resetting with the POC circuit a low level is output. A pull-up resistor is incorporated.	-	-
11-14	$\mathrm{K}_{10}-\mathrm{K}_{13}$ Note 2	These pins refer to the 4-bit input ports. They can be used as the key return input of the key matrix. The use of the pull-down resistor can be specified by software in 4-bit units.	-	Input (low-level)

Notes 1. Be careful about this because the drive capability of the low-level output side is held low.
2. In order to prevent malfunction, be sure to input a low level to more than one of pins Kıo to Kıs when reset is released (when $\overline{R E S E T}$ pin changes from low level to high level, or POC is released due to supply voltage startup).

1.2 PROM Programming Mode

Pin No.	Symbol	Function	I/O
$\begin{aligned} & 1,2 \\ & 15-20 \end{aligned}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	8-bit data input/output when writing/verifying program memory	I/O
3	CLK	Clock input for updating address when writing/verifying program memory	Input
6	VDD	Power Supply. Supply +6 V to this pin when writing/verifying program memory.	-
7	Xout	Clock necessary for writing program memory. Connect 4 MHz ceramic resonator to these pins.	-
8	XIN		Input
9	GND	GND	-
10	$V_{\text {PP }}$	Supplies voltage for writing/verifying program memory. Apply +12.5 V to this pin.	-
11-14	MDo-MD3	Input for selecting operation mode when writing/verifying program memory.	Input

1.3 INPUT/OUTPUT Circuits of Pins

The input/output circuits of the μ PD6P4B pins are shown in partially simplified forms below.
(1) $\mathrm{K}_{1 / 00}-\mathrm{K}_{1 / 07}$
(4) So

(5) $S_{1} / \overline{\text { LED }}$

Note The drive capability is held low.
(2) $\mathrm{K}_{10}-\mathrm{K}_{13}$

(6) RESET

1.4 Dealing with Unused Pins

The following connections are recommended for unused pins in the normal operation mode.

Table 1-1. Connections for Unused Pins

Pin		Connection	
		Inside the microcontroller	Outside the microcontroller
K/o	INPUT mode	-	Open
	OUTPUT mode	High-level output	
REM		-	
$S_{1} / \overline{L E D}$		OUTPUT mode ($\overline{\text { LED }}$) setting	
So		OFF mode setting	Directly connected to GND
Kı		-	
$\overline{\text { RESET }}^{\text {Note }}$		Built-in POC circuit	Open

Note If the circuit is an applied one requiring high reliability, be sure to design it in such a manner that the RESET signal is entered externally.

Caution The I/O mode and the terminal output level are recommended to be fixed by setting them repeatedly in each loop of the program.

1.5 Notes on Using Kı Pin at Reset

In order to prevent malfunction, be sure to input a low level to more than one of pins K_{10} to K_{13} when reset is released (when $\overline{\operatorname{RESET}}$ pin changes from low level to high level, or POC is released due to supply voltage startup).

2. DIFFERENCES AMONG μ PD62, 63, 63A, 64, AND μ PD6P4B

Table 2-1 shows the differences among the μ PD62, 63, 63A, 64 , and μ PD6P4B.
The only differences among these models are the program memory, supply voltage, system clock frequency, oscillation stabilization wait time, and POC circuit (mask option), and the CPU function and internal peripheral hardware are the same.

The electrical characteristics also differ slightly. For the electrical characteristics, refer to the Data Sheet of each model.

Table 2-1. Differences among μ PD62, 63, 63A, 64, and μ PD6P4B
(1) When POC circuit (mask option) is provided to μ PD62, 63, 63A, and 64

Item	μ PD6P4B	μ PD62, 63	μ PD63A	μ PD64
ROM	One-time PROM	Mask ROM		
	1002×10 bits (000H to 3E9H)	512×10 bits (000 H to 1 FFH)	768×10 bits (000H to 2FFH)	1002×10 bits (000H to 3E9H)
Oscillation stabilization wait time - On releasing STOP mode by release condition - On releasing STOP or HALT mode by RESET input and at reset	286/fx 478/fx to 926/fx	$52 / f x$		
Vpp pin and operating mode select pin	Provided	Not provided		
Electrical specifications	Some electrical specifications, such as data retention voltage and current consumption, differ. For details, refer to Data Sheet of each model.			

(2) When POC circuit (mask option) is not provided to μ PD62, 63, 63A, and 64

Item	$\mu \mathrm{PD} 6 \mathrm{P} 4 \mathrm{~B}$	μ PD62, 63	μ PD63A	μ PD64
ROM	One-time PROM	Mask ROM		
	1002×10 bits (000H to 3E9)	512×10 bits (000 H to 1 FFH)	768×10 bits (000H to 2FFH)	1002×10 bits (000 H to 3 E 9 H)
Oscillation stabilization wait time - On releasing STOP mode by release condition - On releasing STOP or HALT mode by RESET input and at reset	286/fx 478/fx to 926/fx	52/fx 246/fx to 694/fx		
VPP pin and operating mode select pin	Provided	Not provided		
POC circuit	Incorporated	Not provided		
Supply voltage	$\begin{aligned} & V_{D D}=2.2 \text { to } 3.6 \mathrm{~V} \\ & \left(T_{A}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{\text {DD }}=1.8$ to $3.6 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$		
System clock frequency	- $\mathrm{fx}=2.4$ to 4 MHz - $\mathrm{fx}_{\mathrm{x}}=4$ to $8 \mathrm{MHz}^{\text {Note }}$	- $f x=2.4$ to 4 MHz - $\mathrm{fx}=2.4$ to $8 \mathrm{MHz}(\mathrm{VDD}=2.2$ to 3.6 V$)$		
Electrical specifications	Some electrical specifications, such as data retention voltage and current consumption, differ. For details, refer to Data Sheet of each model.			

Note It is necessary to design the application circuit so that the $\overline{\text { RESET }}$ pin goes low when the supply voltage is less than 2.7 V .

2.1 Program Memory (One-time PROM) ... 1002 steps $\times 10$ bits

This one-time PROM is configured with 10 bits per step and is addressed by the program counter.
The program memory stores programs and table data.
The 22 steps from addresses 3EAH through 3FFH constitute a test program area and must not be used.

Figure 2-1. Program Memory Map

Note Even if execution jumps to the test program area by mistake, it returns to address 000 H .

3. WRITING AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The program memory of the μ PD6P4B is a one-time PROM of 1002×10 bits.
To write or verify this program memory, the pins shown in Table 3-1 are used. Note that no address input pin is used. Instead, the address is updated by using the clock input from the CLK pin.

Table 3-1. Pins Used to Write/Verify Program Memory

Pin Name	
$V_{\text {PP }}$	Supplies voltage when writing/verifying program memory. Apply +12.5 V to this pin.
V_{DD}	Power supply. Supply +6 V to this pin when writing/verifying program memory.
CLK	Inputs clock to update address when writing/verifying program memory. By inputting pulse four times to CLK pin, address of program memory is updated.
$\mathrm{MD}_{0}-\mathrm{MD}_{3}$	Input to select operation mode when writing/verifying program memory.
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Inputs/outputs 8-bit data when writing/verifying program memory.
XIIN^{2}, Xout	Clock necessary for writing program memory. Connect 4 MHz ceramic resonator to this pin.

3.1 Operating Mode When Writing/Verifying Program Memory

The μ PD6P4B is set in the program memory write/verify mode when +6 V is applied to the VDD pin and +12.5 V is applied to the VPP pin after the μ PD6P4B has been in the reset status ($\mathrm{VDD}=5 \mathrm{~V}$, $\mathrm{VPP}=0 \mathrm{~V}$) for a specific time. In this mode, the operating modes shown in Table 3-2 can be set by setting the MDo through MD3 pins. Connect all the pins other than those shown in Table 3-1 to GND via pull-down resistor.

Table 3-2. Setting Operation Mode

Setting of Operating Mode						Operation Mode
Vpp	V ${ }_{\text {d }}$	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	H	L	H	L	Clear program address to 0
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	\times	H	H	Program inhibit mode

\times : don't care (L or H)

3.2 Program Memory Writing Procedure

The program memory is written at high speed in the following procedure.
(1) Pull down the pins not used to GND via resistor. Keep the CLK pin low.
(2) Supply 5 V to the Vdd pin. Keep the Vpp pin low.
(3) Supply 5 V to the VPP pin after waiting for $10 \mu \mathrm{~s}$.
(4) Wait for 2 ms until oscillation of the ceramic resonator connected across the Xin and Xout pins stabilizes.
(5) Set the program memory address 0 clear mode by using the mode setting pins.
(6) Supply 6 V to V_{dd} and 12.5 V to Vpp.
(7) Set the program inhibit mode.
(8) Write data to the program memory in the 1 -ms write mode.
(9) Set the program inhibit mode.
(10) Set the verify mode. If the data have been written to the program memory, proceed to (11). If not, repeat steps (8) through (10).
(11) Additional writing of (number of times of writing in (8) through (10): X) $\times 1 \mathrm{~ms}$.
(12) Set the program inhibit mode.
(13) Input a pulse to the CLK pin four times to update the program memory address (+1).
(14) Repeat steps (8) through (13) up to the last address.
(15) Set the 0 clear mode of the program memory address.
(16) Change the voltages on the Vdd and Vpp pins to 5 V .
(17) Turn off power.

The following figure illustrates steps (2) through (13) above.

3.3 Program Memory Reading Procedure

(1) Pull down the pins not used to GND via resistor. Keep the CLK pin low.
(2) Supply 5 V to the Vdd pin. Keep the Vpp pin low.
(3) Supply 5 V to the Vpp pin after waiting for $10 \mu \mathrm{~s}$.
(4) Wait for 2 ms until oscillation of the ceramic resonator connected across the Xin and Xout pins stabilizes.
(5) Set the program memory address 0 clear mode by using the mode setting pins.
(6) Supply 6 V to Vdd and 12.5 V to Vpp.
(7) Set the program inhibit mode.
(8) Set the verify mode. Data of each address is output sequentially each time the clock pulse is input to the CLK pin four times.
(9) Set the program inhibit mode.
(10) Set the program memory address 0 clear mode.
(11) Change the voltage on the VDD and Vpp pins to 5 V .
(12) Turn off power.

The following figure illustrates steps (2) through (10) above.

$M D_{1}$

$M D_{2}$

MD3

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Note Work out the rms with: $[\mathrm{rms}]=[$ Peak value $] \times \sqrt{\text { Duty }}$.

Caution Product quality may suffer if the absolute rating is exceeded for any parameter, even momentarily. In other words, an absolute maxumum rating is a value at which the possibility of psysical damage to the product cannnot be ruled out. Care must therefore be taken to ensure that the these ratings are not exceeded during use of the product.

Recommended Power Supply Voltage Range ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	V_{DD}	$\mathrm{fx}=2.4$ to 4 MHz	2.2	3.0	3.6	V
		$\mathrm{fx}=4$ to 8 MHz Note	2.7	3.0	3.6	V

Note It is necessary to design the application circuit so that the RESET pin goes low when the supply voltage is less than 2.7 V .

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.2$ to 3.6 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{1+1}	RESET		0.8 VDD		VDD	V
	V_{1+2}	Kıo		0.65 VDD		VDD	V
	Vінз	Kı, So, S 1		0.65 VDD		VDD	V
Low-level input voltage	VIL1	RESET		0		0.2 VDD	V
	VIL2	K/10		0		0.3 VDD	V
	VІІ3	Kı, So, S 1		0		0.15 VDD	V
High-level input leakage current	ILH1	Kı $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated				3	$\mu \mathrm{A}$
	ILH2	$\mathrm{S}_{\mathrm{o}}, \mathrm{S}_{1}$ $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated				3	$\mu \mathrm{A}$
Low-level input leakage current	luli	$\mathrm{K}_{1} \quad \mathrm{~V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	lul2	$\mathrm{K}_{1 /} \mathrm{O} \quad \mathrm{V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	luı3	So, $\mathrm{S}_{1} \quad \mathrm{~V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
High-level output voltage	Vor1	REM, $\overline{\text { LED }}$, Kı/o	- 1 ІН $=-0.3 \mathrm{~mA}$	0.8 Vdo			V
Low-level output voltage	Vol1	REM, $\overline{\text { LED }}$	$\mathrm{loL}=0.3 \mathrm{~mA}$			0.3	V
	VoL2	KıIo	$\mathrm{loL}=15 \mu \mathrm{~A}$			0.4	V
High-level output current	Іон1	REM	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=1.0 \mathrm{~V}$	-5	-9		mA
	Іон2	K/IO	$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}, \mathrm{~V} \mathrm{OH}=2.2 \mathrm{~V}$	-2.5	-5		mA
Low-level output current	IoL1	K/IO	V do $=3.0 \mathrm{~V}, \mathrm{VoL}=0.4 \mathrm{~V}$	30	70		$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V}, \mathrm{VOL}=2.2 \mathrm{~V}$	100	220		$\mu \mathrm{A}$
Built-in pull-up resistor	R_{1}	$\overline{\text { RESET }}$		25	50	100	$\mathrm{k} \Omega$
Built-in pull-down resistor	R_{2}	RESET		2.5	5	15	k Ω
	R_{3}	Kı, So, S 1		75	150	300	$k \Omega$
	R4	KıIo		130	250	500	k Ω
Data hold power supply voltage	Vddor	In STOP mode		1.2		3.6	V
Supply current ${ }^{\text {Note }}$	IDD1	Operating mode	$\mathrm{fx}=8 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		1.4	2.8	mA
			$\mathrm{fx}=4 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		1.1	2.2	mA
	IDD2	HALT mode	$\mathrm{fx}=8 \mathrm{MHz}, \mathrm{Vdo}=3 \mathrm{~V} \pm 10 \%$		1.3	2.6	mA
			$\mathrm{fx}_{\mathrm{x}}=4 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		1.0	2.0	mA
	IDD3	STOP mode	$V_{D D}=3 \mathrm{~V} \pm 10 \%$		1.0	8.0	$\mu \mathrm{A}$
			VDD $=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	2.0	$\mu \mathrm{A}$

Note The POC circuit current and the current flowing in the built-in pull-up resistor are not included.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.2$ to 3.6 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Instruction execution time	tcy			15.9		27	$\mu \mathrm{s}$
		$V_{\text {DD }}=2.7$ to $3.6 \mathrm{~V}^{\text {Note } 1}$		7.9		27	$\mu \mathrm{s}$
$\mathrm{K} 1, \mathrm{~S}_{0}, \mathrm{~S}_{1}$ high-level width	th			10			$\mu \mathrm{s}$
		When canceling Standby mode	HALT mode	10			$\mu \mathrm{s}$
			STOP mode	Note 2			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. When using at $\mathrm{fx}=4 \mathrm{MHz}$ or higher, it is necessary to design the application circuit so that the RESET pin goes low when the supply voltage is less than 2.7 V .
2. $10+286 / f x+$ oscillation growth time

Remark tcy = 64/fx (fx: System clock oscillator frequency)

POC Circuit ${ }^{\text {Note } 1}\left(\mathrm{~T}_{\mathrm{A}}=\mathbf{- 2 0}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
POC-detected voltage ${ }^{\text {Note 2 }}$	VPoc		1.8	2.0	2.2	V
POC circuit current	IPoc			1.2	1.5	$\mu \mathrm{~A}$

Notes 1. Operates effectively under the conditions of $f x=2.4$ to 4 MHz .
2. Refers to the voltage with which the POC circuit cancels an internal reset. If VPOC < Vdd, the internal reset is canceled.
From the time of Vpoc \geq Vdd until the internal reset takes effect, lag of up to 1 ms occurs. When the period of $V_{P O C} \geq V_{D D}$ lasts less than 1 ms , the internal reset may not take effect.

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vdd}=2.2$ to 3.6 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Oscillator frequency (ceramic resonator)	fx		2.4	3.64	4.0	MHz
		Note	2.4	3.64	8.0	MHz

Note When using at $\mathrm{f}_{\mathrm{x}}=4 \mathrm{MHz}$ or higher, it is necessary to design the application circuit so that the RESET pin goes low when the supply voltage is less than 2.7 V .

An external circuit example

PROM Programming Mode

DC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VdD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.3 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	Other than CLK	0.7 VdD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	CLK	VDD-0.5		VDD	V
Low-level input voltage	VIL1	Other than CLK	0		0.3 VDD	V
	VIL2	CLK	0		0.4	V
Input leakage current	lLI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
High-level output voltage	Vor	Іон $=-1 \mathrm{~mA}$	VDD-1.0			V
Low-level output voltage	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
VDD supply current	Ido				30	mA
VPP supply current	IPP	$\mathrm{MD}_{0}=\mathrm{V}_{\text {IL }}, \mathrm{MD}_{1}=\mathrm{V}_{\text {IH }}$			30	mA

Cautions 1. Keep Vpp to within +13.5 V including overshoot.
2. Apply Vdd before Vpp and turns it off after Vpp.

AC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$)

Parameter	Symbol	Note1	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ${ }^{\text {Note } 2}$ (vs. MDo \downarrow)	tas	tAs		2			$\mu \mathrm{s}$
MD1 setup time (vs. MDo \downarrow)	tm1s	toes		2			$\mu \mathrm{s}$
Data setup time (vs. MDo \downarrow)	tos	tos		2			$\mu \mathrm{s}$
Address hold time ${ }^{\text {Note } 2}$ (vs. MDo \uparrow)	tah	$\mathrm{taH}_{\text {A }}$		2			$\mu \mathrm{s}$
Data hold time (vs. MDo \uparrow)	toh	toh		2			$\mu \mathrm{s}$
$\mathrm{MD} \mathrm{D}_{0} \uparrow \rightarrow$ data output float delay time	tbF	tbF		0		130	ns
VPP setup time (vs. $\mathrm{MD}_{3} \uparrow$)	tvps	tvps		2			$\mu \mathrm{s}$
Vod setup time (vs. MD ${ }_{3} \uparrow$)	tvos	tvos		2			$\mu \mathrm{s}$
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MDo setup time (vs. MD ${ }_{1} \uparrow$)	tmos	tces		2			$\mu \mathrm{s}$
MDo $\downarrow \rightarrow$ data output delay time	tov	tov	$\mathrm{MD0}=\mathrm{MD1}=\mathrm{V}_{\mathrm{IL}}$			1	$\mu \mathrm{s}$
$M D_{1}$ hold time (vs. $M D_{0} \uparrow$)	tmin	toen	$\mathrm{tm1H}^{\text {+ }} \mathrm{tm1R} \geq 50 \mu \mathrm{~s}$	2			$\mu \mathrm{s}$
MD1 recovery time (vs. MDo \downarrow)	tm1R	tor		2			$\mu \mathrm{s}$
Program counter reset time	tpCr	-		10			$\mu \mathrm{s}$
CLK input high-, low-level width	txh, txL	-		0.125			$\mu \mathrm{s}$
CLK input frequency	fx	-				8	MHz
Initial mode set time	tı	-		2			$\mu \mathrm{s}$
MD_{3} setup time (vs. $\mathrm{MD}_{1} \uparrow$)	tm3s	-		2			$\mu \mathrm{s}$
MD3 hold time (vs. MD1 \downarrow)	tмз	-		2			$\mu \mathrm{s}$
MD_{3} setup time (vs. MDo \downarrow)	tm3sR	-	When program memory is read	2			$\mu \mathrm{s}$
Address ${ }^{\text {Note } 2} \rightarrow$ data output delay time	toad	tacc	When program memory is read			2	$\mu \mathrm{s}$
Address ${ }^{\text {Note } 2} \rightarrow$ data output hold time	thad	toн	When program memory is read	0		130	ns
MD3 hold time (vs. MDo \uparrow)	tM3 HR	-	When program memory is read	2			$\mu \mathrm{s}$
$\mathrm{MD}_{3} \downarrow \rightarrow$ data output float delay time	tDFR	-	When program memory is read			2	$\mu \mathrm{s}$
Reset setup time	tres	-		10			$\mu \mathrm{s}$
Oscillation stabilization wait time ${ }^{\text {Note } 3}$	twalt	-		2			ms

Notes 1. Equivalent symbol of the corresponding $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ (The $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ is a maintenance product.)
2. The internal address signal is incremented at the falling edge of the third clock of CLK.
3. Connect a 4 MHz ceramic resonator between the Xin and Xout pins.

Program Memory Write Timing

Program Memory Read Timing

5. CHARACTERISTIC CURVE (REFERENCE VALUES)

Iol vs Vol (REM, $\overline{\text { LED }})$

High-level output voltage $\mathrm{Voн}^{[\mathrm{V}}$]

6. APPLIED CIRCUIT EXAMPLE

Example of Application to System

- Remote-control transmitter (40 keys; mode selection switch accommodated)

- Remote-control transmitter (48 keys accommodated)

Remark When the POC circuit is used effectively, it is not necessary to connect the capacitor enclosed in the dotted lines.

7. PACKAGE DRAWINGS

20 PIN PLASTIC SOP (300 mil)

NOTE
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	12.7 ± 0.3	0.500 ± 0.012
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.42_{-0.07}^{+0.08}$	$0.017_{-0.004}^{+0.003}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55 ± 0.05	0.061 ± 0.002
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6 ± 0.2	$0.220_{-0.008}^{+0.009}$
J	1.1	0.043
K	$0.22_{-0.07}^{+0.08}$	$0.009_{-0.003}^{+0.003}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}{ }_{-3^{\circ}}$	$3^{\circ}+7^{\circ}$
		P20GM-50-300B, C-5

* 20 PIN PLASTIC SSOP (300 mil)

NOTE
Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	6.65 ± 0.15
B	0.475 MAX.
C	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1 ± 0.05
F	1.3 ± 0.1
G	1.2
H	8.1 ± 0.2
I	6.1 ± 0.2
J	1.0 ± 0.2
K	0.17 ± 0.03
L	0.5
M	0.13
N	0.10
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
T	0.25
U	0.6 ± 0.15
	S20MC-65-5A4-1

8. RECOMMENDED SOLDERING CONDITIONS

Carry out the soldered packaging of this product under the following recommended conditions.
For details of the soldering conditions, refer to information material Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than the recommended conditions, please consult one of our NEC sales representatives.

Table 8-1. Soldering Conditions for Surface-Mount Type
(1) μ PD6P4BGS $-x \times x$: 20-pin plastic SOP (300 mil)

Soldering Method	Soldering Condition	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 secs. max. $\left(210^{\circ} \mathrm{C} \mathrm{min),}\right.$. Number of times: Twice max.	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 secs. max. $\left(200^{\circ} \mathrm{C} \mathrm{min),}\right.$. Number of times: Twice max.	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 secs. max., Number of times: once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature.)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or less ; time: 3 secs or less (for each side of the device)	-

Caution Do not use two or more soldering methods in combination (except partial heating).

\star (2) μ PD6P4BMC-5A4: 20-pin plastic SSOP (300 mil)

Soldering Method	Soldering Condition	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 secs. max. $\left(210^{\circ} \mathrm{C} \mathrm{min),}\right.$. Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 secs. max. $\left(200^{\circ} \mathrm{C}\right.$ min.), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 secs. max., Number of times: once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature.)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or less ; time: 3 secs or less (for each side of the device)	-

Caution Do not use two or more soldering methods in combination (except partial heating).

APPENDIX A. DEVELOPMENT TOOLS

A PROM programmer, program adapter, and emulator are provided for the μ PD6P4B.

Hardware

- PROM programmer (AF-9704 ${ }^{\text {Note }}$, AF-9705 ${ }^{\text {Note }}$, AF-9706 ${ }^{\text {Note }}$)

This PROM programmer supports the μ PD6P4B.
By connecting a program adapter to this PROM programmer, the $\mu \mathrm{PD} 6 \mathrm{P} 4 \mathrm{~B}$ can be programmed.

Note These are products of Ando Electric Co., Ltd. For details, consult Ando Electric Co., Ltd (03-3733-1163).

- Program adapter (PA-61P34, PA-61P34BMC)

It is used to program the μ PD6P4B in combination with AF-9704, AF-9705, or AF-9706.
The usable package differs depending on the program adapter.

- PA-61P34 : μ PD6P4BGS
- PA-61P34BMC : μ PD6P4BGS, μ PD6P4BMC-5A4

- Emulator (EB-6133 ${ }^{\text {Note }}$)

It is used to emulate the $\mu \mathrm{PD} 6 \mathrm{P} 4 \mathrm{~B}$.

Note This is a product of Naito Densei Machida Mfg. Co., Ltd. For details, consult Naito Densei Machida Mfg. Co., Ltd. (044-822-3813).

Software

- Assembler (AS6133)
- This is a development tool for remote control transmitter software.

Part Number List of AS6133

Host Machine	OS	Supply Medium	Part Number
PC-9800 series (CPU: 80386 or more)	MS-DOS $^{T M}$ (Ver. 5.0 to Ver. 6.2)	$3.5-$ inch 2HD	μ S5A13AS6133
IBM PC/AT ${ }^{T M}$ compatible	MS-DOS (Ver. 6.0 to Ver. 6.22)	$3.5-$ inch 2HC	μ S7B13AS6133
	PC DOS ${ }^{T M}$ (Ver. 6.1 to Ver. 6.3)		

Caution Although Ver. 5.0 or later has a task swap function, this function cannot be used with this software.

APPENDIX B. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT

(in the case of NEC transmission format in command one-shot transmission mode)

Caution When using the NEC transmission format, please apply for a custom code at NEC.
(1) REM output waveform (From <2> on, the output is made only when the key is kept pressed.)

Remark If the key is repeatedly pressed, the power consumption of the infrared light-emitting diode (LED) can be reduced by sending the reader code and the stop bit from the second time.
(2) Enlarged waveform of <1>

(3) Enlarged waveform of <3>

(4) Enlarged waveform of <2>

(5) Carrier waveform (Enlarged waveform of each code's high period)

(6) Bit array of each code

Caution To prevent malfunction with other systems when receiving data in the NEC transmission format, not only fully decode (make sure to check $\overline{\text { Data Code as well) the total } 32 \text { bits of the }}$ 16-bit custom codes (Custom Code, Custom Code') and the 16-bit data codes (Data Code, $\overline{\text { Data Code }) ~ b u t ~ a l s o ~ c h e c k ~ t o ~ m a k e ~ s u r e ~ t h a t ~ n o ~ s i g n a l s ~ a r e ~ p r e s e n t . ~}$

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT and PC DOS are trademarks of IBM Corp.

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

